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Abstract—Practicing reproducible scientific research requires 

access to appropriate reproducibility methodology and software, 

as well as open data. Strict reproducibility in complex scientific 

domains such as environmental science, ecology and medicine, 

however, is difficult if not impossible. Here, we consider 

replication as a relaxed but bona fide substitution for strict 

reproducibility and propose using 3D terrain visualization for 

replication in environmental science studies that propose causal 

relationships between one or more driver variables and one or 

more response variables across complex ecosystem landscapes. 

We base our contention of the usefulness of visualization for 

replication on more than ten years observing environmental 

science modelers who use our 3D terrain visualization software to 

develop, calibrate, validate, and integrate predictive models. To 

establish the link between replication and model validation and 

corroboration, we consider replication as proposed by Munafò, 

i.e., triangulation. We enumerate features of visualization 

systems that would enable such triangulation and argue that such 

systems would render feasible domain-specific, open visualization 

software for use in replicating environmental science studies.  

Keywords— model validation, replication, triangulation, terrain 

visualization, environmental science 

I. INTRODUCTION 

Reproducibility is presented to college freshmen as a 
lynchpin of the scientific method. However, a recent survey of 
1500 scientists reports that “more than 70% of researchers have 
tried and failed to reproduce another scientist’s experiments, 
and more than half have failed to reproduce their own 
experiments” [1]. The term reproducibility is often conflated or 
loosely applied [2]. For some, reproducibility is used in a strict 
sense: using the same data and/or methods to reproduce the 
results of a prior study. Further, the term replication is often 
used synonymously with reproducibility in formal and 
common scientific parlance in both this survey of scientists and 
other recent publications [e.g., 1, 3]. Peng distinguishes 
between the two terms with replication referring to the process 
of generating “scientific findings using independent 
investigators, methods, data” vs. reproducibility “which 
requires that data sets and computer code be made available to 
others for verifying published results and conducting 

alternative analyses" [4]. Throughout this paper, we use Peng’s 
definition of replication, and distinguish replication from strict 
reproducibility. 

When proposing criteria to evaluate whether a given 
research study can be trusted, others even further relax 
replication requirements. Munafò and Smith suggest that “an 
essential protection against flawed ideas is triangulation, i.e., 
multiple approaches to address one question” [5]. Milcu et al. 
in an unpublished manuscript go further and suggest that 
“deliberate introduction of controlled systematic variability 
(CSV) in experimental designs can increase reproducibility,” 
the idea being that “a robust effect generalizable across many 
conditions is more likely to stand out” [3, 6]. The Open 
Science missions—“to increase openness, integrity, and 
reproducibility of research,” and “not to waste time…on results 
that are not reproducible” [7] would, we believe, be supported 
by methods and software that makes it easier for environmental 
scientists and ecologists to produce replicable science and to 
more easily replicate already published research. 

The two questions pursued in this position paper are (1) 
what role might scientific visualization play in replication for 
the environmental sciences—to recognize and then confirm the 
same robust effect over a particular landscape as seen in two 
different studies, and (2) what software features would 
facilitate the use of visualization in replication. To that end, we 
draw on our qualitative studies of environmental scientists 
using our visualization software to validate, calibrate, integrate, 
and present results of their predictive models. We argue that 
those processes are analogous to triangulation—the 
corroboration and replication approaches recently championed 
in the literature. Finally, we discuss the visualization features 
that would facilitate corroboration and replication in 
environmental science. 

Our 3D terrain visualization software Visualization of 
Terrestrial and Aquatic Systems (aka VISTAS) was launched 
in 2011 as a collaborative, interdisciplinary project supported 
by the U.S. National Science Foundation with the purpose of 
bringing together computer scientists, social scientists, and 
environmental scientists to address complex problems. The 
software design process is an extension of Munzner’s nested 
blocks and guidelines model [8], and the use of VISTAS 
visualizations to present our collaborators’ findings are 
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described elsewhere [9, 10, 11].  For the purposes of this paper, 
it suffices the reader to know that VISTAS seeks to enable 
scientists to better understand and communicate information 
about complex environmental problems. VISTAS can quickly 
process and display large amounts of geospatial data, and 
environmental scientists use it to view their modeled or 
remotely sensed data in conjunction with impacted complex 
topography and other landscape features. Users can view data 
interactively over time and space and use simple analytics 
while viewing graphical images over time (descriptive 
statistics, linear and multiple regression, and principal 
component analysis). 

We present here the extensive use of VISTAS by two 
environmental scientist collaborators in validating and 
calibrating their models, VELMA and Penumbra. The eco-
hydrological model VELMA (Visualizing Ecosystem Land 
Management Assessments) predicts the effectiveness of 
alternative green infrastructure scenarios for protecting water 
quality. It is used by scientists and collaborating land manager 
stakeholders to advise on the establishment of riparian buffers, 
cover crops, constructed wetlands, and other measures to 
intercept, store, and transform nutrients, toxics, and other 
contaminants that might otherwise reach surface and ground 
waters. The model can handle multiple spatial and temporal 
scales, from plots to basins to hundreds of square miles and 
days to centuries [12, 13]. 

Penumbra is a spatially-distributed irradiance model that 
provides solar energy reduction from topographic shadowing, 
forest shadowing, and cloud coverage at multi-year landscape 
scales. It aims to enhance understanding of how light energy 
impacts ecological processes within landscapes to answer 
questions about forest management or restoration of riparian 
zones or fish habitat [14]. Both VELMA and Penumbra are 
grid based, and each utilizes precise digital elevation data, 
coupled with a number of input parameters (aka environmental 
drivers), to generate model results (aka response variables). 

II. MODEL AND VALIDATION CRITERIA 

VELMA and Penumbra underwent standard and stringent 
validation prior to publication and use; additionally, calibration 
and further validation to specific locations was conducted prior 
to subsequent use for predictive purposes in environmental 
resource management. We distinguish validating model 
software from software verification; in verification, a developer 
seeks to assure, often formally, that a given program is correct, 
i.e., that it correctly implements the program’s specifications 
[15, 16, 17, 18]. Verification says nothing about whether the 
specifications, and hence the program, match an external 
physical truth. Validation confirms that the model is accurate 
with respect to the physical, real-world system it is meant to 
represent. A model or program can be verifiably correct, but 
not valid, or valid but not verifiably correct; a model cannot be 
proven correct for the real world, only validated for a certain 
use. When scientists validate a model, they make a best effort 
to confirm that the model represents the real-world situations, 
per its purpose and intended context (e.g. [19]). Model 
calibration is a similar process whereby parameters specific to 
local conditions are set, and the model is then validated for that 
context. Validation and calibration are therefore related 
processes. In spatial models that are mechanistic, models can 

be over-parameterized to generate statistically optimal outputs 
but not necessarily properly represent the environmental 
process across the landscape. 

To run a model, a user specifies relevant environmental 
driver variables and any required local parameters. For 
VELMA these include grid-based digital elevation data and 
precipitation, temperature, soil porosity, etc.; and for Penumbra 
Julian start/stop days, a normalized digital surface to represent 
landscape objects such as tree canopy cover, etc. Calibration 
for VELMA involves determining and setting hydraulic 
conductivities and for Penumbra local land cover, landscape, 
and atmosphere. 

Common practice for both validating and calibrating 
predictive models involves backcasting, a process whereby a 
model is run for a period of past time for which observed data 
exists; the predicted (past) model results are then compared to 
actual (observed) values. See Fig. 1, 2 for backcasting 
examples with VELMA and Penumbra. When predicted and 
observed values “agree,” the model (or calibration for a 
particular space/time) is said to be validated. 

Backcasting comparisons that show a model is invalid do 
not, however, tell the modeler much about where the model is 
going wrong, and what to do to fix it. VELMA and Penumbra 
modelers used VISTAS to view response variables over time 
and space, and examined specific topographical and landscape 
features, observing whether the predicted values made physical 
sense. If not, then the modelers leveraged intermediate 
variables to fix errors in the code or revised the science or 
theory that the code (to be revised) would model. 

 

 

Fig. 1. VELMA backcasting validation example. 

 

 

Fig. 2. Penumbra backcasting validation example. 



The VELMA model was validated by using VISTAS to 
display model outputs that were difficult to interpret using 
prior 2D runtime displays or for which no runtime displays 
were available. VISTAS 3D still images and animations 
displayed source areas and downslope transport of nitrate 
within coastal watersheds; these verified that VELMA was 
correctly representing measured data describing the timing and 
location of nitrate hotspots within the watershed. When 
calibrating VELMA for watersheds where data for backcasting 
were not available, VISTAS 3D animations were used to 
examine whether the modeled data were consistent with 
general principles and patterns seen in similar well-validated 
areas.  

To validate Penumbra, Halama et al. used the 
Environmental Protection Agency (EPA) Crest-to-Coast 
dataset, a transect of field monitored locations with paired 
open- versus forested-sites [20]. Each location has an array of 
sensors, including LICOR photosynthetically active radiation 
(PAR) sensors that measure irradiance in micromoles/m2s-1. 
They set spatial data inputs for Penumbra and captured 
modeled irradiance data at the location of the open- and 
forested-sites and then compared model results to the PAR 
sensor data. VISTAS was used both to provide a qualitative 
understanding that Penumbra's shading and irradiance made 
logical sense, and to visualize the modeled shade and 
irradiance results. The modelers created videos with four 
windows to visualize the topographic shade, object shade, total 
shade (topographic and object combined), and solar energy, 
and then viewed them simultaneously as part of the model 
validation process. This process involved synchronizing the 
views and controlling the speed of the video so any anomalies 
or unexpected outputs could be identified (e.g. by interactively 
selecting cells or areas in the visualization) and further 
examined. During model development, multiplicative 
interactions among variables can easily be inversed or over 
calibrated. Visualizing variables independently in VISTAS 
allowed model developers to identify such issues. Additionally, 
modelers might modify model runs so that additional variables 
can be viewed; for example, one of the modelers (Halama) 
wrote into Penumbra the ability to output the processed 
biomass to tree height results (even though they were 
intermediate data) so he could visualize the conversions and 
assess whether they were spatially correct with appropriate 
minimum and maximum values (Fig. 5).  

 

 

Fig. 3. Single frame from VISTAS VELMA animation. 

 

Fig. 4. VISTAS visualization of Penumbra and VELMA simulations. 

If an error is found in the model or calibration—uncovered 
through visualization or by some other method—our modelers 
employ an iterative process to refine the model, correcting the 
code (adjusting model theory or its implementation) or 
changing an input or calibration parameter, and then 
visualizing and backcasting. See Fig. 3, 4 for example VISTAS 
visualizations used in validating VELMA and Penumbra.  

Once Penumbra and VELMA were validated, the modelers 
used VISTAS primarily for sharing information with other 
scientists or decision makers. However, when those models 
were later extended, as when calibrated for a new ecosystem, 
modelers again visualized results to ensure that models were 
consistent with their understanding of the ecosystem context; if 
not, they began again the tedious process of adjusting the 
theory (code), visualizing, parameterization, backcasting, 
calibration, etc.  

Our experience working with scientist-collaborators on 
model visualizations suggest that scientists who integrate 
models representing components of complex environmental 
systems typically go through a process of continual model 
refinement. While we observed modelers using visualization 
for model validation in our collaborative work, we posit that as 
models are iteratively refined and improved with increasing 
complexity, visualization will become more important as a 
validation tool. 

III. FROM VALIDATION TO REPLICATION FOR COMPLEX 

SYSTEMS 

In this section we first distinguish replication from 
reproducibility and establish why reproducibility for studies of 
complex systems is an oxymoron since each complex system is 
unique by definition [21, 22]. We then explain how the process 
of replicating studies of complex ecological systems is similar 
to the process of validating models of such systems and that, 
just as visualization has been shown to be helpful in validating 
complex models, visualization could be helpful in validating 
and replicating ecological studies. 



 

Fig. 5. VISTAS visualization of Penumbra-processed biomass to leaf 

transmittance. 

A. Replication of Ecological Studies 

Recent discussions of a crisis in science regarding 
reproducibility across the disciplines have led to refined criteria 
for “trustworthiness.” Problems of reproducibility have been 
reported in fields that examine complex systems such as 
medicine, psychology, and ecology [1, 3, 23]. Clearly some 
published studies contain obvious errors and can be shown to 
be untrustworthy without reproducing them [24], but some 
reproducibility studies show significant issues. For example, 
the Open Science Collaboration (OSC) replicated 100 
(psychology) studies, comparing the percentage of statistically 
significant results of the original (97%) to that of the replicated 
(68%) and reporting that only 36-47% of the original studies 
were successfully replicated [23]. This report has been 
countered, however: others found that when the OSC results 
were corrected for error, power and bias, the replication study 
provided no support for a crisis, and was “consistent with the 
opposite conclusion” [25]. 

Similar debates about reproducibility and replication, and 
the trustworthiness of science occur among ecologists. Where 
no reproducible errors are found in a study, there often remains 
doubt in the validity of the conclusions, which is especially 
problematic where the cost of a type II error (falsely inferring 
the absence of some phenomenon) is high in areas such as 
climate change impacts. In such cases, scientists seek to 
replicate study results and increase the trustworthiness of the 
findings so that stakeholders are more likely to take appropriate 
action. 

For such systems, trustworthiness might be established via 
“the replication of scientific findings using independent 
investigators, methods, and data” [4]. Milcu et al. have 
experimented with an approach to increase 
reproducibility/replicability by deliberately introducing 
systematic variability in experimental design, varying 
experiments, increasing sample size, and hence noise in 
complex experiments [6]. A recent Nature editorial suggests 
that these methods “sow the seeds of trust for multi-lab 
replication efforts” and shore up “the reliability of field 
studies” [2]. For Milcu’s group of researchers, subsequent data 
analysis, while non-trivial, is attainable because the 14 studies 
were designed for cross analysis (Fig. 6). 

For replication studies that cannot be tightly controlled in a 
laboratory as Milcu’s, or rigorously designed prior to execution 

of the study under replication, Munafò suggests using 
triangulation, where different methods are used to confirm the 
same result, rather than “producing statistically significant, 
definitive studies centered on an endpoint that supports a 
hypothesis.” He suggests triangulation as one way to carry out 
Lipton and E. O. Wilson’s ideas of “inference to the best or 
‘loveliest’ explanation,” abductive over deductive reasoning, 
likely explanations, and consilience” [5].  The question then 
arises for scientists: how to demonstrate that these different 
studies corroborate each other. 

 

 

Fig. 6. Example analysis of Milcu’s replicaiton study, 6 of 12 response 

variables from 14 laboratories. 

B. A Role for Validation in Replication 

In prior sections, we established that environmental 

systems research requires approaches different from classic 

reproducibility to achieve replication goals. Munafò proposed 

triangulation as a method to increase trustworthiness of studies 

of such complex systems as environmental sciences—using 

multiple studies to independently establish a causal relationship 

between driver and response variables.  

We have observed that environmental scientists use 

visualization to validate and calibrate models; in relating 

drivers to response variables in a model, an ecologist is in 

effect attempting to establish a causal inference.  We 

anticipate that, with the correct tools, scientists could similarly 

use visualization to compare multiple results from different 

studies on the same (or even verifiably similar) landscapes to 

use one study to replicate causal inferences made in another. 

The research question in such a replication study, using a 

method analogous to triangulation, is whether the several 

studies similarly characterize the ecosystem under 

consideration, and are converging (or not) on a commonly 

understood phenomenon or causal inference. 

If ecologists work together in this way—different studies 

producing independent evidence in support of some central 

ideas—those of us who produce software need to think about 

how we can provide ways of viewing results of different 

studies in new ways. Munafò points to Wegener’s initial 

observations that the shape of the west coast of Africa 

matched that of the east coast of South America. That visual 



intuition led him to look for evidence from many fields to 

support a new theory.  

Scientists seeking to use, for example, two independent 

studies to corroborate a third could intuitively explore data 

from the three studies side-by-side. Visualization allows for 

these comparisons without significant additional data 

preparation that would otherwise be required to perform 

statistical replication. If the visualization shows that 

independent studies are mutually supporting, scientists could 

then devise statistical or other tests that compare results more 

formally. Visualizing multiple results on a flexible 

topographical background, as for our modelers, might give the 

intuition of whether the studies being compared corroborate, 

and hence whether a detailed data analysis is warranted. 

C. Visualization Software and Open Science 

VISTAS, coded in Python and developed specifically for a 

certain kind of environmental science, is a domain-specific 

application that is (according to our users) “very easy” to learn 

with only a brief training video [26]. As it stands, however, 

VISTAS would only be useful in replication for a relatively 

narrow range of environmental scientists: those dealing with 

grid-based data for topographically complex landscapes and 

using spatiotemporal data. To generalize beyond the user class, 

domain and functions for which VISTAS was developed would 

require accepting and wrangling more kinds of input data, 

creating new visualization types, making the system more 

easily usable for a wider range of users, and including more 

analytical capability. 

While environmental scientists can use general scientific 

visualization systems for replication, these systems often 

require significant learning time beyond what most scientists 

can invest, and do not usually provide users with the level of 

analysis required for conducting replication studies. Heer has 

used design methods for domain-specific languages that are 

now widely deployed in data transformation and information 

visualization software (with reported order-of-magnitude 

productivity gains) [27-30]. His strategy has been to model 

user interface actions in a domain-specific language, and then 

leverage the language to predict potential actions and decouple 

the user interface from the underlying runtime. 

If triangulation using scientific visualization is indeed, as 

we have argued, a valid method for replicating environmental 

science studies, and if the datasets for such replication studies 

are made available in open data repositories, then more effort 

should be devoted to making the necessary visualization 

software openly available and usable. 

IV. SUMMARY AND FUTURE WORK 

In this position paper, we reported that VISTAS, software 
for 3D terrain visualization, is useful to modelers in conducting 
model validation. We argued that model validation is 
analogous to corroborating multiple studies using triangulation, 
and that since visualization is useful in validating ecological 
models of ecosystem processes across landscapes, it is also 

likely useful in replicating studies of ecosystem processes 
across landscapes—where triangulation could be used in lieu 
of more traditional methods of replication. To demonstrate our 
claim, however, we recognize that one would need to observe 
ecologists using visualization in triangulation-replication. We 
envision two kinds of studies that would be needed to establish 
our claim and determine under what circumstances terrain 
visualization, at least as powerful as VISTAS, would be helpful 
as a first step in replication: where two (or more studies) seek 
to establish a relationship, or a causal inference 
between/among variables (1) over the same landscape, or (2) 
over different terrain but similar topographic or ecosystems.  

Clearly (1) is most similar to the model validation and 
calibration where we have already established the usefulness of 
terrain visualization. (2) would be more difficult to establish 
and would require that the visualization system allow for such 
exploration as an interactive shifting of the landscape to align 
similar topographic features, modifying the scale of one or all 
scenes independently. 

 Where two or more studies seek to establish a relationship 
or causal inference among variables ranging across different 
topographic and ecosystem types, the value of visualization is 
more tenuous. However, in our work we have observed that 
researchers are indeed linking multiple models across different 
ecosystems, looking for links and causal inferences across time 
and space. These scientists plan to use visualization of outputs 
from different models to validate, calibrate, and revise multiple 
integrated models in a way similar to the way VELMA and 
Penumbra used VISTAS to validate model output. This lends 
some credence to the possibility that visualization would be 
useful in such replication efforts. 

With any replication/corroboration, visualization would be 
only the first step towards replication; researcher(s) would 
need to follow up with further analyses prior to claiming that 
one study replicates another. For these next steps, having the 
visualization system anticipate and seamlessly feed data into an 
appropriate data analysis would be ideal. Outside the scope of 
this paper are recommendations about what kinds of statistics 
to integrate with visualization: changes in analysis 
methodology may be needed for the new ways of thinking 
about what constitutes robust findings, and these analyses 
might be more similar to “big data” explorations than 
traditional statistical analysis. 

One desirable outcome of this paper would be for 
ecologists or environmental scientists in the Open Science 
community to test the hypotheses presented above and conduct 
replication experiments using Open Science Data and terrain 
visualization software such as VISTAS. Since VISTAS is 
open-source, implemented in Python, and runs on either 
Windows or Macintosh machines, and accepts a number of 
data input formats, such an experiment would be feasible; other 
terrain visualization software (e.g., ParaView) might also be 
appropriate for such a study.  

We also call for research and development of Open Science 
scientific visualization analogous to those that Jeffrey Heer 
promotes for information visualization and data transformation 
[27-30]. While a visualization system like VISTAS is useful to, 
and actively used by, a small group of scientists, it is 



financially infeasible to develop such specialized applications 
for a great number of users in other even similar domains. To 
have an impact on environmental science, visualization 
systems need to facilitate interactive data exploration, with 
recommendations for such systems summarized as follows: (1) 
be scalable from meters to thousands of miles and from 
temporal scales of days or weeks to months, seasons, and 
years; (2) be intuitive to use; (3) be able to anticipate user 
needs; (4) be open source; and (5) be rendered domain-specific 
for a greater number of input data types and domains. 
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