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Abstract

In this paper, we propose Efficient Progressive Neural Architecture Search (EPNAS),

a neural architecture search (NAS) that efficiently handles large search space through a

novel progressive search policy with performance prediction based on REINFORCE [37].

EPNAS is designed to search target networks in parallel, which is more scalable on par-

allel systems such as GPU/TPU clusters. More importantly, EPNAS can be generalized

to architecture search with multiple resource constraints, e.g., model size, compute com-

plexity or intensity, which is crucial for deployment in widespread platforms such as

mobile and cloud. We compare EPNAS against other state-of-the-art (SoTA) network ar-

chitectures (e.g., MobileNetV2 [39]) and efficient NAS algorithms (e.g., ENAS [34], and

PNAS [27]) on image recognition tasks using CIFAR10 and ImageNet. On both datasets,

EPNAS is superior w.r.t. architecture searching speed and recognition accuracy.

1 Introduction
Deep neural networks have demonstrated excellent performance on challenging tasks and

pushed the frontiers of impactful applications such as image recognition [40], image synthe-

sis [22], language translation [46], speech recognition and synthesis [2, 45]. Despite all these

advancements, designing neural networks remains as a laborious task, requiring extensive

domain expertise. Motivated by automating the neural network design while achieving supe-

rior performance, neural architecture search (NAS) has been proposed [4, 27, 32, 35, 52].
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Conventional NAS algorithms are performed with limited search spaces (e.g. small num-

ber of operation type) due to lack of efficiency, which hinders the application of NAS to

various tasks. For example, [52] uses 800 GPUs, and takes 3 days to discover a model on

a small dataset like CIFAR10 [24], which is infeasible to directly search models over larger

datasets such as COCO [25] or ImageNet [11]. Therefore, it is crucial to improve searching

efficiency of NAS to allow larger space of architecture variation, in order to achieve better

model performance or handle multiple objective simultaneously.

Commonly, the efficiency of a NAS algorithm depends on two factors: 1) the number of

models need to be sampled. 2) The time cost of training and evaluating a sampled model. Tar-

geting at the two aspects, recent works [28, 34] have made significant progress. For example,

ENAS [34], DARTS [28] or SNAS [49] try to share the architecture and parameters between

different models trained during searching period, thus reduce the time cost of model train-

ing. However, their models are searched within a large pre-defined graph that need to be fully

loaded into memory, therefore the search space is limited. EAS [9] and PNAS [27] progres-

sively add or morph an operation based on a performance predictor or a policy network, thus

can support larger operation set at search time and significantly reduce the number of models

need to be sampled. This paper further explores the direction of progressive search, aiming

to improve sample efficiency and generality of search space. We call our system efficient

progressive NAS (EPNAS). Specifically, based on the framework of REINFORCE [37], to

reduce necessary number of sampled models, we design a novel set of actions for network

morphing such as group-scaling and removing, additional to the adding or widening opera-

tions as proposed in EAS [9]. It allows us to initiate NAS from a better standing point, e.g. a

large random generated network [48], rather than from scratch as in PNAS or a small network

as in EAS. Secondly, to reduce the model training time, we propose a strategy of aggressive

learning rate scheduling and a general dictionary-based parameter sharing, where a model

can be trained with one fifth of time cost than training it from scratch. Comparing to EAS

or PNAS, as shown in Sec. 4, EPNAS provides 2× to 20× overall searching speedup with

much larger search space, while providing better performance with the popular CIFAR10

datasets. Our model also generalizes well to larger datasets such as ImageNet.

In addition to model accuracy, deep neural networks are deployed in a wider selection

of platforms (e.g., mobile device and cloud) today, which makes resource-aware architecture

design a crucial problem. Recent works such as MNASNet [43] or DPPNet [12] extend

NAS to be device-aware by designing a device-aware reward during the search. In our case,

thanks to the proposed efficient searching strategy, EPNAS can also be easily generalized

to multi-objective NAS which jointly considers computing resource related metrics, such

as the model’s memory requirement, computational complexity, and power consumption.

Specifically, we transform those hard computational constraints to soft-relaxed rewards for

effectively learning the network generator. In our experiments, we demonstrate that EPNAS

is able to perform effectively with various resource constrains which fails random search.

Finally, to better align NAS with the size of datasets, we also supports two search pat-

terns for EPNAS. For handling small dataset, we use an efficient layer-by-layer search that

exhaustively modify all layers of the network. For handling larger dataset like ImageNet,

similar with PNAS, we adopt a module-based search that finds a cell using small dataset

and stack it for generalization. We evaluate EPNAS’s performance for image recognition on

CIFAR10 and its generalization to ImageNet. For CIFAR10, EPNAS achieves 2.79% test

error when compute intensity is greater than 100 FLOPs/byte, and 2.84% test error when

model size is less than 4M parameters. For ImageNet, we achieve 75.2% top-1 accuracy

with 4.2M parameters. In both cases, our results outperform other related NAS algorithms
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such as PNAS [27], and ENAS [33].

2 Related work
Neural architecture search (NAS). NAS has attracted growing interests in recent years

due to its potential advantages over manually-crafted architectures. As summarized by [13],

the core issues lie in three aspects: efficient search strategy, large search space, and integra-

tion of performance estimation. Conventionally, evolutionary algorithms [3, 27, 29, 35, 36,

42] are one set of methods used for automatic NAS. NAS has also been studied in the context

of Bayesian optimization [7, 21], which models the distribution of architectures with Gaus-

sian process. Recently, reinforcement learning [4, 5, 52] with deep networks has emerged as

a more effective method. However, these NAS approaches are computationally expensive,

with relatively small search space w.r.t. single target of model accuracy, e.g., [52] used hun-

dreds of GPUs for delivering a model comparable to human-crafted network on CIFAR10. To

tackle the search cost, network morphism [44] for evolutionary algorithm, and efficient NAS

approaches with parameter sharing such as ENAS [34] are proposed. Specifically, ENAS

employs weight-sharing among child models to eschew training each from scratch until con-

vergence. To handle larger datasets, one-shot NAS such as path selection [6] and operation

selection such as DARTS [28] are also proposed. However, parameter sharing as ENAS and

operation sharing as DARTS search within a pre-defined network graph, which limits the

scaling of search space, e.g., channel size and kernel size cannot be flexibly changed for each

layer in order to reuse the operations or weights. However, larger search space is crucial for
discovering architectures especially when multiple objective or resource constraints are
also considered. Another set of methods for reducing search cost is to progressively adapt a

given architectures such as EAS [9] and PNAS [27]. In each step, one may freely choose to

add an operation from a set, which enables larger searching possibility for networks or a cell

structure. Therefore, we follow this learning strategy and propose a novel progressive search

policy with performance prediction, which brings additional efficiency and can reach higher

accuracy as demonstrated in our experiments.

Resource-constraint NAS. It used to be that most effective approaches for optimizing per-

formance under various resource constraints rely on the creativity of the researchers. Among

many, some notable ones include attention mechanisms [50], depthwise-separable convolu-

tions [10, 18], inverted residuals [39], shuffle features [31, 51], and structured transforms

[41]. There are common approaches that reduce model size or improve inference time as a

post processing stage. For example, sparsity regularization [26], channel pruning [16], con-

nection pruning [15], and weights/activation quantization [20] are common model compres-

sion approaches. Similarly, one may automatically design a resource constraint architecture

through NAS. Most recently, AMC [17] adopts reinforcement learning to design policy of

compression operations. MorphNet [14] proposes to morph an existing network, e.g. ResNet-

101, by changing feature channel or output size based on a specified constraints. DPPNet [12]

or MNASNet [43] propose to directly search a model with resource-aware operations based

on PNAS [28] or NAS [53] framework respectively. In our work, as demonstrated in our

experiments, EPNAS also effectively enables NAS with multiple resource requirements si-

multaneously thanks to our relaxed objective and efficient searching strategy.

3 Efficient progressive NAS with REINFORCE
In this section, for generality, we direct formulate EPNAS with various model constraints, as

one may simply remove the constraints when they are not necessary. Then, we elaborate our
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Figure 1: REINFORCE step for policy gradient. N is the number of parallel policy networks

to adapt a baseline architecture at episode of i.

optimization and proposed architecture transforming policy networks.

As stated in Sec. 1, rather than rebuilding the entire network from scratch, we adopt a

progressive strategy with REINFORCE [37] for more efficient architecture search so that

architectures searched in previous step can be reused in subsequent steps. Similar ideas are

proposed for evolutionary algorithms [27] recently, however, in conjunction with reinforce-

ment learning (RL), our method is more sample efficient. This strategy can also be considered

in the context of Markov Chain Monte Carlo sampling [8] (as the rewards represent a target

distribution and the policy network approximates the conditional probability to be sampled

from), which has been proven to be effective in reducing the sampling variation when dealing

with high dimensional objective, yielding more stable learning of policy networks.

Formally, given an existing network architecture X , a policy network πθ (a|X ) gener-

ates action a that progressively change X from our search space S , w.r.t. multiple resource

constraints objective:

maxX∈S P(X|D)

s.t. 1(Ui(X ) ∈ [Cli,Cui]), ∀i ∈ {1, . . . ,K}, (1)

where P(X|D) is the performance of X under dataset D. 1() is an indicator function, and

Ui(X ) is the ith resource usage of the network, Cli and Cui are the corresponding constraint,

indicating the lower bound and upper bound for resource usage. Next, we show how to

optimize the objective with policy gradient for progressive architecture generation.

3.1 Policy Gradient with Resource-aware Reward

Given the objective in Eqn. (1), we optimize it following the procedure to train a policy

network πθ (·) using policy gradient [37], by taking the reward r(X ) as Lagrange function

of Eqn. (1). We depict the optimization procedure in Fig. 1, where the policy networks are

distributed to N branches. For a branch n, at episode e, we manipulate the network from

an initial network X0,n, and at step t, the policy network generates the action at,n, which

transforms the network Xt,n to Xt+1,n that is evaluated using the reward. We adopt T steps

for an episode, and accumulate all the rewards over all steps and all batches to compute the
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gradients. Formally, the gradient for parameter θ is

g =
1

N

N−1

∑
n=0

T−1

∑
t=0

�θ logπθ (at,n|Xt,n)

(
T−1

∑
t ′=t

rt ′ ,n −b(Xt)

)
.

where ∑T−1

t ′=t
rt ′ ,n −b(Xt) is used as an approximate estimate of the efficacy of the action at,n.

Ideally, we may train neural networks to convergence until the objective is fully optimized

and all constraints are satisfied. However, empirically, hard constraints such as an indicator

function in Eqn. (1) yields extremely sparse reward. We can not obtain any feedback if one

constraint is violated. Thus, we relax the hard constraint from an indicator function to be

a soft one using a hinge function, where models violating the constraint less are rewarded

higher. Formally, we switch the binary constraint in Eqn. (1) to be a soft violation function:

V(Ui) = pmax(max(0,Ui/Cui−1),max(0,Cli/Ui−1))
i , (2)

where pi ∈ [0,1] is a base penalty hyperparameter used to control the strength of the soft

penalty in terms of the degree of violation w.r.t. ith constraint. 1. Finally, we switch our

reward function navigating the search in the constrained space as,

rt,n = Pt,n

K

∏
i=1

V(Ui). (3)

where K is the number of constraints. We train the policy network till convergence. Empiri-

cally, EPNAS always finds a set of models satisfying our original objective. We then select

the best one, yielding a resource-constraint high-performance model. Later, we will intro-

duce the designed policy network and the action space for progressive network generation.

3.2 Policy Network
Policy network, shown in Fig. 2, adapts any input network by progressively modifying its

parameters (referred as the scale action), or by inserting/removing a layer (referred jointly

as the insert action). At every training step t, rather than building the target network from

scratch [33, 53], EPNAS modifies the architecture from preceding training step via previ-

ously described operations. This progressive search enables a more sample-efficient search.

We use a network embedding to represent the input neural network configuration. Ini-

tially, each layer of the input neural network is mapped to layer embeddings by a trainable

embedding lookup table. Then, an LSTM layer (with a state size equal to the number of

layers L) sequentially processes these layer embeddings and outputs a network embedding.

Next, the network embedding is input to two different LSTMs that decide the scale, insert,

and remove actions. The first LSTM, named as “scale LSTM”, outputs the hidden states at

every step t that correspond to a scaling action as from a scale lookup table which changes

the filter width or change the number of filters, for the network. For example, in layer-by-

layer search, we may partition the network into F parts, and for part f , the output as f can

scale a group of filters simultaneously. In our experiments, this is more efficient than per-

layer modification of ENAS [33], while more flexible than global modification of EAS [9].

The second LSTM, named as “insert LSTM”, outputs hidden states representing actions ai,

1Each constraint may use a different base penalty hyperparameter in principle, but we simply use pi = 0.9 for all

architecture search experiments and show that it is effective to constrain the search for all constraints.
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Figure 2: Policy Network of EPNAS. It is an LSTM-based network, which first generates

network embedding, and then outputs actions to modify the network with a “Scale LSTM”

and an “Insert LSTM”. Details in Sec. 3.2.

which selects to do insert, remove, or keep a certain layer, e.g., using a conv operation from

the insert lookup table, at certain place l after the network is scaled. To encourage explo-

ration of insert LSTM, i.e., encourage inserting inside the network to explore inner structure,

rather than always appending at the end of the network, we constraint the output distribution

of inserting place l to be determinant on layer number of input network L using a check

table. Formally, we let P(ai(p) = l) ∼ DL, where DL stands for a discrete distribution with

L+5 values. We use this prior knowledge, and found the architectures are more dynamically

changed during search and able to find target model more efficiently.

3.3 Search patterns
Following common strategies [27, 33], EPNAS also supports two types of search patterns: (i)

layer-by-layer search, which exhaustively modifies each layer of a network when dataset is

not large, and (ii) module search, which searches a neural cell that can be arbitrarily stacked

for generalization. The former is relatively slow, while can reach high performance, and the

latter targets at architecture transformation applied on large datasets. We elaborate the two

search patterns in this section.

In Layer-by-layer search, EPNAS progressively scales and inserts layers that are po-

tentially with skip connection. Fig. 3 exemplifies an insert operation by the “Insert LSTM”,

which is applied to an input network. “Src1” determines the place to insert a given layer (a

conv layer), and “Src2” indicates where to add a skip connection. Here, “Src2” can be -1 to

avoid a skip connection. Specifically, the search operations are chosen based on the problem

domain. For example, one can include recurrent layers for discriminative speech models and

convolution layers for discriminative image models. More details are explained in Section 4.

Module search aims to find an optimal small network cell which can be repeatedly

stacked to create the overall neural network. It has relatively limited search space with multi-

branch networks. The insert action by the “Insert LSTM” no longer inserts a layer, but inserts

a “branch”, and outputs the types of the operation and corresponding scaling parameters

(filter width, pooling width, channel size, etc.). Similar to layer-by-layer search, each branch
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Conv. + swish 

Conv. + ReLu

Conv. + ReLu

Conv. + ReLu

FC

Insert Operation

L1.Optype = Conv.
L1.Src1 = L
L1.Src2 = L-2

Layer L

Layer L-1

Layer L-2

1. Insert
B1.Optype = conv-conv
B1.Filter_width1 = 5
B1.Filter_width2 = 3 
B1.Src1 = -1
B1.Src2 = 0
B1.Propagate = 1

2. Insert
B2.Optype = conv-avgpool
B2.Filter_width1 = 3
B2.Filter_width2 = 3
B2.Src1 = -1
B2.Src2 = 0
B2.Propagate = 1

3. Insert
B3.Optype = conv-maxpool
B3.Filter_width1 = 5
B3.Filter_width2 = 3
B3.Src1 = 2
B3.Src2 = -1
B3.Propagate = 1
B2.Propagate = 0

Layer N-1

Layer N+1

Layer N

Conv. 
5x5

Conv. 
3x3

Conv. 
3x3

Avg. pool 
3x3

Conv. 
5x5

Max. pool 
3x3

Add

Add

Add

B1B2

B3

Figure 3: Left: A layer-by-layer search insert operation example. A conv operation is inserted

after layer L, and has skip connection with layer L-2. Right: A module search insert operation

example. When the branch 3 is inserted, one of its source value is from branch 2. After

insertion, the connection between branch 2 and the next layer is cut off.

consists of two operations to be concatenated. We illustrate an insert operation in Fig. 3.

Here, “Src1” and “Src2” determine where these two operations get input values from, and

“propagate” determines whether the output of the branch gets passed to the next layer.

3.4 Speedup EPNAS with performance prediction
Training every sampled model till convergence can be time-consuming and redundant for

finding relative performance ranking. We expedite EPNAS with a performance prediction

strategy that provides efficient training and evaluation. Our approach is based on the ob-

servation that a similar learning pattern can be maintained as long as the learning rate and

batch size are kept proportionally [38]. By scaling up the batch size, we can use a large

learning rate with an aggressive decay, which enables accurate ranking with much fewer

training epochs. Besides, since relative performance ranking is more important, learning rate

and batch size ratio can be increased. Additionally, we also allow the generated networks to

partially share parameters across steps. Differently, in our cases, we have additional opera-

tions rather than just insertion and widening in EAS. Therefore, we use a global dictionary

that is shared by all models within a batch of searched models. The parameters are stored

as key-value pairs, where the keys are the combination of the layer number, operation type,

and the values are corresponding parameters. At the end of each step, if there is a clash be-

tween keys, the variables for the model with the highest accuracy is stored. For operations

where the layer and operation types match, but the dimensions do not (e.g., after scaling a

layer), the parameters with the closest dimensions are chosen and the variables are spliced or

padded accordingly. Equipped with performance prediction, EPNAS can find the good mod-

els within much less time cost, which is critical for NAS with multiple resource constraints.

4 Experimental Evaluation
In this section, we evaluate the efficiency of EPNAS for handling large search space over two

popular datasets: CIFAR-10 dataset [23] and ImageNet [11]. We first show model accuracy

versus search time for five different search approaches used by EPNAS in Fig. 4. Then, we

compare EPNAS with other related NAS algorithms in Tab. 4 and show its generalization to

ImageNet. Finally, we compare EPNAS under three resource constraints, i.e. model size (sz),

compute complexity (c.c.) and compute intensity (c.i.), with SoTA models in Tab. 5. Due to
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Table 1: Search space of scale and insert actions
Table 2: Layer-by-layer search.

Feature Search space

Layer type [conv2d,
dep-sep-conv2d,

MaxPool2d,
AvgPool2d, add]

Filter width [1, 3, 5, 7]

Pooling width [2, 3]

Channel size [16, 32, 64, 96, 128,
256]

Nonlinear activation ["relu", "crelu", "elu",
"selu", "swish"]

Src1 Layer [i for i in
range(MAX_LAYERS)]

Src2 Layer [i for i in
range(MAX_LAYERS)]

Table 3: Module search.
Feature Search space

Branch type [conv-conv, conv-maxpool,

conv-avgpool, conv-none,

maxpool-none,

avgpool-none,1×7-7×1-none]

Filter width [1, 3, 5, 7]

Pooling width [2, 3]

Channel size [8, 12, 16, 24, 32]

Src1 Layer [i for i in

range(MAX_BRANCHES+1)]

Src2 Layer [i for i in

range(MAX_BRANCHES+1)]

Propagate [0,1]

Figure 4: Accuracy VS. total search time for CIFAR-10. Note the accuracy reported here is

only accuracy during searching. The final reported results in Tab. 4 and Tab. 5 are evaluated

by training from scratch.

space limitation, we put the details of resource constraints, visualization of searched models

for layer-by-layer and module search in our supplementary materials. In our supplementary

files, we also experimented our algorithm to a language dataset, i.e. keyword spotting using

Google Speech Commands dataset [1], and obtain SoTA results.

4.1 Experiments with CIFAR10

CIFAR-10 dataset contains 45K training images and 5K testing images with size of 32×32.

Following PNAS [27], we apply standard image augmentation techniques, including random

flipping, cropping, brightness, and contrast adjustments. For all our experiments, we start

from a randomly generated architecture to fairly compare with other SoTA methods. We first

illustrated the search space in Tables 1 for two search patterns, which is much larger than that

proposed in EAS and PNAS, while we still have less GPU days for finding a good model.

Training details. Our policy network uses LSTMs with 32 hidden units for network embed-

ding, while LSTMs with 128 hidden units for scale and insert actions. It is trained with the

Adam optimizer with a learning rate of 0.0006, with weights initialized uniformly in [-0.1,

0.1]. In total, 8 branches are constructed for training. Each generated neural networks are

trained for 20 epochs with batch size (BZ) of 128 using Nesterov momentum with a learning

rate (LR) (lmax = 0.05, lmin = 0.001,T0 = 10,Tmul = 2) following the cosine schedule[30].

With performance prediction (p.p.), we increase LR to 0.5 and BZ to 1024, and do early

stop at 10 epochs for each model with parameter sharing. We use an episode step of 10 and

5 for layer-by-layer search and module search respectively, and select top 8 models from

each episode to initialize the next. We run 15 episodes for searching the best model, which
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Table 4: Comparison of EPNAS to automated architecture search literature for CIFAR-10.

Note that ENAS GPU days are evaluated on our own server with author implementation,

with the same system configuration with EPNAS’s evaluation. M stands for million.

Model Parameters Test error (%) Test error w cutout (%) GPU days

AmoebaNet-B [36] 2.8 M 3.37 - 3150
NASNet-A [52] 3.3 M 3.41 2.65 1800
Progressive NAS [27] 3.2M 3.63 - 150
EAS (DenseNet on C10+) [9] 10.7 M 3.44 - 10
ENAS Macro Search [34] 21.3 M 4.23 - 1∗
ENAS Micro Search [34] 4.6 M 3.54 2.89 1.5∗
DARTS (first order) [28] 3.3 M - 4.23 1.5
DARTS (second order) [28] 3.3 M - 2.76 4

EPNAS Module Search 4.0 M 3.32 2.84 25
EPNAS Layer-by-Layer Search 3.4 M 3.87 - 16
EPNAS Module Search w prediction 4.3 M 3.2 2.79 8
EPNAS Layer-by-Layer Search w prediction 7.8 M 3.02 - 4

is retrained following PNAS, yielding our final performance.

Ablation study. Fig. 4 shows that EPNAS achieves the test accuracy up to 96.2% with p.p.
and 95% w/o p.p. respectively after 6 GPU days, when started with a randomly generated

model with a test accuracy of 91%. Both layer-by-layer search and module search signif-

icantly outperform random search, but layer-by-layer search slightly outperforms module

search as it enables more fine-grained search space. Cutout marginally improves searched

accuracy by 0.5-0.6%.

Quantitative comparison. Tab. 4 compares EPNAS (with model size constraint) to other

notable NAS approaches. All techniques yield similar accuracy (within ∼0.5% difference)

for comparable sizes. EPNAS with p.p yields additional 1% accuracy gain compared to

EPNAS w/o p.p as it enables searching more models within the same search time budget.

EPNAS significantly outperforms AmoebaNet, NASNet, PNAS, and EAS in search time

with larger search space. Specifically, comparing with PNAS, our module search w p.p train

roughly 600 models (15 episodes 8 M40 GPUs and 5 steps for each episode) to obtain a

good model using module search (20 min per model with 10 epochs), and PNAS trained

1160 models with longer time to reach similar performances. EPNAS slightly outperforms

both ENAS Macro Search and ENAS Micro Search in terms of model accuracy and model

size, but is slightly worse in search time.

Table 5: EPNAS with multiple resource constraints vs. the SoTA models on CIFAR10. sz
means Model size (M). c.i. means compute intensity (FLOPs/byte) and c.c. means compute

complexity (MFLOPs). Compute intensity is not compute complexity divided by model size.

It reflects how models reuse data without loading data from slow memory. The higher com-

pute intensity is, the better. MFLOPs stands for mega floating-point operations per second.

Model Resource constraint Test error (%) Model size (sz)
Comp. intensity (c.i.)
(FLOPs/byte)

Comp. complexity (c.c.)
(MFLOPs)

ResNet50 [16] - 6.97 0.86 M 32 10

DenseNet (L=40, k=12) [19] - 5.24 1.02 M 43 21

DenseNet-BC (k=24) [19] - 3.62 15.3 M 45 300

ResNeXt-29,8x64d [47] - 3.65 34.4 M 58 266

MobileNetV2 [39] - 5.8 1.9 M 10 10

DPPNet-PNAS [39] - 5.8 1.9 M 10 10

MNASNet [39] - 5.8 1.9 M 10 10

EPNAS: Module Search sz ≤ 3M 3.98 2.2 M 7.1 28

EPNAS: Layer-by-Layer Search sz ≤ 2M, c.i.≥ 80 4.31 1.7 M 97 26

EPNAS: Layer-by-Layer Search c.i.≥100 c.c.≤ 200 2.95 29 M 107 194

EPNAS: Layer-by-Layer Search sz ≤ 8M, c.i.≥ 80, c.c.≤ 80 3.48 7.7 M 92 72

EPNAS: Layer-by-Layer Search sz ≤ 1M, c.i.≥ 30, c.c.≤ 15 5.95 0.88 M 31 13
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Table 6: Comparison of model generalization to ImageNet. Model error rate (%) is reported

with Top-1 and Top-5 predictions.

Setting Method Top-1 Top-5 Params

Mobile

DPP-Net-Panacea [12] 25.98 8.21 4.8M

MnasNet-92 [43] 25.21 7.95 4.4M

PNASNet-5 [27] 25.8 8.1 5.1M

DARTS [28] 26.7 8.7 4.7M

EPNAS-mobile 25.2 7.57 4.2M

Large
DPP-Net-PNAS [12] 24.16 7.13 77.16M

EPNAS-large 21.49 5.16 78.33M

EPNAS with resource constraints. Table 5 compares EPNAS and other SoTA models with

resource constraints. In particular, EPNAS is able to find model under 10M parameters with

3.48% test error with 92 FLOPs/Byte c.i., and under 80 MFLOPs c.c. With tight model size

and FLOPs constraints, EPNAS is able to find model of similar size compared to ResNet50

but is about 1% more accurate. With relaxed model size, EPNAS finds SoTA model with

2.95% test error and high c.i. of 107 FLOPs/byte, which outperforms ENAS macro search.

4.2 Results on ImageNet
We also have experiments which transfer optimal models from EPNAS module search in

Tab. 4 to ImageNet borrowing the stacking structure following PNAS [27] with two settings:

1) Mobile: limiting the model size to be less than 5M parameters, 2) Large: without any

model size constraint. For a fair comparison, we set the input image size to 224 × 224 for

both settings. The upper part in Tab. 6 shows the results of mobile setting. We compare

against other SoTA resource-aware NAS methods, DPPNet [12] and MNASNet [43], and

DARTS [28]. Our model based on the searched module yields better results with similar

model size. For large setting, our results is also significantly better than that reported in

DPP-Net, while we omit that from PNAS since the input setting is different.

5 Conclusions
We propose efficient progressive NAS (EPNAS), a novel network transform policy with RE-

INFORCE and an effective learning strategy. It supports large search space and can general-

ize well to NAS multiple resource constraints through a soft penalty function. EPNAS can

achieve SoTA results for image recognition and KWS even with tight resource constraints.
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