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Abstract

We build a theoretical framework for designing and understanding practical meta-
learning methods that integrates sophisticated formalizations of task-similarity with
the extensive literature on online convex optimization and sequential prediction
algorithms. Our approach enables the task-similarity to be learned adaptively,
provides sharper transfer-risk bounds in the setting of statistical learning-to-learn,
and leads to straightforward derivations of average-case regret bounds for efficient
algorithms in settings where the task-environment changes dynamically or the
tasks share a certain geometric structure. We use our theory to modify several
popular meta-learning algorithms and improve their training and meta-test-time
performance on standard problems in few-shot and federated learning.

1 Introduction

Meta-learning, or learning-to-learn (LTL) [51], has recently re-emerged as an important direction
for developing algorithms for multi-task learning, dynamic environments, and federated settings.
By using the data of numerous training tasks, meta-learning methods seek to perform well on new,
potentially related test tasks without using many samples. Successful modern approaches have
also focused on exploiting the capabilities of deep neural networks, whether by learning multi-task
embeddings passed to simple classifiers [50] or by neural control of optimization algorithms [46].

Because of its simplicity and flexibility, a common approach is parameter-transfer, where all tasks
use the same class of O-parameterized functions fy : X — J; often a shared model ¢ € O is
learned that is used to train within-task models. In gradient-based meta-learning (GBML) [23],
¢ is a meta-initialization for a gradient descent method over samples from a new task. GBML is
used in a variety of LTL domains such as vision [38, 44, 35], federated learning [16], and robotics
[20, 1]. Its simplicity also raises many practical and theoretical questions about the task-relations
it can exploit and the settings in which it can succeed. Addressing these issues has naturally led
several authors to online convex optimization (OCO) [54], either directly [24, 34] or from online-to-
batch conversion [34, 19]. These efforts study how to find a meta-initialization, either by proving
algorithmic learnability [24] or giving meta-test-time performance guarantees [34, 19].

However, this recent line of work has so far considered a very restricted, if natural, notion of task-
similarity — closeness to a single fixed point in the parameter space. We introduce a new theoretical
framework, Average Regret-Upper-Bound Analysis (ARUBA), that enables the derivation of meta-
learning algorithms that can provably take advantage of much more sophisticated structure. ARUBA
treats meta-learning as the online learning of a sequence of losses that each upper bounds the regret
on a single task. These bounds often have convenient functional forms that are (a) sufficiently nice, so
that we can draw upon the existing OCO literature, and (b) strongly dependent on both the task-data
and the meta-initialization, thus encoding task-similarity in a mathematically accessible way. Using
ARUBA we introduce or dramatically improve upon GBML results in the following settings:
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o Adapting to the Task-Similarity: A major drawback of previous work is a reliance on knowing
the task-similarity beforehand to set the learning rate [24] or regularization [19], or the use of
a sub-optimal guess-and-tune approach using the doubling trick [34]. ARUBA yields a simple
gradient-based algorithm that eliminates the need to guess the similarity by learning it on-the-fly.

e Adapting to Dynamic Environments: While previous theoretical work has largely considered
a fixed initialization [24, 34], in many practical applications of GBML the optimal initialization
varies over time due to a changing environment [1]. We show how ARUBA reduces the problem
of meta-learning in dynamic environments to a dynamic regret-minimization problem, for which
there exists a vast array of online algorithms with provable guarantees that can be directly applied.

e Adapting to the Inter-Task Geometry: A recurring notion in LTL is that certain model weights,
such as feature extractors, are shared, whereas others, such as classification layers, vary between
tasks. By only learning a fixed initialization we must re-learn this structure on every task. Using
ARUBA we provide a method that adapts to this structure and determines which directions in ©
need to be updated by learning a Mahalanobis-norm regularizer for online mirror descent (OMD).
We show how a variant of this can be used to meta-learn a per-coordinate learning-rate for certain
GBML methods, such as MAML [23] and Reptile [44], as well as for FedAvg, a popular federated
learning algorithm [41]. This leads to improved meta-test-time performance on few-shot learning
and a simple, tuning-free approach to effectively add user-personalization to FedAvg.

o Statistical Learning-to-Learn: ARUBA allows us to leverage powerful results in online-to-batch
conversion [53, 33] to derive new bounds on the transfer risk when using GBML for statistical
LTL [8], including fast rates in the number of tasks when the task-similarity is known and high-
probability guarantees for a class of losses that includes linear regression. This improves upon the
guarantees of Khodak et al. [34] and Denevi et al. [19] for similar or identical GBML methods.

1.1 Related Work

Theoretical LTL: The statistical analysis of LTL was formalized by Baxter [8]. Several works have
built upon this theory for modern LTL, such as via a PAC-Bayesian perspective [3] or by learning the
kernel for the ridge regression [18]. However, much effort has also been devoted to the online setting,
often through the framework of lifelong learning [45, 5, 2]. Alquier et al. [2] consider a many-task
notion of regret similar to the one we study in order to learn a shared data representation, although
our algorithms are much more practical. Recently, Bullins et al. [11] developed an efficient online
approach to learning a linear data embedding, but such a setting is distinct from GBML and more
closely related to popular shared-representation methods such as ProtoNets [50]. Nevertheless, our
approach does strongly rely on online learning through the study of data-dependent regret-upper-
bounds, which has a long history of use in deriving adaptive single-task methods [40, 21]; however,
in meta-learning there is typically not enough data to adapt to without considering multi-task data.
Analyzing regret-upper-bounds was done implicitly by Khodak et al. [34], but their approach is
largely restricted to using Follow-the-Leader (FTL) as the meta-algorithm. Similarly, Finn et al. [24]
use FTL to show learnability of the MAML meta-initialization. In contrast, the ARUBA framework
can handle general classes of meta-algorithms, which leads not only to new and improved results in
static, dynamic, and statistical settings but also to significantly more practical LTL methods.

GBML: GBML stems from the Model-Agnostic Meta-Learning (MAML) algorithm [23] and has
been widely used in practice [1, 44, 31]. An expressivity result was shown for MAML by Finn and
Levine [22], proving that the meta-learner can approximate any permutation-invariant learner given
enough data and a specific neural architecture. Under strong-convexity and smoothness assumptions
and using a fixed learning rate, Finn et al. [24] show that the MAML meta-initialization is learnable,
albeit via an impractical FTL method. In contrast to these efforts, Khodak et al. [34] and Denevi et al.
[19] focus on providing finite-sample meta-test-time performance guarantees in the convex setting,
the former for the SGD-based Reptile algorithm of Nichol et al. [44] and the latter for a regularized
variant. Our work improves upon these analyses by considering the case when the learning rate, a
proxy for the task-similarity, is not known beforehand as in Finn et al. [24] and Denevi et al. [19]
but must be learned online; Khodak et al. [34] do consider an unknown task-similarity but use a
doubling-trick-based approach that considers the absolute deviation of the task-parameters from
the meta-initialization and is thus average-case suboptimal and sensitive to outliers. Furthermore,
ARUBA can handle more sophisticated and dynamic notions of task-similarity and in certain settings
can provide better statistical guarantees than those of Khodak et al. [34] and Denevi et al. [19].



2 Average Regret-Upper-Bound Analysis

Our main contribution is ARUBA, a framework for analyzing the learning of X-parameterized
learning algorithms via reduction to the online learning of a sequence of functions U, : X — R
upper-bounding their regret on task ¢. We consider a meta-learner facing a sequence of online learning
tasks t = 1,..., T, each with m, loss functions ¢; ; : © — R over action-space © C R<. The learner
has access to a set of learning algorithms parameterized by x € X that can be used to determine the
action 6, ; € © on each round i € [m,] of task ¢. Thus on each task ¢ the meta-learner chooses z; € X,
runs the corresponding algorithm, and suffers regret Ry (2;) = >, €4 (6 ;) — ming > ., £y ;(6).
We propose to analyze the meta-learner’s performance by studying the online learning of a sequence of
regret-upper-bounds Uy (z;) > Ry (z;), specifically by bounding the average regret-upper-bound

Ur =7 ZtT:1 Uy (z). The following two observations highlight why we care about this quantity:

1. Generality: Many algorithms of interest in meta-learning have regret guarantees U () with nice,
e.g. smooth and convex, functional forms that depend strongly on both their parameterizations
x € X and the task-data. This data-dependence lets us adaptively set the parameterization z; € X.

2. Consequences: By definition of U; we have that U bounds the task-averaged regret (TAR)
Ry = % Zthl Ri(z) [34]. Thus if the average regret-upper-bound is small then the meta-

learner will perform well on-average across tasks. In Section 5 we further show that a low average
regret-upper-bound will also lead to strong statistical guarantees in the batch setting.

ARUBA’s applicability depends only on finding a low-regret algorithm over the functions U,; then
by observation 2 we get a task-averaged regret bound where the first term vanishes as 7' — oo while
by observation 1 the second term can be made small due to the data-dependent task-similarity:

T
_ _ 1
Ry <Ur <or(1) +lelnf ;Ut(:r)

The Case of Online Gradient Descent: Suppose the meta-learner uses online gradient descent
(OGD) as the within-task learning algorithm, as is done by Reptile [44]. OGD can be parameterized
by an initialization ¢ € © and a learning rate n > 0, so that X = {(¢,n) : ¢ € O,n > 0}.

Using the notation v,., = Zi’:a v; and V ; = V4 ;(0: ;), at each round 7 of task ¢ OGD plays
0;,; = argmingeg 5[0 — |3 + n(Vi.1:-1,0). The regret of this procedure when run on m convex
G-Lipschitz losses has a well-known upper-bound [48, Theorem 2.11]

1, ., ¢ .
Ui(z) = Uy(¢, ) = %H@t — O[3 +1G?m > 4i(0:) — £0,i(07) = Ry(x) )
i=1

which is convex in the learning rate 7 and the initialization ¢. Note the strong data dependence via
07 € argming >, £, ;(6), the optimal action in hindsight. To apply ARUBA, first note that if
§* = 167 1 is the mean of the optimal actions #; on each task and V2 = L S°1 | [|07 — 6% |3 is their
empirical variance, then ming,,, = Zle Ui(¢p,n) = O(GV+/m). Thus by running a low-regret
algorithm on the regret-upper-bounds U, the meta-learner will suffer task-averaged regret at most
or(1) + O(GV+/m), which can be much better than the single-task regret O(GD+/m), where D is
the (3-diameter of ©, if V' < D, i.e. if the optimal actions 6 are close together. See Theorem 3.2
for the result yielded by ARUBA in this simple setting.

3 Adapting to Similar Tasks and Dynamic Environments

We now demonstrate the effectiveness of ARUBA for analyzing GBML by using it to prove a general
bound for a class of algorithms that can adapt to both rask-similarity, i.e. when the optimal actions
07 for each task are close to some good initialization, and to changing environments, i.e. when this
initialization changes over time. The task-similarity will be measured using the Bregman divergence
Br(0||¢) = R(0) — R(¢) — (VR(¢),0 — ¢) of a 1-strongly-convex function R : © — R [10], a
generalized notion of distance. Note that for R(-) = || - ||3 we have Br(0||¢) = %(|6 — ¢||3. A
changing environment will be studied by analyzing dynamic regret, which for a sequence of actions
{¢+}+ C © taken by some online algorithm over a sequence of loss functions {f; : © — R}, is

defined w.r.t. a reference sequence ¥ = {¢;}; C © as Rp(¥) = Ele fi(pe) — ft(2pt). Dynamic
regret measures the performance of an online algorithm taking actions ¢, relative to a potentially time-

varying comparator taking actions ¢;. Note that when we fix ¢; = ¢* € argmin o Zthl fe(¥)
we recover the standard static regret, in which the comparator always uses the same action.



Algorithm 1: Generic online algorithm for gradient-based parameter-transfer meta-learning. To
run OGD within-task set R(-) = 3|| - [|3. To run FTRL within-task substitute ¢; ;(6) for (V, ;, 6).

Set meta-initialization ¢; € O and learning rate 1; > 0.
for task ¢t € [T] do
for round ¢ € [m;] do
0;,; < argmingcg Br(0||¢+) + 1:(Vi1:-1,6) // online mirror descent step
Suffer loss ¢ ;(6:,i)

Update ¢¢1,7m:+1 // meta-update of OMD initialization and learning rate

Putting these together, we seek to define variants of Algorithm 1 for which as T' — oo the average
regret scales with Vy, where Vi = & Z;T:l Br(05||¢+), without knowing this quantity in advance.

Note for fixed ¢, = 6* = 167 . this measures the empirical standard deviation of the optimal task-
actions 6;. Thus achieving our goal implies that average performance improves with task-similarity.

On each task ¢ Algorithm 1 runs online mirror descent with regularizer %B r(-||¢+) for initialization
¢+ € © and learning rate 1, > 0. It is well-known that OMD and the related Follow-the-Regularized-
Leader (FTRL), for which our results also hold, generalize many important online methods, e.g. OGD
and multiplicative weights [26]. For m; convex losses with mean squared Lipschitz constant G# they
also share a convenient, data-dependent regret-upper-bound for any 6 € © [48, Theorem 2.15]:

1
R; < Uy(os,m) = ;BR(HZ‘H@) + mGEmy 2)
t

All that remains is to come up with update rules for the meta-initialization ¢, € © and the learning rate
1 > 01in Algorithm 1 so that the average over T of these upper-bounds Uy (¢, 1) is small. While this
can be viewed as a single online learning problem to determine actions x; = (¢, 7;) € © x (0, 00),
it is easier to decouple ¢ and 7 by first defining two function sequences { fi"t}, and { f§im},:

(6) = Ba(67110)Co/ o) = (B o )G o

We show in Theorem 3.1 that to get an adaptive algorithm it suffices to specify two OCO algorithms,
INIT and SIM, such that the actions ¢; = INIT(¢) achieve good (dynamic) regret over fi"t and the
actions v; = SIM(#) achieve low (static) regret over f5™; these actions then determine the update
rules of ¢, and 1, = v;/(G¢+/my). We will specialize Theorem 3.1 to derive algorithms that provably
adapt to task similarity (Theorem 3.2) and to dynamic environments (Theorem 3.3).

To understand the formulation of f;"" and f;'™, first note that f™ (v) = Uy(¢¢, v/(Gry/my)), so the
online algorithm SIM over f§™ corresponds to an online algorithm over the regret-upper-bounds
U, when the sequence of initializations ¢, is chosen adversarially. Once we have shown that SIM
is low-regret we can compare its losses f5™(v;) to those of an arbitrary fixed v > 0; this is the first
line in the proof of Theorem 3.1 (below). For fixed v, each f{"!(¢,) is an affine transformation of
f5im(v), so the algorithm INIT with low dynamic regret over fi"‘ corresponds to an algorithm with
low dynamic regret over the regret-upper-bounds U; when 1, = v/(G¢+/m;) ¥V t. Thus once we
have shown a dynamic regret guarantee for INI'T we can compare its losses fi"(¢;) to those of an
arbitrary comparator sequence {1 }; C ©; this is the second line in the proof of Theorem 3.1.

Theorem 3.1. Assume © C R? is convex, each task t € [T is a sequence of m; convex losses

¢ ; : © — R with mean squared Lipschitz constant G%, and R : © — R is 1-strongly-convex.

o Let INIT be an algorithm whose dynamic regret over functions {fi"'}; w.rt. any reference
sequence U = {1, }I_, C © is upper-bounded by U} (V).

o Let SIM be an algorithm whose static regret over functions { fi"}; w.r.t. any v > 0 is upper-
bounded by a non-increasing function U™ (v) of v.

. SIM I Br(0;||19:)Ge/me ., .
If Algorithm 1 sets ¢ = INIT(t) and n; = \/(L then for V@ = > 12131(1 Cl:lt\/znﬁ VI it will

achieve average regret

~

_ _ Usim (V\p ) 1 ) init ( \I/) i 2V\p
Rr<Ur< %—i—fmln 7;/7\1/72 UT”(\I/)ZG“/mt ZGt



Proof. For o, = G,/m; we have by the regret bound on OMD/FTRL (2) that

T * T *
I_JTT: Z (BR(G,:M +'Ut> o < m;gU%m(v)+Z <BR(9;||¢%) -l—’U) oy

v
t=1 t t=1

U + U’““(%+Z<BR9*|¢» )a

v>0
t=1

Umlt ( \I/)

< U™ (V) + min {Tw 2 Ui;i‘(\ll)al:T} + 2Vgor.T

where the last line follows by substituting v = max {Vq,, U (0) /oy.p } O

Similar Tasks in Static Environments: By Theorem 3.1, if we can specify algorithms INIT and
SIM with sublinear regret over fi"'and f;™ (3), respectively, then the average regret will converge
to O(Vg+/m) as desired. We first show an approach in the case when the optimal actions 6} are close
to a fixed point in ©, i.e. for fixed ¢y, = 6* = & 707.7. Henceforth we assume the L1psch1tz constant
G and number of rounds m are the same across tasks detailed statements are in the supplement.

Note that if R(-) = || - [|3 then {f"™"}, are quadratic functions, so playing ¢y41 = +67, has
logarithmic regret [48, Corollary 2.2]. We use a novel strongly convex coupling argument to show
that this holds for any such sequence of Bregman divergences, even for nonconvex Br(6f||-). The
second sequence { f5™}, is harder because it is not smooth near 0 and not strongly convex if 6} = ¢;.
We study a regularized sequence f3™(v) = f§i™(v) + 2 /v for € > 0. Assuming a bound of D? on

the Bregman divergence and setting ¢ = 1/+v/T, we achieve @(\/T ) regret on the original sequence
by running exponentially-weighted online-optimization (EWOO) [28] on the regularized sequence:

v = fo\/mve){p(—’y Tt f"(@))dv for = 2 min {62 1} )
137 exp(— ey Jim (o) beym L2

Note that while EWOQO is inefficient in high dimensions, we require only single-dimensional integrals.
In the supplement we also show that simply setting v7,; = €%t + Y. __, Br(0%||¢:) has only a

slightly worse regret of @(T3/ 5). These guarantees suffice to show the following:

Theorem 3 2. Under the assumptions of Theorem 3.1 and boundedness of Br over ©, if INIT plays
dr41 = 707., and SIM uses e-EWOO (4) withe =1/ VT then Algorithm 1 achteves average regret

_ (1435 1 )

Ry <Ur O(mln{ Nii ,%}—FV)\/ﬁ for v mln ZBRH [|0)
Observe that if V, the average deviation of 6, is Q7 (1) then the bound becomes (’)(V\F ) at rate
O(1/v/T), while if V = o7(1) the bound tends to zero. Theorem 3.1 can be compared to the main
result of Khodak et al. [34], who set the learning rate via a doubling trick. We improve upon their
result in two aspects. First, their asymptotic regret is O(D*+/m), where D* is the maximum distance
between any two optimal actions. Note that V' is always at most D*, and indeed may be much smaller
in the presence of outliers. Second, our result is more general, as we do not need convex Br(0;]-).

Remark 3.1. Our methods assume an oracle for 0} € argmingcg >y £1,i(0) after task t, which
may be inefficient or undesirable. In the supplement we show that one can use the last or average
within-task iterate instead of 0} when the losses satisfy a quadratic growth condition that holds in
many practical settings [34]. This approximate meta-update incurs an additional o(+/m) regret term.

Related Tasks in Changing Environments: In many settings we have a changing environment
and so it is natural to study dynamic regret. This has been widely analyzed by the online learning
community [15, 30], often by showing a dynamic regret bound consisting of a sublinear term plus a
bound on the variation in the action or function space. Using Theorem 3.1 we can show dynamic
guarantees for GBML via reduction to such bounds. We provide an example in the Euclidean
geometry using the popular path-length-bound Py = ZtT=2 ¢ — 1br—1]|2 for reference actions
U = {4, }]_; [54]. We use a result showing that OGD with learning rate < 1//3 over a-strongly-
convex, (3-strongly-smooth, and L-Lipschitz functions has a bound of O(L(1 4 Py )) on its dynamic
regret [42, Corollary 1]. Observe that in the case of R(-) = 5| - [|3 the sequence f{"" in Theorem 3.1
consists of DG+/m-Lipschitz quadratic functions. Thus using Theorem 3.1 we achieve the following:
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Theorem 3.3. Under Theorem 3.1 assumptions, bounded ©, and R(-) = 3|| - ||3, if INIT is OGD

Gf and SIM uses e-EWOO (4) with e = 1/\4/T then by using OGD within-task
Algorithm 1 will achieve for any fixed comparator sequence ¥ = {1 };c(7) C © the average regret
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This bound controls the average regret across tasks using the deviation Vg of the optimal task
parameters 6; from some reference sequence ®, which is assumed to vary slowly or sparsely
so that the path length Pg is small. Figure 1 illustrates when such a guarantee improves over
Theorem 3.2. Note also that Theorem 3.3 specifies OGD as the meta-update algorithm INIT, so
under the approximation that each task ¢’s last iterate is close to 6} this suggests that simple GBML
methods such as Reptile [44] or FedAvg [41] are adaptive. The generality of ARUBA also allows for
the incorporation of other dynamic regret bounds [25, 52] and other non-static notions of regret [27].

with learning rate

4 Adapting to the Inter-Task Geometry

Previously we gave improved guarantees for learning OMD under a simple notion of task-similarity:
closeness of the optimal actions 6;. We now turn to new algorithms that can adapt to a more sophisti-
cated task-similarity structure. Specifically, we study a class of learning algorithms parameterized by
an initialization ¢ € © and a symmetric positive-definite matrix H € M C R4*¢ which plays

o1
0;,; = arg min §H9 — @51+ (Vi1:-1.0) )
0cO

This corresponds 0y ;1 = 0 ; — H'V4 ;, so if the optimal actions 6} vary strongly in certain directions,
a matrix emphasizing those directions improves within-task performance. By strong-convexity of
1110 — |12, w.rt. || || zr-1, the regret-upper-bound is Uy (¢, H) = 3|07 —¢[|5- + iy I Veill%
[48, Theorem 2.15]. We first study the diagonal case, i.e. learning a per-coordinate learning rate
n e R% to getiteration 6, ;11 = 0 ; — 1 © V4 ;. We propose to set 7, at each task ¢ as follows:

_ Zs tgg ( ¢é) . 2 C2
m_\/z;c 2430 V2, for e = (t+1)p G = (t+1)p

Observe the similarity between this update AdaGrad [21], which is also inversely related to the sum
of the element-wise squares of all gradients seen so far. Our method adds multi-task information by
setting the numerator to depend on the sum of squared distances between the initializations ¢; set by
the algorithm and that task’s optimal action ¢;. This algorithm has the following guarantee:

Theorem 4.1. Let © be a bounded convex subset of R%, let D C R¥*? be the set of positive definite
diagonal matrices, and let each task t € [T consist of a sequence of m convex Lipschitz loss functions
4+ © — R. Suppose for each task t we run the iteration in Equation 5 setting ¢ = 141 and

Vit >0, where €,(,p > 0 (6)

1
t—1
setting H = Diag(n;) via Equation 6 fore = 1,{ = y/m, and p = 2 Then we achieve

m

St Hj 1 0; — .
RT<UT—m1n(9 Zmln{ jj,w} ZH ¢||H +ZHV”||H
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As T — oo the average regret converges to the minimum over ¢, H of the last two terms, which
corresponds to running OMD with the optimal initialization and per-coordinate learning rate on
every task. The rate of convergence of 7~2/% is slightly slower than the usual 1/+/T achieved
in the previous section; this is due to the algorithm’s adaptivity to within-task gradients, whereas
previously we simply assumed a known Lipschitz bound G; when setting 7);. This adaptivity makes
the algorithm much more practical, leading to a method for adaptively learning a within-task learning
rate using multi-task information; this is outlined in Algorithm 2 and shown to significantly improve
GBML performance in Section 6. Note also the per-coordinate separation of the left term, which
shows that the algorithm converges more quickly on non-degenerate coordinates. The per-coordinate
specification of 7, (6) can be further generalized to learning a full-matrix adaptive regularizer, for
which we show guarantees in Theorem 4.2. However, the rate is much slower, and without further
assumptions such methods will have (d?) computation and memory requirements.

Theorem 4.2. Let © be a bounded convex subset of R and let each task t € [T'] consist of a sequence
of m convex Lipschitz loss functions ly ; : © — R. Suppose for each task t we run the iteration in
Equation 5 with ¢ = ﬁﬁfkl and H the unique positive definite solution of B} = HG? H for

m

1
2 _ 4.2 * * T 2 42 oT
Bf =1l + 5 ;(95 — ¢)(0F — bs) and G} =114+ ;Z;vam
fore =1/VT and ¢ = \/m/ V/T. Then for A;j corresponding to the jth largest eigenvalue we have

- (1 2N (H) 1+1ogT | <= 10— 67113 | 2
RTSUT=O< >\/T7L+m1n T +; 5 +;||Vm‘|H

VT

5 Fast Rates and High Probability Bounds for Statistical Learning-to-Learn

Batch-setting transfer risk bounds have been an important motivation for studying LTL via online
learning [2, 34, 19]. If the regret-upper-bounds are convex, which is true for most practical variants
of OMD/FTRL, ARUBA yields several new results in the classical distribution over task-distributions
setup of Baxter [8]. In Theorem 5.1 we present bounds on the risk ¢ () of the parameter 6 obtained
by running OMD/FTRL on i.i.d. samples from a new task distribution P and averaging the iterates.

Theorem 5.1. Assume ©, X are convex Euclidean subsets. Let convex losses £ ; : © — [0,1] be
drawn i.id. Py ~ Q,{l;}; ~ P[" for distribution Q over tasks. Suppose they are passed to an
algorithm with average regret upper-bound U that at each t picks x, € X to initialize a within-task
method with convex regret upper-bound Uy : X +— [0, By/m], for B > 0. If the within-task algorithm
is initialized by & = %xl;T and it takes actions 0, . . . ,0,, on m i.i.d. losses from new task P ~ Q

then § = %91% satisfies the following transfer risk bounds for any 6* € © (all w.p. 1 —§):

1. general case: Ep_gEpm (p(0) <Epglp(0*)+Lr for Lr= % + By/ 25 log 3.

2. p-self-bounded losses (:  if 3 p > 0s.t. pEpop ALO) > Epup(AL(D) — Eoup AL(D))? for
all distributions P ~ Q, where AU(8) = £(0) — £(6%) for any 6* € arg ming.g {p(0), then for
L as above we have Epg lp(0) < Epoglp(0*) + Ly + 1/ % log 2 + % log 2.

3. a-strongly-convex, G-Lipschitz regret-upper-bounds U;: in parts I and 2 above we can

U + ming Ep.g U(x) 4G | U 8log T max{16G?,6aB+/m} 8log T
m + T am IOg o + amT 1Og o

substitute L1 =

In the general case, Theorem 5.1 provides bounds on the excess transfer risk decreasing with U /m
and 1/v/mT. Thus if U improves with task-similarity so will the transfer risk as 7" — co. Note that
the second term is 1/v/mT rather than 1/+/T as in most-analyses [34, 19]; this is because regret
is m-bounded but the OMD regret-upper-bound is O(y/m)-bounded. The results also demonstrate
ARUBA’s ability to utilize specialized results from the online-to-batch conversion literature. This is
witnessed by the guarantee for self-bounded losses, a class which Zhang [53] shows includes linear
regression; we use a result by the same author to obtain high-probability bounds, whereas previous
GBML bounds are in-expectation [34, 19]. We also apply a result due to Kakade and Tewari [33] for
the case of strongly-convex regret-upper-bounds, enabling fast rates in the number of tasks 7". The
strongly-convex case is especially relevant for GBML since it holds for OGD for fixed learning rate.

We present two consequences of these results in the setting of Section 3 where the standard deviation
V' of the optimal parameters is small. If V' is known a priori then we can use strong-convexity to
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Algorithm 2: ARUBA: an approach for modifying a 058 global
generic batch GBML method to learn a per-coordinate p— | | —
learning rate. Two specialized variants provided below.

Input: T tasks, update method for meta-initialization,
within-task descent method, settings €, (,p > 0
Initialize by + €214, g1 — (%14
fortaskt =1,2,...,7 do o4
Set ¢, according to update method, 7; < +/b:/g; 046
Run descent method from ¢; with learning rate 7;: FedAvg ~ ARUBA ~ FedAvg  ARUBA
. (default) (isotropic) (tuned) (full)
observe gradients Vi 1,..., Vi m,
obtain within task parameter 0, Figure 3: Next-character prediction
byt < by + = 21y ( by — 0,)2 performance for recurrent networks
t+1 t (t+1 t trained on the Shakespeare dataset [12]
Gir1 & gi + (t+1 + 2 Vi, using FedAvg [41] and its modifica-
tions by Algorithm 2. Note that the
Result. initialization ¢, learning rate ny = \/br/gr two ARUBA methods require no learn-

ARUBA ++: starting with np 1 = 97 and 971 = g7, adap- ing rate tuning when. personalizing the
tively reset the learning rate by setting gr ;41 ¢ gr,i+cV3 moield(l'reﬁlrll.e),. unlike b Otlh FedAvg
for some ¢ > 0 and then updating n7,;+1 /b7 /97,i+1- methods; this 1s a critical improve-

Isotropic: b, and g; are scalars tracking the sum of squared ment in federated settings. Furthermore,

distances and sum of squared gradient norms, respectively. Lse();(rlogcoﬁl;[cjgﬁn?f;gsgggglsbcl:l;:er-

accuracy

get fast rates for learning the meta-initialization, as we show in the first part of Corollary 5.1. The
result can be loosely compared to Denevi et al. [19], who provide a similar asymptotic improvement
under known V' but with a slower rate of O(1/+/T) in the second term. However, in their results V/
is the expected deviation of the true, not empirical, risk-minimizers and so the results are not directly
comparable. The second part of Corollary 5.1 also gives a guarantee when 7 is set adaptively as in
Theorem 3.2, where despite not knowing V' we match the results of Denevi et al. [19], who do require
known V, up to some additional fast O(1/m) terms.

Corollary 5.1. In the setting of Theorems 3.2 & 5.1, if Algorithm 1 uses OGD with ¢¢11 = %Gf:t
with learning rate 1, = %, where V? = mingeeo 5 Epo Epm ||0* — ¢||3 > 0, then wp. 1 —§

_ \% log £
E E (p(d) < E (p(0" L
P~QP™ Pl )*P~Q P(07)+ (s/ + VTym )
If n, is set adaptively using e-EWOQO as in Theorem 3.2 for € = l/f +1/v/mthenwp. 1—§

_ 1% 1+ & 1 1 1 \/ﬁ
E E/p(0)< E /(p(0* — i v — — log —
pEg i PO = B e )+O<m+mm{T¢ﬁ+V@’m+m}+ T0g6>

6 Empirical Results: Adaptive Methods for Few-Shot & Federated Learning

A generic GBML method does the following at iteration ¢: (1) initialize a descent method at ¢; € O;

(2) take gradient steps with learning rate 7 to get task-parameter 6; € O; (3) update meta-initialization
to ¢r41 € ©. Motivated by Section 4, in Algorithm 2 we outline a generic way of replacing 1 by
a per-coordinate rate learned on-the-fly. This entails keeping track of two quantities: (1) b, € R?,
a per-coordinate sum over s < ¢ of the squared distances from the initialization ¢ to within-task

parameter 0:(2) g: € R?, a per-coordinate sum of the squared gradients seen so far. At task ¢ we
set 7) to be the element-wise square root of b;/g;, allowing multi-task information to inform the

trajectory. For example, if along coordinate j the 6, ; is usually not far from initialization then b; will
be small and thus so will n;; then if on a new task we get a high noisy gradient along coordinate j the
performance will be less adversely affected because it will be down-weighted by the learning rate.
Single-task algorithms such as AdaGrad [21] and Adam [36] also work by reducing the learning rate
along frequently updated directions. However, in meta-learning some coordinates may be frequently
updated during meta-training because good task-weights vary strongly from the best initialization
along them, and thus their gradients should not be downweighted; while AdaGrad and Adam will still




20-way Omniglot 5-way Mini-ImageNet

1-shot 5-shot 1-shot 5-shot
1st-Order MAML [23] 89.4 £ 0.5 97.9 £ 0.1 48.07+£1.75 63.154+0.91
1st Reptile [44] w. Adam [36] 89.43+0.14 97.124+0.32 49.97+0.32 65.99 +0.58
Order Reptile w. ARUBA 86.67 £0.17 96.61 £0.13 50.73 £0.32 65.69 & 0.61
Reptile w. ARUBA++ 89.66 + 0.3 97.49+0.28 50.35+£0.74 65.89 +0.34
2nd 2nd-Order MAML 95.8 £ 0.3 98.9 £ 0.2 48.7 £ 1.84 63.11 +0.92
Order Meta-SGD [38] 95.93 £0.38 98.97+0.19 50.47+1.87 64.03+0.94

Table 1: Meta-test-time performance of GBML algorithms on few-shot classification benchmarks.
Ist-order and 2nd-order results obtained from Nichol et al. [44] and Li et al. [38], respectively.

do so, ARUBA encodes this intuition in the numerator by tracking the distance traveled per-task along
each direction, which will increase the learning rate along such high-variance directions. We show in
Figure 2 that this intuition is realized in practice, as ARUBA assigns a faster rate to deeper layers
than to lower-level feature extractors, following the standard intuition in parameter-transfer meta-
learning. As described in Algorithm 2, we also consider two variants: ARUBA++, which updates the
meta-learned learning-rate at meta-test-time in a manner similar to AdaGrad, and Isotropic ARUBA,
which only tracks scalar quantities and is thus useful for communication-constrained settings.

Few-Shot Classification: We first examine if Algorithm 2 can improve performance on Omniglot
[37] and Mini-ImageNet [46], two standard few-shot learning benchmarks, when used to modify
Reptile, a simple meta-learning method [44]. In its serial form Reptile is roughly the algorithm we
study in Section 3 when OGD is used within-task and 7 is fixed. Thus we can set Reptile+ ARUBA

to be Algorithm 2 with 6, the last iterate of OGD and the meta-update a weighted sum of 0; and ¢;.
In practice, however, Reptile uses Adam [36] to exploit multi-task gradient information. As shown
in Table 1, ARUBA matches or exceeds this baseline on Mini-ImageNet, although on Omniglot it
requires the additional within-task updating of ARUBA++ to show improvement.

It is less clear how ARUBA can be applied to MAML [23], as by only taking one step the distance
traveled will be proportional to the gradient, so n will stay fixed. We also do not find that ARUBA
improves multi-step MAML — perhaps not surprising as it is further removed from our theory due to
its use of held-out data. In Table 1 we compare to Meta-SGD [38], which does learn a per-coordinate
learning rate for MAML by automatic differentiation. This requires more computation but does
lead to consistent improvement. As with the original Reptile, our modification performs better on
Mini-ImageNet but worse on Omniglot compared to MAML and its modification Meta-SGD.

Federated Learning: A main goal in this setting is to use data on heterogeneous nodes to learn
a global model without much communication; leveraging this to get a personalized model is an
auxiliary goal [49], with a common application being next-character prediction on mobile devices.
A popular method is FedAvg [41], where at each communication round r the server sends a global
model ¢, to a batch of nodes, which then run local OGD; the server then sets ¢,-;1 to the average
of the returned models. This can be seen as a GBML method with each node a task, making it easy
to apply ARUBA: each node simply sends its accumulated squared gradients to the server together
with its model. The server can use this information and the squared difference between ¢, and ¢,
to compute a learning rate 7,1 via Algorithm 2 and send it to each node in the next round. We
use FedAvg with ARUBA to train a character LSTM [29] on the Shakespeare dataset, a standard
benchmark of a thousand users with varying amounts of non-i.i.d. data [41, 12]. Figure 3 shows that
ARUBA significantly improves over non-tuned FedAvg and matches the performance of FedAvg with
a tuned learning rate schedule. Unlike both baselines we also do not require step-size tuning when
refining the global model for personalization. This reduced need for hyperparameter optimization is
crucial in federated settings, where the number of user-data accesses are extremely limited.

7 Conclusion

In this paper we introduced ARUBA, a framework for analyzing GBML that is both flexible and
consequential, yielding new guarantees for adaptive, dynamic, and statistical LTL via online learning.
As a result we devised a novel per-coordinate learning rate applicable to generic GBML procedures,
improving their training and meta-test-time performance on few-shot and federated learning. We see
great potential for applying ARUBA to derive many other new LTL methods in a similar manner.
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