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Intelligent Edge: Leveraging Deep Imitation
Learning for Mobile Edge Computation Offloading

Shuai Yu, Xu Chen, Lei Yang, Di Wu, Mehdi Bennis, Junshan Zhang

Abstract—In this work, we propose a new deep imitation
learning (DIL) driven edge-cloud computation offloading frame-
work for multi-access edge computing (MEC) networks. A key
objective for the framework is to minimize the offloading cost
in time-varying network environments through optimal behav-
ioral cloning. Specifically, we first introduce our computation
offloading model for MEC in detail. Then, we make fine-grained
offloading decisions for a mobile device, and the problem is
formulated as a multi-label classification problem, with local
execution cost and remote network resource usage consideration.
To minimize the offloading cost, we train our decision making
engine by leveraging the deep imitation learning method, and
further evaluate its performance through an extensive numerical
study. Simulation results show that our proposal outperforms
other benchmark policies in offloading accuracy and offloading
cost reduction. At last, we discuss the directions and advantages
for applying deep learning methods to multiple MEC research
areas, including edge data analytic, dynamic resource allocation,
security and privacy, respectively.

I. INTRODUCTION

With the development of emerging mobile applications

(e.g., augmented reality, 3D gaming, and various Internet of

things (IoT) applications), more and more mobile applications

become resource-thirsty and delay-sensitive. To this end, the

European Telecommunications Standards Institute (ETSI) pro-

vided a concept of multi-access edge computing (MEC) in

their 5G standard [1]. In the MEC architecture, distributed

MEC servers are located at the network edge to provide cloud-

computing capabilities and IT services with low latency, high

bandwidth, and real-time processing. The edge servers can be

connected to remote cloud through backhaul links to leverage

the resourceful computation capacities and IT services of the

remote cloud. By the use of the collaborative edge-cloud

computation offloading between mobile users and servers,

mobile users’ communication overhead and execution delay

can be significantly reduced.

Nevertheless, mobile devices usually fail to make the most

appropriate fine-grained offloading decisions in real-time, es-

pecially in the time-varying and uncertain MEC environments.

On one hand, the wireless and backhaul links between the

mobile devices and edge-cloud servers are time-varying and

uncertain. On the other hand, the MEC server offers only
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limited radio, storage and computational resources, especially

in hot-spot areas.

To this end, a new research area, called intelligent edge

learning emerges [2], [3], which refers to the deployment

of machine learning algorithms at the network edge. One

of the key motivation of pushing machine learning towards

the edge is to allow rapid access to the enormous real-time

data generated by the mobile users for fast training, and fast

respond to real-time offloading requirements.

Recently, deep imitation learning (DIL) [4], which is the

problem of training robotic skills from human demonstration,

has attracted the attention of researchers in the field of robotics

(e.g., autonomous driving, gesturing and manipulation). Com-

pared with traditional machine learning-based offloading meth-

ods, deep imitation learning carries four advantages: i) better

performance with large data scale, ii) noteworthy accuracy

in decision making, iii) fast inference speed, and iv) easy

and quick to deploy. Thus, it makes sense to deploy a novel

deep imitation learning-based offloading schedule to the MEC-

empowered 5G networks.

In this article, we study the issue of making rapid offloading

decision for a single mobile device in MEC network envi-

ronments. Our objective is to minimize the offloading cost

in a time-varying network environment, subject to network

resource constraints. To this end, we propose an intelligent

edge computation offloading framework to make fine-grained

offloading decisions for the mobile device in the MEC net-

work. The offloading decisions made by the mobile device

comprehensively consider both of the execution cost at mobile

device side and time-varying network conditions (including

available communication and computation resources, wired

and wireless channel conditions) at MEC side.

In summary, the contributions of this paper are summarised

as follows: Based on the behavioral cloning [4], which per-

forms supervised learning from the observation to demonstra-

tions (i.e., the optimal offloading decisions in this article),

we design a deep imitation learning-based offloading model

for the intelligent framework. Our model is first trained from

learning demonstrations in an offline manner. After a quick

and easy deployment, our model can make near-optimal online

offloading decisions with a very fast inference speed. We

discuss potential directions and advantages for applying deep

learning into multiple MEC research areas.

The rest of this article is organized as follows. We first

introduce the related works in Section II. In Section III, we

present our computation offloading model. Then, we formulate

the optimization problem in Section IV, and describe the

deep imitation learning based offloading model in Section V.
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Simulation results are shown in Section VI. We further discuss

directions and advantages of deep learning for MEC in Section

VII. Finally, we conclude the article in Section VIII.

II. RELATED WORK

In this section, we will first survey the traditional compu-

tation offloading strategies. Then, we will review the state-of-

the-art machine learning-based computation offloading strate-

gies. Last but not least, we will introduce the deep imitation

learning. The related works are summarized in Table. I.

A. Traditional Computation Offloading Strategies

From the perspective of a mobile user in the MEC network,

it needs to decide whether and where to offload its computa-

tional tasks to enhance its quality of service (QoS). However,

in practical edge network environments, the decision making

problem is sophisticated because the network environments are

randomly uncertain and time varying. Tradition optimization

approaches (e.g., game theory [5], Lyapunov optimization [6])

for making computation offloading decisions in the edge com-

puting environments has been widely studied. For example,

Chen et al. in [5] study the computation offloading problem

in multi-user MEC environments. They prove that it is NP-hard

to obtain a centralized optimal solution, and propose a game

theoretic approach to achieve optimal offloading decisions in a

distributed manner. Authors in [6] investigate the computation

offloading issue for energy harvesting (EH) devices in MEC

environments. They exploit Lyapunov optimization to jointly

minimize the execution latency and task failure for EH devices.

The main drawback of traditional computation offloading

strategies are their high algorithm complexity, especially in the

multi-user multi-server edge computing environments. Thus,

it is hard to deploy the strategies to practical edge network

environments.

B. Reinforcement Learning-based Computation Offloading S-
trategies

Reinforcement learning (RL) can solve the problem that

how a decision engine to choose the optimal action through

interacting with outside environments. The main objective of

RL is to choose an action for each state of the system, in order

to maximize the long term (delayed) cost. Thus, RL is suitable

for the decision making problem of computation offloading

in a stochastic and dynamic edge computing network. For

example, Dinh et al. in [7] studied the computation offloading

problem in time-varying MEC environments. They consider

a multi-user multi-MEC-server environments and propose a

model-free reinforcement learning (RL) offloading scheme.

The objective is to make mobile users to learn their long-

term offloading decisions to minimize their long-term cost.

Authors in [8] proposed a Markov decision process (MDP)-

based dynamic offloading framework in a single-user inter-

mittently connected cloudlet network. Through value iteration

algorithm, their decision engine can obtain an optimal policy to

minimize the long term offloading costs (i.e., computation and

communication costs). The main advantage of RL is that it can

TABLE I
MACHINE LEARNING-BASED COMPUTATION OFFLOADING METHODS

Methods
Related
works

Advantages Disadvantages

Traditional [5], [6]
Performance

guarantee
High complexity

Reinforcement
learning

[7], [8] Model free
Curse of

dimensionality
Deep

reinforcement
learning

[9]
Suitable for

dynamic
environments

Long online
training time

Deep imitation
learning

Our
work

Quick and easy
to deploy, fast

online inference
speed

Require a large
number of offline

demonstrations

learn without a priori knowledge (i.e., the model-free feature).

However, with the increase of the number of system and

action states, the computational complexity of RL will grow

rapidly (i.e., the curse of dimensionality problem). Besides,

the performance of such offloading framework heavily relies

on the hand-crafted features (e.g., the pre-calculated transition

probability of MDP).

Recently, researchers’ attention has turned to the deep

reinforcement learning (DRL). Deep reinforcement learning,

which combines traditional reinforcement learning and deep

learning, is an emerging machine learning research. DRL

is based on representation learning to automatically extract

features from massive raw data, and can be regarded as an

ideal tool to predict computation offloading decisions. For ex-

ample, authors in [9] jointly optimize networking, caching, and

computing resources for vehicular network. Due to the high

complexity of the joint optimization problem, they propose a

deep reinforcement learning method to solve the problem. The

main advantage of deep reinforcement learning for computa-

tion offloading relates to its online training manner, which

is suitable in dynamic network environment. However, the

corresponding training time is very long.

C. Deep Imitation Learning

Deep imitation learning is an efficient approach to teach

intelligent agents skills through learning demonstrations. Au-

thors in [4] consider a virtual reality (VR) scenario to teach a

PR2 robot to learn policies from robotic manipulation demon-

strations. They show that high-quality robotic manipulation

demonstrations plays a key role in DIL. The advantages of

DIL relate to its offline training and online decision making

manner. Thus, trained model can be deployed easily and

quickly. However, the main limitation is that the training phase

of DIL heavily relies on a large number of demonstrations, and

it is hard to collect the demonstrations.

In this work, we propose a deep imitation learning-based

computation offloading strategy for edge computing networks.

We first generate high-quality demonstrations (i.e., the optimal

offloading actions) and train our model in an offline manner.

Then, after a quick and easy deployment, our model can make

near-optimal online offloading decisions with a very fast online

inference speed.

Note that DIL is a traditional supervised learning approach,

its training and evaluation operate in the same domain. If we
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want to apply a trained model to a new domain, we can i)

retrain the model, or ii) take advantage of transfer learning

(TL) [10]. Transfer learning is ability of a system to recognize

and apply knowledge and skills learned in previous domain-

s/tasks to novel domains/tasks. TL allows us to deal with

variational environments by leveraging the already existing

labeled data of some related task or domain. In practical edge

computing scenarios, we can combine DIL and TL to deal with

more complex tasks (e.g., finding optimal resource allocation

schemes) that are based on already trained models.

III. COMPUTATION OFFLOADING MODEL

We study the computation offloading for a single mobile

device in a small cell-based MEC system.Note that the small

cell-based MEC system consists of i) mobile devices, ii)

MEC server (also called Small Cell cloud-enhanced e-Node

B (SCceNB)), and iii) remote cloud. Thus, the mobile device

can i) execute its computational tasks locally, ii) offload its

tasks to the SCceNB through wireless link, or iii) offload its

tasks to the remote cloud through wireless and backhaul links.

A. Application Model

We model a mobile application A as a weighted directed

graph A = (T ,D), where T represents the sub-tasks, and D
the data dependencies (i.e., input and output data) between

the sub-tasks. Then, we split the application into multiple

sub-tasks by the fine-grained partitioning. Note that each

sub-task of the application can be offloaded and executed

independently.

We adopt a parameter tuple 〈t, ξt, dt−1,t, dt,t+1〉 to charac-

terize the mobile application A for the mobile device, where t
is the current sub-task, ξt (t ∈ T ) represents the workload of

sub-task t. dt−1,t and dt,t+1 denote the size of input and output

data for sub-task t, respectively. Let ρt (in CPU cycles/byte),

denotes the complexity of sub-task t. It denotes the required

cpu cycles a CPU core will perform per byte for the input

data processed by the sub-task t. Thus, ξt can be given as

ξt = ρt · dt−1,t. Note that ξt is decided by the nature (e.g.,

algorithm complexity) of the sub-task t.

B. Execution Model

The mobile device can process the mobile application A
locally. According to the application parameter tuple, the task

execution time for mobile device to execute sub-task t locally

is decided by the computation capacity of the mobile device

(in million instructions per second).

For the edge execution, the mobile device can establish a

cellular link with the SCceNB, and offload its own sub-tasks

to the SCceNB via the radio access network (RAN). Based on

the assumptions above, the delay for sub-task input and output

data transfer through cellular transmission is determined by the

data size of data exchange between sub-tasks and the cellular

data rates. In addition, the edge execution time (i.e., for the

SCceNB to execute sub-task t) is determined by the total

computing resource of the available CPU cores.

For the remote cloud execution, the end-to-end (E2E) la-

tency is decided by the RAN and core network as well as

the backhaul between them. In this article, we consider that

the E2E delay consists of wireless and wired delays. Let W
denotes the wired delay between the SCceNB and the remote

cloud. Note that the delay consists of: i) the backhaul delay

between SCceNB and the core network, ii) the processing

delay of the core network, and iii) the communication delay

for data transmission between the core network and remote

cloud/Internet.

IV. PROBLEM FORMULATION

A. Decision Making Procedure

When the mobile device receives offloading requirement of

application A, it first sends a message on the data size D
of the sub-tasks for the application. The report also includes

the current wireless channel state (e.g., the channel quality

between the mobile device and SCceNB).

After receiving the message, the SCceNB allocates m
subcarriers (m ∈ M) and n cpu cores (n ∈ N ) to each sub-

tasks for the mobile device, according to the entire available

computation and communication resources and the received

message. Thus, the current system state of computation of-

floading can be denoted by S = (T ,D,N ,M,W), which

consists of mobile device’s task profiles, network resource

status as well as the wired delay status.

According to the observed system state S, the mobile device

calculates the immediate costs of local-edge-cloud executions

for each sub-task, makes action decisions of either processing

the sub-task locally, or offloading to the edge-cloud side for

the current mobile application A.

B. Computation Offloading Optimization Problem

The system state of the MEC network is given as S. Assume

that the action space for computation offloading optimization

is I = {It ∈ {0, 1, 2}, t ∈ T }, indicating that the mobile

device can execute a sub-task t locally (It = 0), offload the

sub-task to SCceNB (It = 1) or to the remote cloud server

(It = 2). Under current system state S, E(S, It) denotes

the execution cost of sub-task t, which is i) the immediate

local execution cost, if sub-task t is executed locally, ii) the

immediate edge offloading costs if the sub-task is executed at

the SCceNB, or iii) the immediate cloud offloading costs if the

sub-task is executed at the remote cloud server. Apparently,

the edge offloading cost consists of radio and computation

resource usage cost, the SCceNB computation cost (i.e., task

execution time) and the data transmission cost (i.e., transmis-

sion delay) for offloading. The cloud offloading cost consists

of radio and wired resource usage cost, the remote cloud

server computation cost (i.e., task execution time) and the

data transmission cost (i.e., transmission delay) for offloading.

Then the objective of computation offloading optimization

problem is to obtain a near-optimal offloading policy β∗ that

can minimize the offloading cost given by
∑

t∈T E(S, It).
Note that the offloading cost is the sum costs for the sub-tasks

of mobile application A, which is not provided immediately.

We can obtain the long-term cost until all the sub-tasks have

been processed.
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Fig. 1. Proposed deep imitation learning-based offloading model.

V. DEEP IMITATION LEARNING FOR COMPUTATION

OFFLOADING

The optimization problem that minimize the offloading cost

is a combinatorial optimization problem. Thus, it is impossible

to achieve the optimal solution in real-time by using standard

optimization methods. Another possible approach is to utilize

the reinforcement learning scheme. Nevertheless, since the

action space is defined over the combination of the execution

selections for multiple sub-tasks, it suffers from the curse of

dimensionality and hence converges very slowly in practical

implementation.

To address these challenges, we explore a novel scheme

of autonomous computation offloading decision by leverag-

ing deep imitation learning. Intuitively, we first obtain the

demonstrations (i.e., the optimal decision samples) by solving

the computation offloading optimization problem in an offline

manner. Then, using these demonstrations, we train a deep

imitation learning model for imitating the optimal decision

patterns and generate efficient online computation offloading

decisions in real-time.

A. Deep Multi-label Classification Model for Computation
Offloading

As shown in Fig.1, the optimization problem can be for-

mulated as a multi-label classification [11] problem. Assume

that the mobile application A consists of T subtasks. The

input layer of our training model consists of the observation

of the application features and network states. Our offloading

decision in the output layer is a T -dimensional vector for the

application. If a sub-task is offloaded, its value is 2 (cloud) or

1 (edge), otherwise local. We define the multi-label offloading

accuracy as the proportion of the predicted correct labels to the

total number of labels. Through the accuracy, we can evaluate

the output (i.e., predicted offloading actions) with respect to

the optimal offloading actions.

Fig. 2 illustrates the flowchart of our model. It consists of

three phases, i.e. Offline Demonstration Generation, Offline

Model Training, and Online Decision Making. In the follow-

ing, we describe these phases.

1) Offline Demonstration Generation: Based on the be-

havioral cloning [4], imitation learning performs supervised

learning through imitating the demonstrations (i.e., optimal

offloading action). Thus, the objective of this phase is to

generate demonstrations to train our deep imitation learning

framework. We acquire a large number of decision samples by

leveraging the offline optimization scheme for solving the op-

timization problem. In general, when the decision space is: i)

small, we can use an exhaustive approach to obtain the optimal

offloading decision by searching the whole action space (there

are 3T possibilities in the space). ii) medium, the problem

can be solved by some mixed integer programming solver

(e.g., CPLEX). iii) huge, we can leverage some approximate

offline algorithms to obtain efficient decision samples. Then,

the network state S as well as its optimal offloading decision

are recorded as raw decision samples to train our framework

in the next phase.

2) Offline Model Training: In this phase, we use the deep

neural network (DNN) to extract and train the features of

training data. We conventionally use the rectified linear unit

(ReLU) as activation function for the hidden layers. Our

offloading model inputs the system state S, and outputs of-

floading decisions It (t = 1, 2, ..., T ). The sigmoid function is

used as the output of our model. Note that it can be formulated

as a multi-label classification problem to maximize the multi-

label (i.e., predicted offloading actions) accuracy. We consider

the cross-entropy loss [12] to measure the performance of

model, and use Adam optimizer [13] to optimize the neural

network. The output layer consists of T neurons that represent

the offloading actions of the T sub-tasks. If a output neuron is

less than 0.5, it denotes local execution, otherwise offloading.
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Fig. 2. Flowchart of the proposed deep imitation learning-based offloading
framework.

3) Online Decision Making: Once the Offline Model Train-

ing phase of the DNN is finished, it can be used to make real-

time computation offloading decisions in an on-line manner.

At this time, the DNN outputs a sequence of offloading

decisions for all sub-tasks of the mobile application. Based

on the outputs, we can evaluate the offloading accuracy and

offloading costs of our deep imitation learning model.

B. Complexity Analysis

Traditionally, using deep imitation learning to train an

AI model is computation-intensive, especially in the Offline

Demonstration Generation and Offline Model Training phases.

Fortunately, it can be done using historical data in an offline

manner. Thus, we can offload the data to the resourceful

remote cloud data-center when the associated computational

overhead is high.

In the Offline Demonstration Generation phase, the com-

plexity for this phase is O(|I|T ), where |I| represents the

size of the action space I, T denotes the number of sub-

tasks for the mobile application. The complexity for the Offline

Model Training phase is only O(T 3Q3), where Q represents

the number of neurons in each hidden layer. After the offline

training, our model can be deployed either on the mobile

side or on the edge server side, in order to make real-time

offloading decisions. In Online Decision Making phase, our

decision model has constant complexity O(1), which is highly

scalable and real-time.

In order to alleviate the tension between resource intensive

DNNs and resource-poor edge server, DNN compression can

reduce the model complexity and resource requirement. Two

typical DNN compression technologies can be used as follows:

i) weight pruning, which can remove redundant weights (i.e.,

connections between neurons) from a trained DNN, and ii)

data quantization, which can reduce the computation overhead

by using a more compact format to represent layer inputs,

weights, or both.
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Fig. 3. Comparison of offloading decision accuracy.

VI. PROOF-OF-CONCEPT PERFORMANCE EVALUATION

A. Simulation Setting

In order to evaluate the performance of our deep imita-

tion learning-based offloading scheme, we consider a MEC

network consists of a mobile device and a MEC server.

The number of CPU cores for the SCceNB is set to be

16 (i.e., M = 16). For the edge network, we consider

the Rayleigh-fading environment, and the total bandwidth is

divided into 256 subcarriers (i.e., N = 256). The wired

(backhaul) delay between the SCceNB and the remote cloud

is W ∈ [0.01, 0.02]s. For the mobile application, it usually

consists of a few sub-tasks to dozens of sub-tasks in reality. In

this article, the mobile application consists of 6 sub-tasks (i.e.,

T = 6). The data dependencies and the workload for the sub-

tasks follow the uniform distribution, similar to [14]. Note that

the random variables for different sub-tasks are independent.

In Offline Demonstration Generation phase, we use MAT-

LAB to generate 100,000 demonstrations, which means that

the mobile application is executed 100,000 times independent-

ly under various network environments. At the same time,

the sample of optimal offloading scheme can be obtained in

this phase. In Online Decision Making phase, we evaluate

the performance of our deep imitation learning-based offload-

ing scheme (DIOS) by leveraging the Jupyter notebook. We

consider the following eight benchmark schemes from the

literature:

• Optimal Offloading Scheme (OOS): Optimal offloading

scheme, which means that we search the whole action

space exhaustively to find the optimal offloading scheme.

• Local Offloading Scheme (LOS): The mobile application

is executed on the mobile device locally. Thus the of-

floading decision variables are It = 0, (t = 1, 2, ..., T ).
• Deep Reinforcement learning-based Offloading Scheme

(DROS): Computation offloading scheme that is based

on the deep reinforcement learning method [9].

• Greedy algorithm-based Offloading Scheme (GOS): The

mobile device chooses offloading actions through greedy

algorithm, which means that the mobile device chooses

the sub-action that can maximize the offloading cost in

each sub-task execution step.

• Random Offloading Scheme (ROS): The offloading deci-

sions are generated randomly.

• Shallow learning-based Offloading Scheme (SOS): The
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number of hidden layer is set to be 1.

• Edge Offloading Scheme (EOS): Coarse offloading strate-

gies, the entire mobile application is offloaded to the

MEC server side.

• Cloud Offloading Scheme (COS): Coarse offloading s-

trategies, the entire mobile application is offloaded to the

remote cloud side.

B. Evaluation Results

Simulation results of our DIOS method are shown in Figs.

3 to 5.

Figs. 3 and 4 report the offloading accuracy and corre-

sponding offloading cost of different offloading schemes with

respect to the OOS. Fig. 3 shows that our DIOS outperforms

other offloading schemes in offloading accuracy. At the same

time, DIOS reduces the offloading cost on average by 19.80%,

18.24%, 23.17%, 8.37%, 13.61%, 1.15% and 2.34% compared

to the ROS, GOS, LOS, EOS, COS DROS and SOS schemes

respectively. Note that the EOS (offload computation to the

edge) performs better than COS (offload computation to the

remote cloud) and LOS (local execution). This proofs that the

MEC server can reduce energy cost at mobile terminal side,

as well as the backhaul usage at the remote cloud side.

Fig. 5 shows the task execution time using different of-

floading schemes with respect to the OOS. Note that our

DIOS reduces the execution time by 23.25%, 8.77%, 47.98%,

17.73%, 18.70%, 11.36% and 15.14% compared to the ROS,

GOS, LOS, EOS, COS DROS and SOS schemes respectively.

As a proof of concept, the numerical performance evaluation

results above corroborate the feasibility and promising of the

proposed deep imitation learning driven computation offload-

ing scheme. We are working on exploring other deep neural

network architectures such as Deep Residual Learning [15]

for gaining further performance gain and generalizing the

approach to the challenging multi-MEC multi-user scenario.

VII. FUTURE DIRECTIONS ON INTELLIGENT EDGE

COMPUTING

In the sections above, we focus on the deep learning based

computation offloading approach for MEC system. In this

section, we further introduce the several potential directions

for applying deep learning into multiple intelligent edge com-

puting research areas, including edge data analytic, dynamic

resource allocation, security and privacy, respectively.
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A. Edge Data Analytic

Edge data analytic refers to the analysis of data from the

distributed edge servers in MEC system, and usually goes

along with the internet of things (IoT) applications and data

caching.

1) IoT Application Scenario: Recently, MEC has received

extensive attention in IoT scenario, where inexpensive simple

devices can generate huge volume of raw data for big data

processing. When considering the limited computation and

storage resources of each single edge server, applying tradi-

tional machine learning and AI algorithms (usually compute-

intensive) is inefficient. Thus one huge problem in this scenario

is how to process such big data in real-time. We can apply

deep learning into the MEC, in order to improve the efficiency

of data analyzing and processing. Because deep learning can

extract accurate information from the huge IoT data in such

complex network environments. Compared to the traditional

machine learning methods, deep learning i) outperforms in

processing huge data, since it can precisely learn high-level

features (e.g., faces and voices), ii) extracts new features

automatically for different problems, and iii) takes much less

time to inference information.

2) Data Caching Scenario: Data Caching is one of the key

features of MEC system [1], and usually consists of content

caching and computation caching. Content caching refers to

caching popular contents (e.g., segments of popular movies)

at the edge server in order to avoid re-transmit the same

contents. This approach can significantly reduce the backhaul

traffic and transmission delay. Whereas computation caching

denotes caching parts of popular computation-result data (e.g.,

recognized face) that is likely to be reused by others. This

approach cannot only reduce the re-transmission delay, but

also reduce the re-computation latency. We can apply the deep

supervised learning (DSL) method to the edge servers to ana-

lyze and extract the features of the collected data from mobile

devices. It makes more precise caching placement decisions

than traditional machine learning approaches. Moreover, the

popularity for different data is usually time-varying. Thus, we

need to collect and process large amounts of data to obtain

statistical inference from the data. Thanks to the model-free

feature, we can maximize the long-term cache hit rate through

DSL without knowledge of the data popularity distribution.
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B. Dynamic Resource Allocation

Dynamic resource allocation (DRA) is a key technology

to improve network performance in dynamic environment.

Note that the MEC performance is influenced by a variety of

time-varying factors, such as communication and computation

resources, workloads of mobile users, data caching and power

management policies etc, which is a huge project. Therefore,

there is a strong demand on intelligent edge resource man-

agement to maximize long-term resource utilization. Deep

reinforcement learning has the potential in handling high-

dimension state spaces of complicated control problems, and

could be used to solve the DRA problem for MEC. It makes

edge servers automatically and efficiently negotiate the most

appropriate configuration, directly from the complicated state

space. Moreover, it can explore deep connections in the data,

obtain accurate prediction of resource allocation schemes for

MEC network.

C. Security and Privacy

Recently, the security and privacy issues are posed with

a tough challenge for the development of MEC. Security

is becoming an increasingly important issue in MEC-based

applications. Since edge servers are located at the edge and

physically closer to attackers. MEC systems faces multiple

security threats such as wireless jamming, distributed denial of

service (DoS) attacks and smart attacks. Due to the sophistica-

tion and self-learning capability, deep learning provides more

accurate and faster processing than shallow learning algorithm-

s. It can play a key role in attack detection to deal with the

attacks. Privacy issue is another important threat for the cloud-

based MEC system, where users risk exposing their sensitive

data by sharing it and allowing edge data analytic. Moreover,

MEC can provide location awareness services for cellular-

network based applications, which result in location privacy

and trajectory privacy issues. Deep learning can provide the

privacy protection by transferring sensitive training data into

intermediate data. Such intermediate data in DNN usually have

different semantics compared to the sensitive training data. For

example, as shown in Fig. 1, after extracting the features by

the DNN filter, hackers cannot obtain the original information

from the hidden layer.

VIII. CONCLUSION

In this article, we study the fine-grained computation of-

floading issues for a single mobile device within MEC net-

works, that is, a computation task can be executed on the

mobile device locally, offloaded to edge server, or offloaded to

remote cloud. In particular, we first introduce the application

model and execution model, respectively. Then, we present

our offloading decision making procedure, and formulate

the optimization problem to minimize the overall offloading

cost. After that, we propose a deep imitation learning-based

algorithm to obtain a near-optimal solution rapidly for the

optimization problem. Numerical results confirm that our

proposal achieves an offloading accuracy up to 64.79% and

reduces at most 23.17% offloading cost at the same time. At

last, we discuss the important directions and advantages of

applying the deep learning methods to multiple MEC research

areas.
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