
Information Autonomy: Self-Adaptive Information Management
for Edge-Assisted Autonomous UAV Systems

Davide Callegaro∗, Sabur Baidya∗, Gowri S. Ramachandran†, Bhaskar Krishnamachari† and Marco Levorato∗
∗Computer Science Department, University of California, Irvine

{dcallega, sbaidya, levorato}@uci.edu
†USC Viterbi School of Engineering, University of Southern California, Los Angeles, USA

{gsramach,bkrishna}@usc.edu

Abstract—Making Unmanned Aerial Vehicles (UAV) fully au-
tonomous faces many challenges, some of which are connected
to the inherent limitations of their on-board resources, such
as energy supply, sensing capabilities, wireless characteristics,
and computational power. The sensing, communication, and
computation Internet of Things (IoT) infrastructure surrounding
the UAVs can mitigate such limitations. However, external traffic
dynamics, signal propagation, and other poignant characteristics
of the IoT infrastructure make it an extremely dynamic and
incoherent environment, especially in urban scenarios, thus
challenging the use of IoT resources for mission-critical UAV
applications. Herein, the concept of information autonomy is
introduced to extend autonomy to encompass how information-
related tasks are handled in this challenging scenario. In this
paper, we motivate the need for “Information Autonomy” based
on our observations from real-world experiments and present
a self-adaptive framework for edge-assisted UAV applications.
Through our preliminary evaluation, we show that our “Informa-
tion Autonomy” framework is capable of handling uncertainties
autonomously during run-time.

I. INTRODUCTION

On-board resources available to commercial Unmanned
Aerial Vehicles (UAV) are inherently limited by the airborne
nature of these devices. Such constraints affect key sub-
systems, such as sensors and computing platforms, which
are instrumental for prolonged and autonomous operations.
A relevant trend in mobile devices, whose application has
been recently extended to include UAVs, is to use resources
from the Internet of Things (IoT) and edge infrastructure
surrounding the UAVs to enhance their performance [1], [2]. In
particular: a) wireless cellular networks can be used to extend
the communication range of the UAVs and connect them to
other edge devices or the internet core [3]; b) data streams
from ground sensors or devices can supplement those from
on-board sensors to extend the information available to the
UAVs [4]; and c) signal processing tasks can be offloaded to
compute-capable devices residing at the network edge, that is,
edge servers [5].

Although most of the discussion provided in this paper
applies to all the three cases listed above, herein we focus on
edge offloading – case c), often referred to edge computing [4]
– due to its potential to enable a high degree of operational
autonomy to those highly constrained devices. The advantages
of edge computing applied to UAV systems are rather intuitive:

This work was partially supported by the NSF under grant IIS-1724331 and
DARPA under grant HR00111910001.

Fig. 1: The scenario considered in this paper: an autonomous
UAV leverages the surrounding IoT infrastructure to improve
mission performance. Specifically, we focus on offloading
computing tasks to edge servers through wireless links.

a powerful machine with an unlimited energy supply connected
to a UAV through a one hop wireless link can effectively run
complex algorithms beyond the reach of on-board UAV comput-
ing platforms and deliver the outcome to the UAV, thus enabling
advanced – autonomous – learning, control and planning. The
edge server can run simpler algorithms in a shorter time, thus
improving the reaction time of the UAV to external stimuli.
Finally, we remark that continuous computation requires a
substantial amount of energy, a precious resource that should
be parsimoniously used to avoid degradation of mission lifetime.
By taking over compute-intense processes, the edge server can
significantly reduce energy consumption of the UAV.

Based on the above discussion, edge computing, and in
general infrastructure assistance to UAV systems, appears to
be an extremely promising component of future UAV systems
(see Fig. 1). However, there are several technical challenges
to overcome to fruitfully and reliably apply this paradigm
to a mission-critical system such as autonomous UAVs. A
crucial aspect of the infrastructure assisting the UAVs is that
it is shared by a multitude of devices and services. This,
together with the characteristics of signal propagation, creates
an extremely dynamic environment, where the time needed to
transfer data to the edge server, or the time to complete the
processing task are highly variable, and governed by extremely
complex temporal and spatial random processes. As a result,
blindly trusting infrastructure assistance may lead to severe
performance degradation.

We contend that to fully harness the benefits of infrastructure
assistance while preserving reliable flight and mission control
the notion of “autonomy” needs to be extended from pure
mission control to include an advanced layer of intelligence
making decisions on how information is handled within the
complex UAV-infrastructure system. We refer to this layer
as “information autonomy”. We remark that information
autonomy could boost the performance of many distributed, and
constrained, mission-critical systems. We make our discussion
specific to UAVs due to their extreme characteristics in terms
of limitations, mobility and complexity of operations.

Herein, we provide a first description of an architecture
realizing information autonomy, and a detailed discussion
on the many challenges present in the definition of key
modules such as state acquisition/tracking, prediction and
decision making. The discussion is supported by illustrative
results from detailed simulation and real-world experiences
and implementations.

The rest of the paper is organized as follows. Section II
describes the operational scenario and discusses the lessons
learned from real-world experiments. In Section III, we
present the motivation and need for information autonomy
in the context of UAV systems. Section IV presents the
fundamental structure of information autonomy and emphasizes
the key challenges in its realization. Section V presents the
proposed “Information Autonomy” architecture. We present
the preliminary results in Section VI. Finally, Section VII
concludes the paper.

II. LESSONS LEARNED FROM REAL-WORLD EXPERIMENTS
ON UAV SYSTEMS

Figure 1 illustrates the autonomous infrastructure-assisted
UAV system at the center of this paper. In the edge computing
scenario, the UAV is connected to one or more edge servers,
positioned at the network edge for handling resource-intensive
computations, through available wireless access networks, such
as Long-Term Evolution (LTE) or Wi-Fi. Edge servers are
preferred over cloud infrastructure due to their low latency.

The edge server would take over the analysis, and possibly
the control, operations of the profiling-analysis-control pipeline
typically seen in UAV applications. In such Edge-based
computation pipeline, the input generated by the sensor and
the output from the modules at the edge server, needs to be
wirelessly transferred to and from the edge server. Importantly,
as compute-intense tasks often require a large amount of energy,
offloading typically reduces energy consumption at the UAV,
even when considering the additional energy needed to transmit
the data to the edge server.

For a successful completion of a mission, all the hardware
components of UAV have to continuously generate new
knowledge for the control algorithm in a dependable and energy-
efficient manner. Unfortunately, it is difficult to estimate the
resources needed for sensing, actuation, communication, and
control before the mission (run-time) since the stability of
the drone is impacted by various environmental, system, and

Fig. 2: Experimental setup for UAVs with on-board computing
and communication equipements.

network components. In the rest of this section, we present the
lessons learned from our real-world experiments.

A. Run-time Uncertainties of Edge-assisted UAV Applications

We have carried out a set of experiments involving drones
and edge devices following the setup as shown in Figure 2
to understand the performance and the resource constraints of
edge-assisted UAV applications. The UAV is equipped with
small on-board computer connected with WiFi dongle and
USRP B200mini for LTE interface. The edge server is realized
on a Laptop with high computational capability, that is also
connected with WiFi and USRP B210 for LTE interfaces.
We tested a UAV mission of target tracking based on image
classification.

From our real-world experiments conducted in the outdoor,
we have identified the following uncertainties in managing the
edge-assisted UAV applications:
• U1. Environmental Uncertainty Weather pattern such

as wind speed, temperature, and humidity influences the
control algorithm since the drone needs to stabilize itself
under harsh conditions by controlling its engines. Due
to the unpredictable nature of the weather, it is hard to
allocate resource budget for control operations prior to
the mission.

• U2. System Uncertainty For surveillance or other edge-
assisted UAV applications, performance depends on the
computation capacity of the drone, and the energy budget
available for various operations including computation,
communication, sensing, and storage (e.g., buffer).

• U3. Network Uncertainty Wireless communication is
susceptible to interference, hence the edge-assisted UAV
applications relying on remote edge servers have to
carefully manage the network resources including the
bandwidth capacity of the wireless link and the energy
budget needed to operate the radio hardware.

The above challenges highlight the need to introduce “Infor-
mation Autonomy” to react and adapt to the system, network,
and environmental uncertainties. Application goals have to be
updated dynamically during the mission time to maximize the
mission duration. In the next section, we formulate problem
goals with respect to the application scenario.

Fig. 3: Profiling-Analysis-Control Pipeline for Mission Auton-
omy.

III. PROBLEM FORMULATION AND MOTIVATION

We consider an UAV autonomously operating to fulfill
a mission. Here, we do not specifically define the mission,
but, instead, assume that autonomous operations necessitates
sensor input to be transformed into short- and/or long-term
decisions. For instance, video input from on-board cameras
can be processed to determine navigation, or to plan the
mission. We further assume that our objective is to assure
the mission completion, therefore maximizing mission time,
while maintaining quality of operation, as discussed below.

Figure 3 depicts a basic diagram of the modules involved in
the transformation from input vector ut to the output vector
yt+∆ given a context or state φt, where t is the time at which
the sensor input is acquired. The input is first processed in
the analysis module to extract relevant features. For instance,
in a video-based navigation application, the input is a video
frame, and the output of the analysis module, generated by an
object detection algorithm, is a set of labeled bounding boxes.
The features produced by the analysis module are sent to the
control module, which generates the final output yt+∆. In this
particular example, the output are motion and navigational
commands.

Formally, we denote the transformation using the following:

yt+∆ = f (ut,φt). (1)

Note that the output is generated at time t+∆, where ∆ is
a random variable corresponding to the time needed for the
transformation. We refer to ∆ as the capture-to-output delay.

If the function f is complex, the delay ∆ might be large, thus
increasing the reaction time of the UAV to input stimuli and
possibly degrading mission performance. Moreover, compute
intense transformations may require a large amount of energy E
to be completed. Our objective, thus, is to to use infrastructure-
assistance to reduce as much as possible ∆, while also minimize
energy consumption.

In the edge-based pipeline, the capture-to-output time, ∆,
is a function of many variables describing the environment.
Let’s decompose the delay of the edge-based pipeline ∆e as
follows:

∆e = ∆e
data + ∆e

computing + ∆e
output, (2)

where ∆e
data, ∆e

computing, and ∆e
output are the delay to

transport the data to the edge server, the processing time at

the edge server and the time to transport the output back to
the UAV, respectively.

Intuitively, the components associated with the wireless trans-
fer of data, i.e., ∆e

data and ∆e
output, are a function of the used

technology (e.g., LTE and Wi-Fi) channel characteristics (UAV-
base station distance, fading and shadowing), and network load.
The processing component of the delay, that is, ∆e

computing,
is highly dependent on the server load. Importantly, channel
gain, and network and server load are highly variable, and have
complex spatio-temporal distributions that play an important
role in building information autonomy.

A. Need for Information Autonomy

To study the dynamics of Edge-assisted UAV applications,
we used an integrated UAV-network simulator – FlyNetsim [6]
which allows the application developers to experiment with
simulated UAVs, wireless network(s), and edge server. The
UAVs receive control messages over widely used MAVLink [7]
protocol and exchange telemetry information for specific
computation tasks and closed-loop controls. Different from
other integrated UAV-network simulators, FlyNetSim is capable
of supporting a wide range of application scenarios in terms
of UAV controls, e.g., multi-UAV swarms, transporting data
streams and telemetry-based controls; also it can emulate a
range of network conditions, including multiple heterogeneous
networks, device-to-device ad-hoc communications, different
types of mobility models and also multipath and multi-hop
communications. FlyNetSim simulator also is more efficient
compared to others in terms of scalability and computational
resource usage and hence, can support the complex tasks of
information autonomy framework. Using this simulator, we
simulate the real-world network conditions with varying load
and mobility to reinforce our conjecture about the variability
in response time of the system.

In Figure 4 we provide temporal traces generated using
FlyNetSim [6]. The traces show ∆data over time in our object
detection setup, where the UAV transfers a picture to the edge
server using Wi-Fi as a function of the number of competing
wireless nodes and their transmission rates. It can be observed
that as the traffic generated by each node increases (see Figure
3a), not only the average delay increases, but the temporal
variations across subsequent frames become more apparent.
This is due to the complex interactions between the streams
induced by the transmission and transport layer protocols,
which manifest especially as the sum traffic approaches the
maximum link capacity. Similarly, if we increase the number
of competing nodes (see Figure 3b), we will reach a point in
which packet failures or timeouts will induce large variations.
The bottom plot (see Figure 3c) in the picture shows the abrupt
variations in the delay ∆data induced by random motion of the
UAV when adaptive rate is used. Importantly, the underlying
conditions, channel gain, number of nodes, task load, vary
over time and space, presenting different trends for different
context.

From the considerations, it is clear that offloading may not
be consistently beneficial, at least from the point of view of

Fig. 4: Frame delay w.r.t. varying network loads & mobility.

capture-to-output delay. Moreover, the dynamics of capture-
to-output delay highly depend on the characteristics of the
surrounding environment. A simple reasoning and modeling
on the key factors – network rate and server load – can be
found in our recent paper [8].

Related Work: Information Autonomy problem presented in
this paper is a form of Multi-Criteria Decision Making (MCDM)
problem [9]. The configuration space for the Information Au-
tonomy consists of multiple parameters that control the wireless
performance, processor efficiency, energy consumption, and
response time of the application with the goal of maximizing
the mission time. Existing self-adaptation approaches such as
Model At Run-time [10], [11] and control theory methods [12]
can be applied to achieve information autonomy for Edge-
assisted UAV systems. However, such approaches are not
optimal and may have to be carefully tuned to reduce ”capture-
to-control” delay.

IV. INFORMATION AUTONOMY

Our simulation results in Section III-A show that a predefined
offloading strategy would fail to harness the performance boost
granted by infrastructure-assistance, or would possibly even
degrade mission performance. We contend that due to the
complexity of the involved dynamics, UAVs will need to
implement a form of autonomy encompassing this relevant
aspect of the system. We refer to this component of autonomy
as information autonomy. Recall that the mission of information
autonomy is to minimize the capture-to-output time ∆ by
selecting the best processing pipeline, either local or distributed
over the infrastructure. As illustrated in Fig. 1, the UAV may
have multiple options in terms of network and edge server.

Structurally, the pipeline to realize information autonomy is
analogous to that shown in Fig. 3. However, the modules need
to be specialized to the rather difficult problem of managing
information in the composite UAV-infrastructure system.

A. Profiling

In most autonomous systems, this part of the pipeline is
composed of sensors directly collecting signals from the envi-
ronment. In the context of information autonomy, the Profiling
module is assigned the difficult task of extracting information,
a signal, from the infrastructure enabling the estimation and/or
prediction of the state of entire communication-processing
sections of the infrastructure. We identify two main strategies,
which we refer to as inquiry and probing.

Inquiry: The sensing module sends direct inquiries to the
infrastructure. For instance, the module can obtain from the
network the expected transmission rate, and the number of
current tasks – being executed or queued – from the edge
server. This method presents two main disadvantages. First,
the infrastructure would need to implement protocols to accept
requests and compose replies. Additionally, in many network
technologies the use of a channel would induce complex
interactions with other active data streams, altering the available
resource.

Probing: A simpler and possibly effective option is to introduce
forms of probing, where the sensing module would “test”
available pipelines by issuing tasks over the resource. Probing
does not require any modification to the infrastructure, but
incurs a drawback: the probe will use network and server
resources, and for this reason probe size has to be finely tuned.
This approach allows an objective observation of the state
of the pipelines, but imposes a considerable burden to the
infrastructure.1

A possible strategy to reduce the burden on the system is
to reduce the size or frequency of the tasks sent within the
probes. However, a reduced size or frequency of the probes
may reduce the amount of information gathered on the state
of the pipeline, as a small probe may “traverse” the system
unaltered, whereas a full task may induce complex effects.

B. Analysis

The Analysis module transforms the output of the Profiling
module – for instance a vector of delays obtained using probes
– into features of the sensed pipeline state. Intuitively, as the
objective of information autonomy is to select the best pipeline,
the features should allow prediction of future performance of
available pipelines. Taking as example the traces shown in
Section III-A, the Analysis module could attempt to predict
future delays or extract properties of their distribution to inform
pipeline selection.

A major problem in this part of the information autonomy
is the temporal scale of analysis and prediction. The module

1 Note that if the full task is sent over multiple – independent – pipelines,
the UAV can use the output generated in the smallest time, thus reducing the
impact of unexpected variations through diversity.

could extract a long-term state of the pipeline, corresponding
for instance to the number of active nodes and their traffic in
our illustrative example. Tracking such state would roughly
correspond to mapping samples to a long-term distribution
of end-to-end delays, and characterizing their components to
plan the appropriate action. Alternatively, the module could
maintain a running predictor, continuously predicting future
delays from a set of samples. This latter approach allows faster
reaction to the variations that exist within the logical states,
thus possibly achieving better performance compared to the
former approach.

C. Control

The Control module transforms the features produced by
the Analysis module into decisions. In this context, decisions
control the activation/deactivation of pipelines, as well as
probing strategies. For instance, a perceived degradation in the
performance of the currently used pipeline, the Control module
could activate probing over available pipelines. Minimizing
∆, the capture-to-control delay requires continuous tuning of
system parameters, such as sampling frequency, offloading
strategy and analysis functions. Note that multiple pipelines
could be kept active during transitions to avoid mission
interruptions.

V. ARCHITECTURE

In developing a solution for Information Autonomy for UAV
systems, we use the well-known Monitoring-Analysis-Plan-
Execution-Knowledge (MAPE-K) [13] architecture, and tailor
our framework (see Figure 5) to circumvent, at least in part,
the run-time uncertainties as described in the previous sections.

Consider an autonomous system with sensors si producing
the data point (tj , yi(tj)), tuple corresponding to the value read
at time tj . In order to combine such information in complex
data types we introduce the notion of Virtual Sensors (VS),
where the n − th VS is represented by a sequence VSδn =
{r1, ..., rk} of one or more readings from sensors {si}i=1,...,m.
The parameter δ is the time interval between new sequences
are produced. Every sequence is the concatenation of several
sub-sequences corresponding to data from the same sensor.
One important challenge is to use algorithms that combine
these multimodal data, merging data produced at different
time instants. Note that from this mapping we can determine
the minimum update frequency of sensors {si}i=1,...,m, and
optimize energy consumption.

When a new sequence is produced by V Sδn, it is encapsulated
in a Data Block (DB) that includes some metadata, e.g., type,
before submitting it to central Buffer (B), implemented as a
priority queue, with priority function P . The highest priority
information in the buffer is then redirected to the next stage
using policy F , that consists of a map associating every DB
of type τ to the function fa(·), and then, a) triggers a State
update X(t) → X(t′) of the device and b) enriches the DB
with a selection of state variables χ(t′) ⊆ X(t′) as it appears
at time t′.

Fig. 5: Graphical representation of the proposed framework
and its control flow

We model the data analysis operations as a concatenation
of functions fa ◦ f◦... ◦ fz(·), after each of which a DB is
submitted to the buffer B and the priority of such pipeline is
re-evaluated. Since the state is explicitly part of the input DB,
and all the state changes are applied when a DB is redirected
after passing through the buffer, each function is by design
isolated and stateless, can be easily offloaded to other devices.
These functions are part of the Modules, that include even other
pre-control functionalities, such as outgoing communications.

A control mechanism follows the data analysis and allows
us to plan (as in MAPE) an action to modify the current state
towards the desired one. This can consist in steering the drone
in a direction or change one of the control parameters, such
as the frame rate. The execution module follows, allowing us
to implement the change, interacting with drivers of physical
components or applying the execution required.

Let’s now observe the behaviour of the listed components in a
simple scenario involving one UAV and an edge server running
the same software architecture. Consider a V S1

0.1 = [r0, r1, r2],
producing a new sample every 0.1s, containing three readings,
where r0 is a frame and r1, r2 are the most recent data points
available from accelerometer and gyroscope. First a Data Block
is produced by the virtual sensor and enqueued into the buffer
B. When it is served, function fa is applied, producing a new
DB containing the same frame rotated to straighten the horizon.
The produced DB is again enqueued in B and ready to be
redirected to a pedestrian detection function. Suppose the link
with the edge is fairly strong, and therefore the mapping rule F
calls an offloading function, that sends the DB to a connected
edge server. Now the DB is received at the ES, where the
same architecture is running. A virtual sensor is listening for
incoming DBs, and when receives the data, it enqueues the
DB in the local buffer. Thereafter the DB is redirected using
the map FE , that is computed taking into account the edge
characteristics and state. The result is then forwarded to the
communication module again, now sending to the UAV the
resulting DB containing the estimated position of the object
to track. The DB is now concatenated with some mission
parameters, before being forwarded to the control module. In
this case we use the state information attached to decide if
the detected object must be tracked or avoided. Finally, the
Execute module converts the control DB into an actionable

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8
C

a
p

tu
re

-t
o

-A
c
ti
o

n

D

e
la

y
 (

s
)

 Local (UAV) Offload (EDGE)

0 50 100 150 200 250 300 350 400 450

Time (s)

0

5

10

E
x
te

rn
a

l
D

a
ta

T
ra

ff
ic

 (
M

b
p

s
)

Fig. 6: Temporal variation of frame capture-to-action delay
based on instantaneous offloading decisions w.r.t. variations in
external traffic load.

packet that is sent to the motor’s driver changing the rotors’
speed and performing the required maneuvers.

VI. PRELIMINARY RESULTS

We experimented with an application scenario where a UAV
captures video for object detection based on which it performs
control action to follow a target object. The object detection is
done by Haar-cascade classifier which can be computed either
by the on-board computer or by the edge server depending on
the resource availability. Using a preliminary version of the
system described in Section V, and data collected during field
experiments, we have been able to observe the adaptation of
the system to a competing traffic scenarios.

We also use FlyNetSim [14] software simulator to simulate a
network with five nodes: a UAV and an Edge Server, and other
three nodes competing for the same WiFi channel. Fig. 6 shows
the effect of the interfering traffic on the capture-to-action delay,
the time interval between when the production of the frame at
the virtual sensor, and the beginning of the execution of the
maneuver. In this case our goal is to increase the performance,
i.e. minimizing the end-to-end delay ∆. We accomplish this
through a simple policy that uses the same object detection
algorithm both at the UAV and the ES, selecting for each
frame the first control result that reached the executor. It can
be observed that in this case, given the deterministic nature of
the local processing, the resulting end to end delay of UAV is
always around 0.6s, bounding the worst case, and guaranteeing
increase in performance.

We can observe important variations and complex behaviours
of the resulting capture-to-control delay. For example, notice
the effect of the preceding high traffic over the capture to
control delay after t = 200s, even though the competing
nodes are using low amount of communication resources
between [200, 250]s. These preliminary results justify how
in highly dynamic environments show complex behaviors due
to intricacies in system protocols and their variability and
hence, an autonomous system must implement some form of
information autonomy to handle information-related tasks.

In our ongoing work, we are developing object detection and
RF localization applications using the ”Information Autonomy”
architecture presented in this paper to validate the effectiveness
of our framework further.

VII. CONCLUSIONS

In this paper, we have addressed the challenges of edge
assisted autonomous systems in dynamic environment scenarios
and proposed a distributed framework for information autonomy
to accomplish the mission overcoming the constraints. The
preliminary version of the framework is demonstrated with an
object detection based UAV mission, and preliminary results
from the implementation exhibit the importance of autonomous
decisions to achieve the goal for the mission-critical application.
In our future work, the framework will be extended with
more parameters for a fine-grained response of the information
autonomy system and optimization of the resource usage.

REFERENCES

[1] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[2] J. Dick, C. Phillips, S. H. Mortazavi, and E. de Lara, “High speed object
tracking using edge computing,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM, 2017, p. 26.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[4] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2831347.2831354

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” arXiv preprint arXiv:1702.05309, 2017.

[6] S. Baidya, Z. Shaikh, and M. Levorato, “FlyNetSim: An Open Source
Synchronized UAV Network Simulator based on ns-3 and Ardupilot,”
in Proceedings of the 21st ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems. ACM, 2018,
pp. 37–45.

[7] L. Meier, J. Camacho, B. Godbolt, J. Goppert, L. Heng, M. Lizarraga
et al., “Mavlink: Micro Air Vehicle Communication Protocol,” Online].
Tillgänglig: http://qgroundcontrol. org/mavlink/start.[Hämtad 2014-05-
22], 2013.

[8] D. Callegaro and M. Levorato, “Optimal computation offloading in
Edge-Assisted UAV systems,” in 2018 IEEE Global Communications
Conference: Selected Areas in Communications: Tactile Internet (Globe-
com2018 SAC TI), Abu Dhabi, United Arab Emirates, Dec. 2018.

[9] S. Greco, J. Figueira, and M. Ehrgott, Multiple criteria decision analysis.
Springer, 2016.

[10] D. Weyns, M. U. Iftikhar, D. Hughes, and N. Matthys, “Applying
architecture-based adaptation to automate the management of internet-
of-things,” in Software Architecture - 12th European Conference
on Software Architecture, ECSA 2018, Madrid, Spain, September
24-28, 2018, Proceedings, 2018, pp. 49–67. [Online]. Available:
https://doi.org/10.1007/978-3-030-00761-4\ 4

[11] L. Garcia Paucar and N. Bencomo, “Runtime models based on dynamic
decision networks: enhancing the decision-making in the domain of
ambient assisted living applications,” in MRT 2016 - Models@run.time,
ser. CEUR workshop proceedings, S. Götz, N. Bencomo, K. Bellman,
and G. Blair, Eds. CEUR-WS.org, 11 2016, pp. 9–17.

[12] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,” IEEE
Transactions on Software Engineering, vol. 44, no. 8, pp. 784–810, Aug
2018.

[13] A. Computing et al., “An architectural blueprint for autonomic computing,”
IBM White Paper, vol. 31, pp. 1–6, 2006.

[14] S. Baidya, Z. Shaikh, and M. Levorato, “Flynetsim: Flying and network-
ing simulator,” https://github.com/saburhb/FlyNetSim, 2018.

