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STOCHASTIC REACHABILITY ANALYSIS FOR THE HYPERSONIC
RE-ENTRY PROBLEM

Amit Jain; Damien Guého] Puneet Singla; Maruthi Akella®

In this paper, a computationally efficient approach is presented to enable onboard
computation of reachability sets for the hypersonic re-entry problem. The main
idea is to consider the bounded control variables as random variables and represent
the reachability sets as the level sets of the state probability density function. A
main advantage of such an approach is that it provide not only the boundary of the
reachability set but it also characterizes the probability distribution of state variable
due to variation in control input. The computation of state density function due to
variation in control input at each time is made tractable by computing desired order
statistical moments of state density function at each time. Conjugate Unscented
Transform (CUT) algorithm is used to compute the moment generating function.
Finally, a prototype model of the hypersonic re-entry problem is considered to
show the efficacy and utility of the proposed ideas.

INTRODUCTION

Hypersonic flights are of upmost importance for mission involving flight to orbital or near orbital
speeds above the atmosphere. The guidance and control of hypersonic flight present significant
challenges in terms of onboard processing and accommodating uncertainties in control as well as
state variables. Both safety and performance of hypersonic flight depend upon our ability to update
trajectory and computing reachable flight envelope onboard the vehicle. The reachability flight
envelope or set can be defined as the collection of all states which can be transversed from arbitrary
initial condition due to the application of admissible control.

The computation of reachability sets has garnered a lot of attention in the context of the control of
autonomous systems. Whether one is planning a path for a robotic system or designing a maneuver
for a spacecraft to avoid a collision with another spacecraft, the calculation of optimal or feasible
trajectories centered around the computation of reachability sets. Though one can obtain exact solu-
tion for reachability sets for linear time invariant systems, numerical approximations are necessary
to compute the reachability sets for nonlinear systems. For certain classes of continuous dynamics,
exact computation of the set of reachable states was shown by [1]. For more general classes of sys-
tems numerical approximations have been proposed in [2—7]. Alternately, the reachability questions
are computed as zero-level set of the value function of an appropriate optimal control problem [8].
The computation of value function generally require the solution of the Hamilton-Jacobi-Bellman
(HJB) or Issacs (HJI) equation. Various numerical tools such as sum-of-squares [9, 10] and Level
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Set Methods [11] have been developed for reachable set computations [12—-14]. Refs. [15, 16] have
developed feedback controllers to generate largest time-limited backward reachable set while us-
ing the notion of occupation measure. Furthermore, ellipsoidal [17], support vector machine [18]
and reason of interest approximation [19] are considered for reachability sets computations. While
promising, all of these methods face a similar challenge with regards to computational scalability
with the dimension of the system.

In this work, we take an alternative approach to compute the reachability sets in a computationally
attractive manner. The main idea is to represent reachable sets as the level set of system state
probability density function at a given instant of time. For this purpose, the admissible control set
is assumed to be represented by a probability density function for control input at each time. By
considering the response of each actuator as a random variable, a brute force evaluation of state
density function for purposes of reachability characterization entails the combinatorial increase in
number of samples over time. This is computationally intractable on most onboard implementations.
Exploiting the fact that the control input at a specific time is independent of system states at that
time, one can easily compute statistical moments associated with state density function. These
finite order statistical moments represent the spectral content of the state density function and one
can compute the state density function from computed moments by using various available tools
such as Principle of maximum entropy [20] or sum of squares [21]. A main advantage of such an
approach is that it provide not only the boundary of the reachability set but it also characterizes the
probability distribution of state variable due to variation in control input.

The structure of paper is as follows: first, a brief introduction to reachability set problem is
presented followed by the description of developed method. Finally, numerical simulation results
are presented to show the efficacy of the proposed ideas.

PROBLEM STATEMENT

Let us consider the problem of computation of reachability set for a generic nonlinear system in
the following form:

X1 = f(xk) + G(xk)h(ug) ey

where x;, € R" is the system state variable. uy € U C R™ represents the control input variable
at time instant ¢5. U is the set of admissible controls and is assumed to be described a density
function py, (u). For example, a uniform density function can be used to represent the admissible
control set, I/ assumed to be a hypercube or a Gaussian density function can be used to represent an
ellipsoidal admissible control set, (/. We define the reachability set for arbitrary initial state, xg as
the set of all possible states at time ¢ given uy, € Y. Mathematically, it can be written as:

R(xo0,U,trr) ={Vx € R"|u, € U,Vk € [0, M] s.t. x(tyr) = x}

As discussed in the previous section, the reachability analysis is a well-studied area. The main
objective of this work is to develop a computationally efficient approach for the computation of
reachability set for system described by Eq. (1) while exploiting recent advances in uncertainty
propagation. The main idea of the presented approach is to consider the bounded control variables
as random variables and represent the reachability sets by the state probability density function.
However, such an approach require the sampling of control variable from admissible set at each
time and number of samples increases exponentially over the number of time steps considered as
illustrated in Figure (1). This is due to the fact that after first time step, one has to take all possible
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Figure 1. Exponential Growth in Samples to Compute the Reachability Set.

combinations of samples for x; and ug. For instance, if we take /N; samples of control variable at
each time from admissible set I/, then one will have total N samples after M time steps. This is
computationally intractable on most onboard implementations. In the next section, we discuss the
developed approach, which avoid this exponential growth in number of samples for the computation
OfR(X(),Z/{, tM).

PROBABILISTIC REACHABILITY SET

To avoid the combinatorial growth of samples associated with computing reachability sets, we
represent the state density function in terms of the finite number of statistical moments. Given the
fact that characteristic function of a density function is Fourier transformation of a density func-
tion, computing the first few statistical moments of a density function are equivalent to computing
Fourier coefficients of a periodic function. Since, the statistical moments behaves like Fourier co-
efficients, one can obtain better description of the state density function by computing higher order
moments of xj1. Furthermore, the state density function py,, (xas) and hence the reachability set,
R(x0,U,tpr) can then be obtained from propagated statistical moments by an application of the
principle of maximum entropy (PME) [20].

To compute the desired order statistical moments in an efficient manner, we exploit the fact that
the state variable xy, at time ¢, is independent of control input variable uy, at time ¢;. For the purpose
of computing statistical moments, let us consider system equations in an index notation

2y = O (xp) + G (xp) P (w), a=1,2,---,n, B=1,2,---,7 )

where f, | and f* (x) represent the o component of vectors X1 and f(xy,), respectively. Sim-
ilarly, G (x},) represents the o3 component of the matrix G (x;). Notice that in index notation
the repetition of the index corresponds to summation and hence

T

G (xx) b7 (wg) = Y G (xp) BP (uy,) 3)
=1



Now, the expected value of xj;, | can be written as:

E (2] = E[f* ()] + E |G (x) B (wy)] @)

Making use of the fact that x;, is an independent random vector from uy, the second term in the
aforementioned equation can be written as:

E G (x4) 1 ()| =B |G (1) | E |1 ()] )
Hence, the first order moment for state vector x1 can be written as:

E [af] = E[f* ()] +E [ ()| E [# () ©

Since the density function for x; and uy is known and hence the first order moment for x;; can
be computed by separately sampling x;, and ug space. Similarly, the second order moments can be
computed as follows:

E oo ] = B [(F7 Ga) + G () b (i) (7 (i) + G () b () )| ™
= E [ £ ) 7 (0| + B [ £ (00) 67 (i) B (we) | +E [ £7 (1) G (o) B ()
+E [Gaa(xk)ha(uk)aﬂb(xk)hb(uk)] L, B=1,2n ab=1,2-r
®)

Once again, making use of the fact that x;, is independent of uy, the aforementioned expression can
be simplified as follows:

E [aft o] = B[ (00 £ ()] + B [7 (x0) G ()| E [ ()]
+E [ 8 (x) GO (xk)] E[h® (ug)] + E [Ga“ (x1,) GP (xk)} E [ha (uy) b (uk)}
)

Similarly, one can obtain the expressions for computing desired order statistical moments. For
completion sake, we list the expression for third order moments in the Appendix. Furthermore,
the state density function py,, (xs) and hence the reachability set, R(x, U, t5r) can then be ob-
tained from propagated statistical moments by an application of the principle of maximum entropy
(PME) [20].

Computation of Statistical Moments

To compute the desired order moments for each module, one needs to sample the x; and ug
spaces. The Monte Carlo (MC) methods traditionally used to evaluate statistical moments suffer
from slow convergence rates. An efficient alternative to random sampling is the quadrature scheme,
such as the Gaussian Quadrature that uses deterministic M " sample points in m dimensions, chosen
to reproduce 2M — 1 moments of the density function. For example, the number of points required
to evaluate the expectation integral with only 5 points along each direction in a 6-dimensional space
is 5% = 15, 625. Fortunately, the Gaussian quadrature rule is not minimal for m > 2 [22], and there
exists quadrature rules requiring fewer points in high dimensions [23]. For example, the Unscented
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Figure 2 The Schematic of CUT points and growth of CUT points with number of
random variables.

Transformation (UT) is exact to degree 2 but with linear growth of points with dimension. However,
the UT cannot be used to reproduce higher order moments.

In our prior work, a non-product quadrature rule known as the Conjugate Unscented Transforma-
tion (CUT) [24, 25] has been developed. The CUT approach can be considered an extension of the
conventional UT method that satisfies additional higher order moment constraints. Rather than us-
ing tensor products as in Gauss quadrature, the CUT approach judiciously selects special structures
to extract symmetric quadrature points constrained to lie on specially defined axes as shown in Fig-
ure (2(a)). These new sets of so-called sigma points are guaranteed to exactly evaluate expectation
integrals involving polynomial functions with significantly fewer points. Figure (2(b)) represents
the number of quadrature points required, for 8" order accuracy, by different quadrature schemes
(CUT, Gauss-Legendre, Clenshaw-Curtis and Sparse Grid), for a uniform random variable, as a
function of the dimensionality of the random variable. More details about the CUT methodology
and its comparison with conventional quadrature rules can be found in Ref. [20,24-31].

The following lists the CUT approximation of various expected values required for the computa-



tion of first two statistical moments:

E [ (x4)] wafa D E[GY (x| = Zw G (xh)  (10)
B[ £ (o) 17 (x0)] = Zw;f“ () 17 (x0) (11)
) i=1
) N
E [ () G (i) | = D wh ™ (x) G (x3) (12)
L&
E [hb ()| = D" win® (u}) (13)
_ z;l
E G (%) 67 (x)| = Zw;Gaa (x4) G (xi) (14)
E (1 (we) h* (wy)] :Zw B (ul) B (uh) (15)

where w?, and w!, corresponds to CUT points weight for density functions px, (xx) and py, (1),
respectively. One can also compute expectation integrals appearing in the expressions for higher
order moments through the application of CUT approach. After computing desired order statistical
moments attach time, one can construct the state density function through the application of various
density approximation tools such as PME or SOS. However, one needs to generate samples from
newly approximated density function to compute statistical moments at next time step. Since CUT
quadrature points are given for only Gaussian and uniform density functions, one can expand state
variable at each time in terms of polynomial series of standardized Gaussian or uniform variable, £

N
$g:2 k¢z :>Xk—ch(t>(I)(€)7 a=12.---n (16)
=0

where, ¢ (&) are orthogonal polynomials associated with the assumed probability distribution for
the input variables£ (Hermite polynomials for normally distributed parameters, Legendre polynomi-
als for uniform distribution, etc.) and can be computed through the application of the Gram-Schmidt
orthogonalization process. Here X are matrices composed of coefficients of the polynomial expan-
sion for x. Now, the known statistical moments of x at a specific time step, k, can be written in
terms of the unknown polynomial coefficients:

E[wﬁ]:x,ﬁ‘o, a=1,2,---,n (17)
E [xkxk} Zxk xf E ¢Z(£)¢Z(€)] ) Oévﬁ = 1727 e, (18)
=1

Note that the expected values of the product of the gPC basis functions, E [¢y (&) o (€)], are known
from the properties of the functions. Depending on the order of the polynomial expansion, the
desired moment contraints and the dimension of x, the resulting equations can be over-determined,
properly determined, or under-determined. In Ref. [32], an approach is presented to compute these



unknown polynomial series coefficients from desired order moment constraint equations. Now,
one can generate an estimate of state density function of x by substituting random samples of &
in Eq. (16). Of course, there will be an improvement in accuracy when one goes to higher order
PC coefficients and compute higher order moments. However, there is always a trade-off between
the accuracy and the computational cost. Finally, the main steps of proposed approach can be
enumerated as follows:

Step 1: Generate CUT samples from standard Gaussian or Uniform random variables.

Step 2: Compute CUT samples for state variables through the application of Eq. (16). If the state
density function is assumed to be Gaussian or uniform, then only two of the coefficients will
be non-zero.

Step 3: Compute multi-dimensional expectation integrals while using Eq. (10)-Eq. (15) to compute
desired order statistical moments for state variable of Eq. (6)-Eq. (9).

Step 4: Recompute polynomial series coefficients through moment matching and go to Step 2.

NUMERICAL RESULTS

In this section, we consider the hypersonic re-entry problem to assess the efficacy of the developed
approach to compute the reachability set. We consider two different maneuvers for hypersonic re-
entry problem. The first maneuver is adapted from Ref. [33] and corresponds to the space shuttle
reentry with heating constraints. The second maneuver corresponds to maximum impact energy of
the glide weapon at the target [34] and is of significant importance to the mission of conventional
prompt global strike (CGPS). A low-fidelity flight dynamics model for both the maneuvers is given
as:

h = v sin vy

D(h
o= P00 i

m
. _ L(h,v,0) v g(h)
R —— COSB—'—COS’Y(Re—I—h v
g v in ) sin 0 (19)
= cos v sin ¢ sin
Ro+h 07

. L(h
) = ngv ’CZ’S? sin 8 + Rei . cos v sin 1) sin 0
b= Rei - cosysin/cos 0

where h, v and ~ represent the altitude, velocity, and flight-path angle of the vehicle. 8, ¢ and v
represent is latitude, longitude, and azimuth angles, respectively. The state vector x is defined as
follows:

x = [h,v,7,0,%, 8"



The gravity, g(h), atmospheric density, p(h), lift, L and drag, D are computed according to the
following models:

g(h) = p/(Re + h)*, p(h) = poexp [~h/h;]

1
L(h,v,a) = icL(a)Sp(h)UQ, Crla) =ao+ a1 (20)
1
D(h,v,a) = ECD(CV)S[)(}L)UZ, Cp(a) = by + bia + baa?
The angle of attack o and yaw angle 3 are considered to be control input variables. For reachability

set computation, the continuous time model of Eq. (19) is discretized by making use of first order
finite difference. The various terms of discretized model of Eq. (1) are given as follows:

[ hi + v sin ygdt
Vi — m Sln'}/kdt
Ve __ 123
Floxp) = | TETOOS (Rc+hk (Re+hk>2vk> di @1
O + R:Tkhk COS Y CO8 Py dt
U + % €OS Yk, sin Yy, sin O dt
I o + R:fhk cos Y, cos Oy, ]
[0 0 0 0 0 0
h
0 —£o¢ 25t 0 0 0 0
_hy
0 0 0 0 0 0
_ly

0 0 0 0 —QWZSS%@ hr v Sdt 0
K 0 0 0 0 0 |
- 0 -

bo + brag + baaid

ag + ajayg ) cos

() = | (0T @1k cos 23)
(ap + a1ag) sin By
0

For all simulations in this section, CUT-8 points are used to compute different expectation integrals
of Eq. (6) and Eq. (9). At each time instant, the first two moments are used to approximate state
density function as a Gaussian density function with computed mean and variance and new CUT
points are sampled from this new Gaussian distribution.

First Maneuver

The first maneuver is adapted from Ref. [33] and different simulation parameters are listed in
Tables 1 and 2. The initial state vector is assumed to be a Gaussian random variable with



Table 1. Parameters of the shuttle model equations
pt/) | /) | R() | () | S(2) | m (1)
0.1407654 x 1017 | 0.002378 | 20,902,900 | 23800 | 2690 | 6309.44

Table 2. Lift and Drag Coefficients
ag ‘ al ‘ bo ‘ b1 ‘ b2

—0.20704 | 0.029244 | 0.07854 | —0.61592 x 10~2 | 0.621408 x 10~°

following mean and variance.

fixo = [260,000ft, 25600t /s, —1°,0,~1°,0] @24
(30002 0 0 0 0 0]
0 00 0 0 0
0 00 0 0 0

0= 0 00 (052 0 0 @
0 00 0 (0.5°)* 0
0 00 0 0 0|

The admissible control set U/ is defined by a Gaussian distribution with time varying mean defined
by optimal control profile given in Ref. [33] with standard deviation of 3° for both o and 3. The
mean control profile (red line) along with 10000 MC samples for control input variables are shown
in Fig. 3. The mean control profile here corresponds to the optimal trajectory of the space shuttle
reentry where the heating is constraint to be in safe limits to prevent the shuttle from burning.

The ground truth for reachability set is defined by taking 10,000 MC samples at initial time for
state vector and 10, 000 MC samples for control input vector at each time. The developed approach
with CUTS8 samples (745 for states and 21 for control) is used to compute mean and covariance of
state vector at each time. Fig. 4 shows the mean (red color) with green colored 3o bounds for each
state variable. The 10000 MC samples at each time are also superimposed in this figure with purple
dots. Form this figure, it is clear that the MC samples lies within 30 bound and hence one can
conclude that first two moments are good to compute the reachability set. Also, it can be observed

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Time [s] Time [s]
(a) variation of o with time (b) variation of 8 with time

Figure 3. Control inputs with Gaussian uncertainty for first maneuver



that the general trend of altitude h, velocity v and azimuth v is decreasing and for latitude 6§ &
longitude ¢, is increasing. For the flight-path angle -, the overall trend is decreasing but due to
various humps occur on the way, its value oscillates locally.
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Figure 4. Reachability analysis of states for first maneuver

Fig. 5, Fig. 6 and Fig. 7 show the contour plots of various 2D projections of six dimensional state
density function, i.e., reachability sets superimposed with MC runs at four different time intervals
(t1 = 1s, to = 500s, t3 = 1000s and t4 = 2000s). These plots once again confirm that the
state density function can be approximated well with Gaussian density function for this particular
maneuver case. Furthermore, the correlations between different variables depicted in contour plots
of Fig. 5, Fig. 6 and Fig. 7 are in agreement with general behavior of trajectories in Fig. 4. For
example, the positive correlation between h and v at time instants t1, t3 and ¢4 can be explained
due to increase in spread around mean for h and v as shown in Fig. 4(a) and Fig. 4(b) at those
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time instants. Similarly, the negative correlation between h and 6 at time instants ¢35 and ¢4 can be
explained due to increase in spread around mean value of h with decrease in spread around mean
value of 0 at these time instants in Fig. 4(a) and Fig. 4(e).

Finally, one can observe that the variation in optimal control profile results in 2° and 8° spread

around mean values for latitude and longitude respectively at the end of the manuever.

Second Maneuver

The Second maneuver is adapted from Ref. [34] and the simulation parameter values are listed in
Tables 3 and 4.

Table 3. Parameters of the glider model equations
p /) | polkg/m®) | Re(m) | hy(m) | S(m?) | m (ke)
398 x 104 | 12 [6.378x 10° | 7500 | 0.30 | 340

Table 4. Lift and Drag Coefficients
ao‘al‘ bo ‘b1‘ be

0|16]006|0]17

The initial state here is also assumed to be Gaussian with mean and variance as,

lix, = [80000mn, 5000m, /s, —35.0822°,0,0,0]" (26)
(120 0 0 0 0]
000 0 0 0
000 0 0 0

o= | g 0 0 0592 0 0 @7
000 0 (052 0
000 0 0 0

For control, the time varying mean is taken as the optimal profile of the o and 3 as given in
Ref. [34] with a standard deviation of 3° in both. The mean control profile (red line) along with
10000 MC samples for control input variables are shown in Fig. 8. The mean control profile here
corresponds to maximum impact energy of the glide weapon at the target. These types of weapons
are of significant importance to the mission of conventional prompt global strike (CGPS) [35] . The
ground truth for reachability set is defined by taking 10,000 MC samples at initial time for state
vector and 10, 000 MC samples for control input vector at each time. The developed approach with
CUTS samples (745 for states and 21 for control) is used to compute mean and covariance of state
vector at each time. Fig. 9 shows the mean (red color) with green colored 30 bounds for each
state variable. The 10000 MC samples at each time are also superimposed in this figure with purple
dots. Form this figure, it is clear that the MC samples lies within 30 bound and hence one can
conclude that first two moments are good to compute the reachability set. Also, observe that the
general trend of altitude h & velocity v is decreasing and for azimuth ¢ & longitude ¢ is increasing.
For the flight-path angle v & latitude 6, the values first increases and then after some point of time
decreases.

11
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Figure 5. Variation of altitude vs. velocity & velocity vs. flight-path at different time-steps
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Figure 7. Variation of altitude vs. flight-path & flight-path vs. azimuth at different time-steps
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Figure 8. Control inputs with Gaussian uncertainty for second maneuver

Fig. 10, Fig. 11 and Fig. 12 show the contour plots of various 2D projections of six dimen-
sional state density function, i.e., reachability set superimposed with MC runs at four different time
intervals (¢; = 1s, to = 30s, t3 = 60s and t4 = 120s). These plots once again confirm the
approximation of state density function with Gaussian density function. For example, the positive
correlation between h and -y at to, t3 and t4 in Fig. 12 can be explained due to increase in spread
around mean for h and ~ as shown in Fig. 4(a) and Fig. 4(c) at those time instants.

Finally, one can observe that the variation in optimal control profile results in about 3000m , 3°
and 3° spread around mean values for altitude, latitude and longitude respectively at time #4.
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Figure 9. Reachability analysis of states for second maneuver
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CONCLUSIONS

A computationally efficient probabilistic approach has been presented to compute reachability
sets for a generic nonlinear system. The developed approach exploit the independence of state
variable and control input variable to curtail the conventional combinatorial growth of samples as-
sociated with computation of reachability sets. Furthermore, Conjugate Unscented Transformation
(CUT) is used to compute multi-dimensional expectation integrals required to compute desired or-
der moments associated with state density function at each time. Two different optimal maneuvers
associated with hypersonic reentry problem are considered to show the efficacy of the developed
approach. Numerical experiments presented in the paper clearly demonstrate the ability of the de-
veloped approach in accurately approximating the reachability sets and provide a basis for optimism
in developed approach. The main advantage of the developed approach is that it provides a tradeoff
between computations and accuracy in approximating reachability sets by controlling the number
of statistical moments to be computed.
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APPENDIX

The third order moments can be computed as:

E [af 1o o] | = B[ (i) + G (x0) A (i)’ (28)
ZE[fa (xe) £ (xi) [ (Xk)} +E[fa (xx) £ (xk) G7° (xk) € (uy,)
£ (o) G (o) B (i) 7 ()| + B |2 () G (30) AP () GO (o) ()

(

+E[G (x0) 1 () fﬁ (i) 7 )| + G o) B () £7 (3c) G° (3c0) B (o)
(

(

B[ GO () B (wg) G (i) B () S ()|
)

T E[Go (xi) h® (ug) G (i) hY (wg) G (xx) B (u,{)}
aaﬂ7’7:1a25"'3n7 aab>C:1323"'7T (29)
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Again, making use of the fact that x;, is independent of ug, the aforementioned expression can be
simplified as follows:

E |20l 0| = B 7% (o) 2 () 7 (o) | + B |7 () £7 (x4) G (ox0)| B [ ()]

(30)
+E 1% (k) G (x4) 7 (1) | B [ ()|
FE [ () G (1) G0 (k)| B [ () 1 ()]
+FE[G° () 17 (x1) £7 ()| B [0 ()
+E |G (i) £ (0) G (ox0) | B [ () b ()]
)
)

+ B [Go (1) G (301) 7 ()| B [ () WP ()|

+E :GO‘“ (x1) GP (x5) G (xk)} E [h“ () B (ug) he (uk)]
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