Scientific Visualization and Reproducibility
for “Open” Environmental Science

Denise Lach
School of Public Policy
Oregon State University
Corvallis, OR USA
denise.lach@oregonstate.edu

Judith Bayard Cushing
Computer Science
The Evergrreen State College
Olympia, WA USA
judyc@evergreen.edu

Abstract—Practicing reproducible scientific research requires
access to appropriate reproducibility methodology and software,
as well as open data. Strict reproducibility in complex scientific
domains such as environmental science, ecology and medicine,
however, is difficult if not impossible. Here, we consider
replication as a relaxed but bona fide substitution for strict
reproducibility and propose using 3D terrain visualization for
replication in environmental science studies that propose causal
relationships between one or more driver variables and one or
more response variables across complex ecosystem landscapes.
We base our contention of the usefulness of visualization for
replication on more than ten years observing environmental
science modelers who use our 3D terrain visualization software to
develop, calibrate, validate, and integrate predictive models. To
establish the link between replication and model validation and
corroboration, we consider replication as proposed by Munafo,
i.e.,, triangulation. We enumerate features of visualization
systems that would enable such triangulation and argue that such
systems would render feasible domain-specific, open visualization
software for use in replicating environmental science studies.

Keywords— model validation, replication, triangulation, terrain
visualization, environmental science

I. INTRODUCTION

Reproducibility is presented to college freshmen as a
lynchpin of the scientific method. However, a recent survey of
1500 scientists reports that “more than 70% of researchers have
tried and failed to reproduce another scientist’s experiments,
and more than half have failed to reproduce their own
experiments” [1]. The term reproducibility is often conflated or
loosely applied [2]. For some, reproducibility is used in a strict
sense: using the same data and/or methods to reproduce the
results of a prior study. Further, the term replication is often
used synonymously with reproducibility in formal and
common scientific parlance in both this survey of scientists and
other recent publications [e.g., 1, 3]. Peng distinguishes
between the two terms with replication referring to the process
of generating “scientific findings using independent
investigators, methods, data” vs. reproducibility “which
requires that data sets and computer code be made available to
others for verifying published results and conducting
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alternative analyses" [4]. Throughout this paper, we use Peng’s
definition of replication, and distinguish replication from strict
reproducibility.

When proposing criteria to evaluate whether a given
research study can be trusted, others even further relax
replication requirements. Munafo and Smith suggest that “an
essential protection against flawed ideas is triangulation, i.e.,
multiple approaches to address one question” [5]. Milcu et al.
in an unpublished manuscript go further and suggest that
“deliberate introduction of controlled systematic variability
(CSV) in experimental designs can increase reproducibility,”
the idea being that “a robust effect generalizable across many
conditions is more likely to stand out” [3, 6]. The Open
Science missions—"“to increase openness, integrity, and
reproducibility of research,” and “not to waste time...on results
that are not reproducible” [7] would, we believe, be supported
by methods and software that makes it easier for environmental
scientists and ecologists to produce replicable science and to
more easily replicate already published research.

The two questions pursued in this position paper are (1)
what role might scientific visualization play in replication for
the environmental sciences—to recognize and then confirm the
same robust effect over a particular landscape as seen in two
different studies, and (2) what software features would
facilitate the use of visualization in replication. To that end, we
draw on our qualitative studies of environmental scientists
using our visualization software to validate, calibrate, integrate,
and present results of their predictive models. We argue that
those processes are analogous to triangulation—the
corroboration and replication approaches recently championed
in the literature. Finally, we discuss the visualization features
that would facilitate corroboration and replication in
environmental science.

Our 3D terrain visualization software Visualization of
Terrestrial and Aquatic Systems (aka VISTAS) was launched
in 2011 as a collaborative, interdisciplinary project supported
by the U.S. National Science Foundation with the purpose of
bringing together computer scientists, social scientists, and
environmental scientists to address complex problems. The
software design process is an extension of Munzner’s nested
blocks and guidelines model [8], and the use of VISTAS
visualizations to present our collaborators’ findings are
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described elsewhere [9, 10, 11]. For the purposes of this paper,
it suffices the reader to know that VISTAS seeks to enable
scientists to better understand and communicate information
about complex environmental problems. VISTAS can quickly
process and display large amounts of geospatial data, and
environmental scientists use it to view their modeled or
remotely sensed data in conjunction with impacted complex
topography and other landscape features. Users can view data
interactively over time and space and use simple analytics
while viewing graphical images over time (descriptive
statistics, linear and multiple regression, and principal
component analysis).

We present here the extensive use of VISTAS by two
environmental scientist collaborators in validating and
calibrating their models, VELMA and Penumbra. The eco-
hydrological model VELMA (Visualizing Ecosystem Land
Management Assessments) predicts the effectiveness of
alternative green infrastructure scenarios for protecting water
quality. It is used by scientists and collaborating land manager
stakeholders to advise on the establishment of riparian buffers,
cover crops, constructed wetlands, and other measures to
intercept, store, and transform nutrients, toxics, and other
contaminants that might otherwise reach surface and ground
waters. The model can handle multiple spatial and temporal
scales, from plots to basins to hundreds of square miles and
days to centuries [12, 13].

Penumbra is a spatially-distributed irradiance model that
provides solar energy reduction from topographic shadowing,
forest shadowing, and cloud coverage at multi-year landscape
scales. It aims to enhance understanding of how light energy
impacts ecological processes within landscapes to answer
questions about forest management or restoration of riparian
zones or fish habitat [14]. Both VELMA and Penumbra are
grid based, and each utilizes precise digital elevation data,
coupled with a number of input parameters (aka environmental
drivers), to generate model results (aka response variables).

II. MODEL AND VALIDATION CRITERIA

VELMA and Penumbra underwent standard and stringent
validation prior to publication and use; additionally, calibration
and further validation to specific locations was conducted prior
to subsequent use for predictive purposes in environmental
resource management. We distinguish validating model
software from software verification; in verification, a developer
seeks to assure, often formally, that a given program is correct,
i.e., that it correctly implements the program’s specifications
[15, 16, 17, 18]. Verification says nothing about whether the
specifications, and hence the program, match an external
physical truth. Validation confirms that the model is accurate
with respect to the physical, real-world system it is meant to
represent. A model or program can be verifiably correct, but
not valid, or valid but not verifiably correct; a model cannot be
proven correct for the real world, only validated for a certain
use. When scientists validate a model, they make a best effort
to confirm that the model represents the real-world situations,
per its purpose and intended context (e.g. [19]). Model
calibration is a similar process whereby parameters specific to
local conditions are set, and the model is then validated for that
context. Validation and calibration are therefore related
processes. In spatial models that are mechanistic, models can

be over-parameterized to generate statistically optimal outputs
but not necessarily properly represent the environmental
process across the landscape.

To run a model, a user specifies relevant environmental
driver variables and any required local parameters. For
VELMA these include grid-based digital elevation data and
precipitation, temperature, soil porosity, etc.; and for Penumbra
Julian start/stop days, a normalized digital surface to represent
landscape objects such as tree canopy cover, etc. Calibration
for VELMA involves determining and setting hydraulic
conductivities and for Penumbra local land cover, landscape,
and atmosphere.

Common practice for both validating and calibrating
predictive models involves backcasting, a process whereby a
model is run for a period of past time for which observed data
exists; the predicted (past) model results are then compared to
actual (observed) values. See Fig. 1, 2 for backcasting
examples with VELMA and Penumbra. When predicted and
observed values ‘“agree,” the model (or calibration for a
particular space/time) is said to be validated.

Backcasting comparisons that show a model is invalid do
not, however, tell the modeler much about where the model is
going wrong, and what to do to fix it. VELMA and Penumbra
modelers used VISTAS to view response variables over time
and space, and examined specific topographical and landscape
features, observing whether the predicted values made physical
sense. If not, then the modelers leveraged intermediate
variables to fix errors in the code or revised the science or
theory that the code (to be revised) would model.
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Fig. 1. VELMA backcasting validation example.

Fig. 2. Penumbra backcasting validation example.



The VELMA model was validated by using VISTAS to
display model outputs that were difficult to interpret using
prior 2D runtime displays or for which no runtime displays
were available. VISTAS 3D still images and animations
displayed source areas and downslope transport of nitrate
within coastal watersheds; these verified that VELMA was
correctly representing measured data describing the timing and
location of nitrate hotspots within the watershed. When
calibrating VELMA for watersheds where data for backcasting
were not available, VISTAS 3D animations were used to
examine whether the modeled data were consistent with
general principles and patterns seen in similar well-validated
areas.

To wvalidate Penumbra, Halama et al. used the
Environmental Protection Agency (EPA) Crest-to-Coast
dataset, a transect of field monitored locations with paired
open- versus forested-sites [20]. Each location has an array of
sensors, including LICOR photosynthetically active radiation
(PAR) sensors that measure irradiance in micromoles/m?s.
They set spatial data inputs for Penumbra and captured
modeled irradiance data at the location of the open- and
forested-sites and then compared model results to the PAR
sensor data. VISTAS was used both to provide a qualitative
understanding that Penumbra's shading and irradiance made
logical sense, and to visualize the modeled shade and
irradiance results. The modelers created videos with four
windows to visualize the topographic shade, object shade, total
shade (topographic and object combined), and solar energy,
and then viewed them simultaneously as part of the model
validation process. This process involved synchronizing the
views and controlling the speed of the video so any anomalies
or unexpected outputs could be identified (e.g. by interactively
selecting cells or areas in the visualization) and further
examined. During model development, multiplicative
interactions among variables can easily be inversed or over
calibrated. Visualizing variables independently in VISTAS
allowed model developers to identify such issues. Additionally,
modelers might modify model runs so that additional variables
can be viewed; for example, one of the modelers (Halama)
wrote into Penumbra the ability to output the processed
biomass to tree height results (even though they were
intermediate data) so he could visualize the conversions and
assess whether they were spatially correct with appropriate
minimum and maximum values (Fig. 5).
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Fig. 3. Single frame from VISTAS VELMA animation.

Fig. 4. VISTAS visualization of Penumbra and VELMA simulations.

If an error is found in the model or calibration—uncovered
through visualization or by some other method—our modelers
employ an iterative process to refine the model, correcting the
code (adjusting model theory or its implementation) or
changing an input or calibration parameter, and then
visualizing and backcasting. See Fig. 3, 4 for example VISTAS
visualizations used in validating VELMA and Penumbra.

Once Penumbra and VELMA were validated, the modelers
used VISTAS primarily for sharing information with other
scientists or decision makers. However, when those models
were later extended, as when calibrated for a new ecosystem,
modelers again visualized results to ensure that models were
consistent with their understanding of the ecosystem context; if
not, they began again the tedious process of adjusting the
theory (code), visualizing, parameterization, backcasting,
calibration, etc.

Our experience working with scientist-collaborators on
model visualizations suggest that scientists who integrate
models representing components of complex environmental
systems typically go through a process of continual model
refinement. While we observed modelers using visualization
for model validation in our collaborative work, we posit that as
models are iteratively refined and improved with increasing
complexity, visualization will become more important as a
validation tool.

III. FROM VALIDATION TO REPLICATION FOR COMPLEX
SYSTEMS

In this section we first distinguish replication from
reproducibility and establish why reproducibility for studies of
complex systems is an oxymoron since each complex system is
unique by definition [21, 22]. We then explain how the process
of replicating studies of complex ecological systems is similar
to the process of validating models of such systems and that,
just as visualization has been shown to be helpful in validating
complex models, visualization could be helpful in validating
and replicating ecological studies.
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Fig. 5. VISTAS visualization of Penumbra-processed biomass to leaf
transmittance.

A. Replication of Ecological Studies

Recent discussions of a crisis in science regarding
reproducibility across the disciplines have led to refined criteria
for “trustworthiness.” Problems of reproducibility have been
reported in fields that examine complex systems such as
medicine, psychology, and ecology [1, 3, 23]. Clearly some
published studies contain obvious errors and can be shown to
be untrustworthy without reproducing them [24], but some
reproducibility studies show significant issues. For example,
the Open Science Collaboration (OSC) replicated 100
(psychology) studies, comparing the percentage of statistically
significant results of the original (97%) to that of the replicated
(68%) and reporting that only 36-47% of the original studies
were successfully replicated [23]. This report has been
countered, however: others found that when the OSC results
were corrected for error, power and bias, the replication study
provided no support for a crisis, and was “consistent with the
opposite conclusion” [25].

Similar debates about reproducibility and replication, and
the trustworthiness of science occur among ecologists. Where
no reproducible errors are found in a study, there often remains
doubt in the validity of the conclusions, which is especially
problematic where the cost of a type II error (falsely inferring
the absence of some phenomenon) is high in areas such as
climate change impacts. In such cases, scientists seek to
replicate study results and increase the trustworthiness of the
findings so that stakeholders are more likely to take appropriate
action.

For such systems, trustworthiness might be established via
“the replication of scientific findings using independent
investigators, methods, and data” [4]. Milcu et al. have

experimented with an approach to increase
reproducibility/replicability by deliberately introducing
systematic variability in experimental design, varying

experiments, increasing sample size, and hence noise in
complex experiments [6]. A recent Nature editorial suggests
that these methods “sow the seeds of trust for multi-lab
replication efforts” and shore up “the reliability of field
studies” [2]. For Milcu’s group of researchers, subsequent data
analysis, while non-trivial, is attainable because the 14 studies
were designed for cross analysis (Fig. 6).

For replication studies that cannot be tightly controlled in a
laboratory as Milcu’s, or rigorously designed prior to execution

of the study under replication, Munafd suggests using
triangulation, where different methods are used to confirm the
same result, rather than “producing statistically significant,
definitive studies centered on an endpoint that supports a
hypothesis.” He suggests triangulation as one way to carry out
Lipton and E. O. Wilson’s ideas of “inference to the best or
‘loveliest’ explanation,” abductive over deductive reasoning,
likely explanations, and consilience” [5]. The question then
arises for scientists: how to demonstrate that these different
studies corroborate each other.
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Fig. 6. Example analysis of Milcu’s replicaiton study, 6 of 12 response
variables from 14 laboratories.

B. A Role for Validation in Replication

In prior sections, we established that environmental
systems research requires approaches different from classic
reproducibility to achieve replication goals. Munafo proposed
triangulation as a method to increase trustworthiness of studies
of such complex systems as environmental sciences—using
multiple studies to independently establish a causal relationship
between driver and response variables.

We have observed that environmental scientists use
visualization to validate and calibrate models; in relating
drivers to response variables in a model, an ecologist is in
effect attempting to establish a causal inference. We
anticipate that, with the correct tools, scientists could similarly
use visualization to compare multiple results from different
studies on the same (or even verifiably similar) landscapes to
use one study to replicate causal inferences made in another.
The research question in such a replication study, using a
method analogous to triangulation, is whether the several
studies similarly characterize the ecosystem under
consideration, and are converging (or not) on a commonly
understood phenomenon or causal inference.

If ecologists work together in this way—different studies
producing independent evidence in support of some central
ideas—those of us who produce software need to think about
how we can provide ways of viewing results of different
studies in new ways. Munafo points to Wegener’s initial
observations that the shape of the west coast of Africa
matched that of the east coast of South America. That visual



intuition led him to look for evidence from many fields to
support a new theory.

Scientists seeking to use, for example, two independent
studies to corroborate a third could intuitively explore data
from the three studies side-by-side. Visualization allows for
these comparisons without significant additional data
preparation that would otherwise be required to perform
statistical replication. If the visualization shows that
independent studies are mutually supporting, scientists could
then devise statistical or other tests that compare results more
formally. Visualizing multiple results on a flexible
topographical background, as for our modelers, might give the
intuition of whether the studies being compared corroborate,
and hence whether a detailed data analysis is warranted.

C. Visualization Software and Open Science

VISTAS, coded in Python and developed specifically for a
certain kind of environmental science, is a domain-specific
application that is (according to our users) “very easy” to learn
with only a brief training video [26]. As it stands, however,
VISTAS would only be useful in replication for a relatively
narrow range of environmental scientists: those dealing with
grid-based data for topographically complex landscapes and
using spatiotemporal data. To generalize beyond the user class,
domain and functions for which VISTAS was developed would
require accepting and wrangling more kinds of input data,
creating new visualization types, making the system more
casily usable for a wider range of users, and including more
analytical capability.

While environmental scientists can use general scientific
visualization systems for replication, these systems often
require significant learning time beyond what most scientists
can invest, and do not usually provide users with the level of
analysis required for conducting replication studies. Heer has
used design methods for domain-specific languages that are
now widely deployed in data transformation and information
visualization software (with reported order-of-magnitude
productivity gains) [27-30]. His strategy has been to model
user interface actions in a domain-specific language, and then
leverage the language to predict potential actions and decouple
the user interface from the underlying runtime.

If triangulation using scientific visualization is indeed, as
we have argued, a valid method for replicating environmental
science studies, and if the datasets for such replication studies
are made available in open data repositories, then more effort
should be devoted to making the necessary visualization
software openly available and usable.

IV. SUMMARY AND FUTURE WORK

In this position paper, we reported that VISTAS, software
for 3D terrain visualization, is useful to modelers in conducting
model validation. We argued that model validation is
analogous to corroborating multiple studies using triangulation,
and that since visualization is useful in validating ecological
models of ecosystem processes across landscapes, it is also

likely useful in replicating studies of ecosystem processes
across landscapes—where triangulation could be used in lieu
of more traditional methods of replication. To demonstrate our
claim, however, we recognize that one would need to observe
ecologists using visualization in triangulation-replication. We
envision two kinds of studies that would be needed to establish
our claim and determine under what circumstances terrain
visualization, at least as powerful as VISTAS, would be helpful
as a first step in replication: where two (or more studies) seek
to establish a relationship, or a causal inference
between/among variables (1) over the same landscape, or (2)
over different terrain but similar topographic or ecosystems.

Clearly (1) is most similar to the model validation and
calibration where we have already established the usefulness of
terrain visualization. (2) would be more difficult to establish
and would require that the visualization system allow for such
exploration as an interactive shifting of the landscape to align
similar topographic features, modifying the scale of one or all
scenes independently.

Where two or more studies seek to establish a relationship
or causal inference among variables ranging across different
topographic and ecosystem types, the value of visualization is
more tenuous. However, in our work we have observed that
researchers are indeed linking multiple models across different
ecosystems, looking for links and causal inferences across time
and space. These scientists plan to use visualization of outputs
from different models to validate, calibrate, and revise multiple
integrated models in a way similar to the way VELMA and
Penumbra used VISTAS to validate model output. This lends
some credence to the possibility that visualization would be
useful in such replication efforts.

With any replication/corroboration, visualization would be
only the first step towards replication; researcher(s) would
need to follow up with further analyses prior to claiming that
one study replicates another. For these next steps, having the
visualization system anticipate and seamlessly feed data into an
appropriate data analysis would be ideal. Outside the scope of
this paper are recommendations about what kinds of statistics
to integrate with visualization: changes in analysis
methodology may be needed for the new ways of thinking
about what constitutes robust findings, and these analyses
might be more similar to “big data” explorations than
traditional statistical analysis.

One desirable outcome of this paper would be for
ecologists or environmental scientists in the Open Science
community to test the hypotheses presented above and conduct
replication experiments using Open Science Data and terrain
visualization software such as VISTAS. Since VISTAS is
open-source, implemented in Python, and runs on either
Windows or Macintosh machines, and accepts a number of
data input formats, such an experiment would be feasible; other
terrain visualization software (e.g., ParaView) might also be
appropriate for such a study.

We also call for research and development of Open Science
scientific visualization analogous to those that Jeffrey Heer
promotes for information visualization and data transformation
[27-30]. While a visualization system like VISTAS is useful to,
and actively used by, a small group of scientists, it is



financially infeasible to develop such specialized applications
for a great number of users in other even similar domains. To
have an impact on environmental science, visualization
systems need to facilitate interactive data exploration, with
recommendations for such systems summarized as follows: (1)
be scalable from meters to thousands of miles and from
temporal scales of days or weeks to months, seasons, and
years; (2) be intuitive to use; (3) be able to anticipate user
needs; (4) be open source; and (5) be rendered domain-specific
for a greater number of input data types and domains.
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