
Optimizing a UAV-based Emergency Medical Service Network for
Trauma Injury Patients*

Ruijiu Mao, Bin Du, Dengfeng Sun, and Nan Kong1

Abstract— Emergency medical service must be time sen-
sitive. However, in many cases, satisfactory service cannot
be ensured due to inconvenient logistics. For its easily
deployable and widely accessible nature, unmanned aerial
vehicles (UAVs) have the potential to improve the service,
especially in areas that are traditionally under-served. In
this paper, we develop a service network optimization
problem for locating UAV bases, staffing a UAV fleet at each
constructed base, and zoning demand nodes. We formulate
a location-allocation optimization model with numerically
simulated waiting times for the service zones as the objec-
tive. We adapt a genetic algorithm to solve the optimization
model. We test our network optimization approach on
instances of traumatic injury cases. By comparing our
approach to a two-phase method in Boutilier et al. [1],
we suggest an up to 60% reduction in mean waiting time.

I. INTRODUCTION

After a traumatic injury, the chance of survival is
higher if care is received within a shorter time interval.
For many traumatic injury cases, timely delivery of
medical supply leads to substantially higher survival
rate. Clear evidence on 24-hour mortality reduction is
associated with very short time to initial transfusion after
the injury (i.e., only up to 15 minutes after the rescue
of medical evacuation) [2]. Many studies have reported
that more than 50% of people die within three, ten and
thirty minutes after the occurrence of cases with heart
stop, respiration stop, and massive bleeding, respectively
[3]. As a result, in emergency medicine practice, there
is the notion of “golden hour”, which suggests prompt
medical care and surgical treatment within an hour will
have a higher chance to prevent death. However, due to
traffic congestion or lack of reliable road transportation,
many traumatically injured people miss the best time to
be treated appropriately. Unmanned aerial vehicle (UAV)
is easily deployable and independent of road conditions.
Introducing UAV to emergency medical service (EMS)
makes timely treatment practical, and in turn, increases
survival rates for traumatically injured people.

Due to limited budget and geographical constraints,
it is unrealistic to construct UAV launching stations
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at arbitrary locations. However, to ensure timely emer-
gency response, every incident scene must be reached
by some UAV within a reasonable threshold time in-
terval. In this paper, we conduct a location-allocation
analysis to optimize the locations of UAV stations,
the number of UAVs at each station, and the demand
nodes assigned to the service area of each station. Our
objective is to optimally trade-off (1) the spending to
ensure service capacity preparation related economic
activities (e.g., station construction and maintenance,
as well as UAV procurement); and (2) some service
quality related measure (e.g., average time lapse from
emergency notification to UAV arrival at the scene).

Our approach involves solving a location-allocation
optimization problem, which is supplemented by evalu-
ating the weighted sum of service zone specific waiting
times via discrete-event simulation, all in one phase.
Previously, Boutilier et al. [1] provided a two-phase
approach to solve a UAV network design problem.
First, UAV stations are chosen based on a set-covering
method, such that all demand nodes are covered by
the smallest number of stations. Second, by assuming
a M/M/s queue for the service dynamics within each
service zone, the number of UAVs with each station is
iteratively increased until 99% of the incidents have a
readily deployable UAV at their occurrences.

Many researchers have studied the facility location-
allocation problem for EMS networks. For example,
Fulton et al. [4] evaluated allocation rules and plan-
ning factors via Monte-Carlo method. Budge et al. [5]
computed the station-specific performance measures of
EMS systems for varied server workload. Bastian et
al. [6] provided a decision-support methodology that
assists military decision-makers with real-time coverage
visualization and recommended aeromedical evacuation
assets to select from for each given injury location.
McLay [7] introduced the maximum expected coverage
location problem with two types of servers (e.g., air and
road ambulances) to increase patient survival rate.

More recent papers distinguished demands by differ-
ent levels of severity or priority. For example, Fulton
et al. [8] studied a stochastic optimization model to
minimize the transportation time weighted by patient
severity, through redistributing resources of the hospital
system. McLay et al. [9] examined a way to dispatch



heterogeneous servers to prioritized patients when dis-
patchers may make classification mistakes. Grannan [10]
developed a binary linear programming model to opti-
mally locate two types of air ambulances and construct
catchment areas with preference lists.

The main contributions of this paper are two-fold.
One, we formulate a location-allocation optimization
model with simulated mean waiting time as the objec-
tive. Our model incorporates more practical relevance
by considering UAV cruise range, golden-hour-survival-
time threshold, time-varying arrival rates at each demand
node, and service time dependent on the flight time
from each demand to the UAV station assigned. Two,
we conduct a case study based on the 2017 Indiana
vehicular crash data. This case study verifies that our
approach is superior and more practical as opposed to
existing approaches in the literature through comparing
it with the two-phase approach by Boutilier et al. [1].

II. METHOD

A. Problem Formulation

Suppose we have a set of demand nodes I = {i :
i = 1, · · · , |I|} (e.g., zip-code areas, each of which
aggregates a set of incident sites), and a set of candidate
locations for UAV launching stations J = {j : j =
1, · · · , |J |} (e.g., existing airports). We have three sets
of decision variables: yj ∈ {0, 1} (j ∈ J) indicating
whether to construct a UAV station at location j; uj ∈
N (j ∈ J) specifying the number of UAVs to be stored
at location j; xij ∈ {0, 1} (i ∈ I, j ∈ J) indicating
whether demand node i is assigned to location j. For
model parameters related to budgeting, we use B to
denote the total budget, and fc and fp to denote the
costs for constructing a UAV station and procuring a
UAV, respectively. Finally, for each j ∈ J , we denote
Wj(x, uj) to be service zone j specific mean waiting
time, i.e., the mean waiting time for all the demands
served by UAV station j with uj UAV models staffed,
with the demand assignment follows the binary matrix
x. We formulate the optimization model as:

min
∑

j:uj>0

[
Wj(x, uj)

∑
i:xij=1 λ(i)∑

i∈I λ(i)

]
(1)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I; (2)

yj ·
∑
j∈J

uj ≥ uj , ∀j ∈ J ; (3)

∑
i∈I

xij ≤ yj · |I|, ∀j ∈ J ; (4)

∑
j∈J

yjfc +
∑
j∈J

ujfp ≤ B; (5)

xij , yj ∈ {0, 1}, uj ∈ N, ∀i ∈ I, j ∈ J. (6)

In the above formulation, objective (1) aims to mini-
mize the weighted sum of service zone specific mean

waiting time. The weight associated with each con-
structed station is the ratio of the incident rate within
the corresponding service zone to the overall incident
rate. Constraints (2) imply that each demand node must
be assigned to some location. Constraints (3) imply that
if we plan to staff at least one UAV at some candidate
location, a UAV station has to be constructed at the
location. Constraints (4) imply that every demand node
can be assigned to a location only if a UAV station has
been constructed at the location. Constraint (5) specifies
that the total spending on constructing UAV stations and
purchasing UAVs cannot exceed the total budget.

To solve the optimization model, we need to further
quantify have a computationally tractable functional
form on the mean waiting time Wj(x, uj) for each
j ∈ J , given the specification of the service zone and
the number of UAVs staffed in the zone. Since we
assume a general service time distribution, we resort to
numerical simulation to compute W (x, uj), as detailed
in the following.

B. Wj(x, uj) Estimation

A UAV-based EMS process contains six time points
(Figure 1): call-in, departure from the station, arrival at
the scene, departure from the scene, arrival at the station,
and reset time. The time between call-in and departure
from the station is response time, and the time between
departure from the station (the scene) and arrival at the
scene (the station) is flight time, the time between arrival
at the scene and departure from the scene is on-scene
time, and the time between arrival at the station and reset
time is charging time and maintenance time. Thus, the
service time critical to patient survival is the sum of the
response letter and the outbound flight time.

Fig. 1. An Illustration of UAV-based EMS Process

For the optimization, we compute the mean waiting
time for the service requests that occur in the service
zone of station j over a time period [0, T ) (e.g., one
year) with nj replications. We denote Ij as the set
of demand nodes served by UAV station j, and uj as
the number of UAVs to be staffed at the station. We
denote tf (i, j) as the one-way flight time from j to i
(or from i to j). We denote λi(t) as the arrival rate
function for each i ∈ Ij at time t, and denote λ?i as



the maximum arrival rate for i ∈ Ij within the time
interval (i.e., maxt∈[0,T ] λi(t)). To track the scheduled
time for each of the uj UAVs throughout the time
interval, we introduce s1, · · · , suj and initialize each
of them as 0. We consider the warm-up period as the
time interval influenced by the initial condition when
all of the UAVs are idle and no demand is generated.
Regarding the warm-up period ends when there is a
demand having nonzero response time, we set a binary
variable Flag ∈ {0, 1} to represent if the system has
passed (1) or remains (0) in the warm-up period.

For each replication, we generate arrival events based
on two periodic Poisson processes, and assign the corre-
sponding demands to the idle UAVs by a first-come-first-
serve principle. That is, we sort arrival events by their
arrival times in ascending order, assign an idle UAV to
the earliest arrived but unserved event, and adjust each
UAV’s completion time accordingly.

Algorithm 1: Generating waiting time Wj(x, uj)

for n=1:nj do
(Generate two-periodic Poisson processes);
for i ∈ Ij do

Set t = 0;
while t ≤ T do

Set U1 = U2 = 1;
while U2 ≥ λi(t)/λ?i do

Generate U1, U2 ∼ Uniform(0, 1)
independently;
t = t− logU1/λ?i ;

end
Add (i, t) into list L;

end
Remove the last added (i, t) in L;

end
(Assign the generated events to idle UAVs with FCFS);
Sort the tuples in L with increasing arrival time;
Denote the k-th tuple in L as L(k), denote the first and the

second elements of L(k) as L(k)1 and L(k)2;
Flag = 0;
Wn

j = 0;
s1 = s2 = · · · = suj = 0;
for k ∈ 1 : |L| do

Search the earliest completed server
sr ∈ argminr∈{1,··· ,uj}{s1, s2, · · · , suj };

Generate a random time a representing the on-scene
time and the charging and maintenance time;

Update sr ∈ max{sr, L(k)2}+ 2tf (L(k)1, j) + 2a;
if L(k)2 > sr then

Flag = 1;
end
if Flag = 1 then

Wn
j =Wn

j + (L(k)2 − sr)+ + tf (L(k)1, j);
end

end
Wn

j =Wn
j /|L|;

end
Wj(x, uj) =

∑nj

n=1W
n
j /nj ;

C. Genetic Algorithm
Overall, the genetic algorithm consists of six parts:

random initialization, parent selection, crossover, muta-
tion, survivor selection, and termination checking. The

sketch of the overall genetic algorithm is shown in
Algorithm 2.

We define (x, u) as our chromosome, where x ∈
{0, 1}|I|×|J| and u ∈ N|J|. Namely, each chromosome
is a solution consisting of the binary assignment matrix
for every demand node and the number of UAVs staffed
at every station. We use the objective function (1) as the
fitness function get_fitness(x, u) directly.

We denote a fixed number (N ) as the population size
in each generation of chromosomes. We apply crossover
to generate two children from two parents, where the
two parents are chosen if they have the smallest fitness
function values in the current generation. The two chil-
dren chromosomes are modified by the mutation step,
(in which the mutation number M represents the level
of mutation) and compared with the N chromosomes in
the current generation with their fitness function values.
The worst two chromosomes are discarded and the rest
N chromosomes constitute the next generation.

Since we compute the fitness function values for each
chromosome in a generation, we stop generating new
generations once the best fitness function value has not
been improved for C generations. The counter for that
is recorded by counter, which is initialized as 0.

Algorithm 2: Genetic Algorithm sketch for (x, u)
Random initialization;
counter = 0;
while counter < C do

Parent Selection;
Crossover and Mutation to generate Child 1, and Child 2;
if get_fitness(Child 1) and
get_fitness(Child 2) are both greater or equal to
the current minimum value then

counter = counter+ 1;
end
Rank the fitness values of the elements in population set

and Child 1, Child 2;
Remove the worst two elements and form the updated

population set;
end
Calculate fB = mink=1,··· ,N get_fitness(xk, uk) with

the current population {(x1, u1), · · · , (xN , uN )};
Return fB and its corresponding (xk, uk)

1) Random initialization: In this step, we initialize
the population of N chromosomes. To generate one
chromosome (xk, uk), we first decide the number of
stations s (a randomly chosen positive integer no greater
than B/(fc+fp)), and generate the number of UAVs at
each selected location until the total cost of constructing
UAV stations and procuring UAV models does not
exceed the budget B. Once we generate the vector uk,
where each element represents the number of UAVs
placed at each candidate station, we assign each demand
node to the nearest constructed station and determine the
assignment matrix xk for the kth chromosome.

2) Parent selection: In this step, we apply the
Roulette Wheel Selection scheme by assigning prob-



Algorithm 3: Random initialization
Output: N Chromosomes: (x1, u1), · · · , (xN , uN );
for k = 1 : N do

Randomly choose s ∈ Z+ ∩ [1, B/(fc + fp)];
Randomly choose s facilities, and denote the facilities as
j1, · · · , js;

Let B̂ = 2 ·B;
while B̂ ≥ B do

Randomly choose uj ∈ Z+ for each
j ∈ {j1, · · · , js};

Let uj′ = 0 for all j′ ∈ J\{j1, · · · , js};
B̂ = s · fc +

∑
j∈{j1,··· ,js} ujfp

end
for i ∈ I do

Find the facility j ∈ {j1, · · · , js} such that
tf (i, j) ∈ minj∈{j1,··· ,js} tf (i, j);

Let xkij = 1, and xk
ij′ = 0 for all j′ ∈ J\{j};

end
end

abilities to the N generated chromosomes based on
their fitness function values. Since we aim to minimize
the fitness value, the higher the value, the lower the
probability assigned to the chromosome to be chosen as
a parent. Therefore, we use the reciprocal of the fitness
value to decide the proportion of the probability for each
chromosome.

Algorithm 4: Parent selection
Output: Two chromosomes: Parent 1 and Parent 2;
Calculate fB = mink=1,··· ,N get_fitness(xk, uk);
S =

∑N
k=1 1/get_fitness(x

k, uk);
Generate a random number P between 0 and S;
Starting from the top of the population, keep adding the fitness

values to the partial sum P , until P > S;
The individual for which P exceeds S is the chosen individual
Parent 1;

Repeat the previous steps to get Parent 2 ;

3) Crossover and Mutation: For crossover, we apply
uniform crossover to generate uChild 1 and uChild 2, the
numbers of staffed UAVs for Child 1 and Child 2. For
each candidate station, these two numbers inherit those
of Parent 1 and Parent 2. Which one inherits which is
determined randomly with even probability.

For mutation, instead of assigning all demand nodes
to their nearest constructed facilities, we randomly pick
M demand nodes and assign them to all constructed
facilities with certain probabilities, which are inversely
proportional to the flight times.

III. CASE STUDY: NETWORK DESIGN FOR INDIANA
VEHICULAR CRASHES

We apply the proposed method to optimally design
a UAV network for emergency services due to severe
vehicular crash accidents from the State of Indiana. We
assume each zip-code area in Indiana to be a demand

Algorithm 5: Crossover: uniform crossover
for j ∈ J do

Generate a ∼ Uniform(0, 1);
if a < 0.5 then

uChild 1
j = uParent 1

j ; uChild 2
j = uParent 2

j ;
else

uChild 1
j = uParent 2

j ; uChild 2
j = uParent 1

j ;
end

end
for i ∈ I do

Find the facility j ∈ {j : uChild 1
j > 0} such that

tf (i, j) ∈ minj∈{j:uChild 1
j >0} tf (i, j);

Let xChild 1
ij = 1, and xChild 1

ij′ = 0 for all j′ ∈ J/j;
Find the facility j ∈ {j : uChild 2

j > 0} such that
tf (i, j) ∈ minj∈{j:uChild 1

j >0} tf (i, j);

Let xChild 2
ij = 1, and xChild 2

ij′ = 0 for all j′ ∈ J/j;
end

Algorithm 6: Mutations with level M
for Child ∈ {Child 1 and Child 2} do

Randomly choose M demand nodes from I , and denote
them as i1, · · · , iM ;

for i ∈ {i1, · · · , iM} do
Choose a facility j in {j : yChild

j > 0}, each facility
is chosen with probability
(1/tf (i, j))/

∑
i∈{i1,··· ,iM}(1/tf (i, j));

Let xChild
ij = 1, and xChild

ij′ = 0 for all j′ ∈ J\{j};
end

end

node (959 zip-codes in IN in total [11]), and each
existing airport in IN as a candidate location of UAV
launching station (99 airports in total [12]). We assume
the price of a UAV model is $30,000. The UAV model
is able to fly continuously at most 30 minutes. Since a
UAV landing pad does not cost too much, we only con-
sider the venue rental, for which we consider different
annual rental cost of $50,000, $100,000, $200,000 as the
choices for the construction cost.

The 2017 Indiana vehicular crash accident data [13]
have the records of 761149 accidents. Among the
741149 records, 629636 contains the latitude and longi-
tude information for the crash spots. Among the 629636
records, 40872 contain a description indicating the most
severe injury to the person involved in the accident.
Among the 40872 records, 1871 indicate severed injury
(severed, severe bleeding, internal, severe burn). We thus
use the proportion of severe injury, i.e., 1871/40872 to
approximate that the annual number of severe injury
accidents as 1871/40872 · 629636 ≈ 28823.

For each zip-code i, we denote the number of ac-
cidents occurred from 8 am to 8 pm (8 pm to 8 am)
as countd(i) (countn(i)). Then we set the daytime
(nighttime) arrival rates of severely injured accidents at
node i to be



λd(i) =
countd(i)∑

i∈I(countd(i) + countn(i))
·

28823

365 · 12
,

λn(i) =
countn(i)∑

i∈I(countd(i) + countn(i))
·

28823

365 · 12
.

For on-scene time as well as charging and main-
tenance time, we assume they take around 0.5 – 1.5
minutes each. For each accident, we assume that either
time does not differ between the two periods during a
day. We denote the time for each period as a, which is
generated as a random number between 0.5-1.5 minutes.

We use the two-phase approach, a method introduced
by [1] as the baseline to compare with in terms of dif-
ferent UAV station construction costs. In the following,
we first describe the two-phase approach and then report
the comparison results.

A. The two-phase approach

The two-phase approach first determines the location
of each UAV station by a set-covering method, by which
all of the demand nodes are covered by the smallest
number of UAV stations. Secondly, by iteratively in-
creasing the number of UAVs in each service zone until
99% of the accidents has an available service UAV on
average, the number of UAVs staffed at each station is
thus determined.

Given the maximum distance reachable for a UAV
(i.e., maximal flight time of 30 minutes with maximum
cruising speed of 70 km/h) and the geography data for
the 959 zip-code areas and 99 airports in Indiana, we
perform the set-covering step by solving the following
optimization problem.

min
∑
j∈J

yj

s.t.
∑
j∈J

xij = 1, ∀i ∈ I

xij · tf (i, j) ≤ 0.5, ∀i ∈ I, ∀j ∈ J∑
i∈I

xij ≤ yj · |I|, ∀j ∈ J

xij , yj ∈ {0, 1}, ∀i ∈ I, j ∈ J

With the provided data, the set-covering step outputs
five UAV locations. They are Skylane Airport, Shel-
byville Municipal Airport, Hendricks County Airport-
Gordon Graham Field, Smith Field Airport, and Porter
County Regional Airport.

We determine the five service zones by assigning each
of the 959 zip-code areas to the closest station among the
five selected airport locations as above. For each service
zone, we sum the day-time arrival rate and night-time
arrival rate as its total arrival rate:

λj =
∑
i∈Ij

(λd(i) + λn(i)).

We assume the mean service time for each service
zone is the weighted service time (consisting of round
flight time, on-scene time, as well as charging and
maintenance time). The mean service time in service
zone j is considered as

µj =
∑
i∈Ij

countd(i) + countn(i)∑
i∈Ij

countd(i) + countn(i)
· 2 · (a+ tf (i, j)).

By applying steady-state equations (Kleinrock 1975),
we reach the UAV numbers staffed for each of the five
airports: Skylane Airport would be staffed with 7 UAVs,
Shelbyville Municipal Airport, 10, Hendricks County
Airport-Gordon Graham Field, 9, Smith Field Airport
8, and Porter County Regional Airport 7. The mean
waiting time for the network design based on the two-
phase approach is 14.8 minutes.

Given the results from the two-phase approach, we
compare its mean waiting time with that of the pro-
posed method, under different UAV station construction
cost: $50,000, $100,000, $200,000. Mores specifically
to make the comparison fair, we compute the total cost
for the two-phase approach with each construction cost
level, determine the corresponding budgets (i.e., B) for
the proposed approach, and compare the mean waiting
times and waiting-time distributions.

B. Comparison with different UAV launching station
construction costs
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Time (Hour) mean waiting time: 7.8 minutes; cost per station: $100,000
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Time (Hour) mean waiting time: 8.9 minutes; cost per station: $200,000
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Fig. 2. Waiting time distribution comparison

From the results in Table I, we can see an increasing
trend of the mean waiting time with increased UAV
station construction cost. It is intuitive since the higher
the station cost is, the less flexibility of UAV station
numbers to choose from under a fixed amount of budget.
From Figure 2, we find the waiting-time distribution
is moved to the left as opposed to the one generated
with the two-phase approach. This suggests reduced



waiting time and thus improved emergency response.
Further, based on the network designs presented in
Figure 3, we see more scattered UAV station locations
coupled with uniformly reduced number of UAVs at
each station. Based on the comparisons, we conclude
that our proposed method is superior to the existing ones.

Fig. 3. Network design comparison

IV. CONCLUSIONS AND FUTURE RESEARCH

In this work, we formulate a location-allocation op-
timization model with mean waiting time as the objec-
tive. Our model incorporates more practical relevance
by considering UAV cruise range, golden-hour-survival-
time threshold, time-varying arrival rates at each demand
node. We conduct a real-world case study based on the
2017 Indiana vehicular crash data. Our results verifies
that our proposed approach is superior and more practi-
cal as opposed to existing approaches in the literature.

In the future, we plan to more realistically incorporate
the flight-time simulation beyond of merely considering
distance-based flight time. We will incorporate several

Station cost (Total UAV and station numbers) mean waiting time
Total budget Two-phase approach The proposed method

$50K 5 stations, 41 UAVs 15 stations, 24 UAVs
$1480K 14.8 minutes 5.6 minutes
$100K 5 stations, 41 UAVs 11 stations, 19 UAVs

$1730K 14.8 minutes 7.8 minutes
$200K 5 stations, 41 UAVs 9 stations, 12 UAVs

$2230K 14.8 minutes 8.9 minutes

TABLE I
STAFFING AND MEAN WAITING TIME RESULTS COMPARISON

aerodynamic parameters, and thus the uncertainty in
the flight time will likely increase, which requires bet-
ter design of a simulation-based discrete optimization
method. We also plan to relax the Poisson arrival as-
sumption. However, with increased computational com-
plexity, we will seek meaningful approximations as
the objective for the already computationally expensive
location-allocation optimization model. Finally, we will
consider multi-objective optimization to better trade-
off the service of certain quality and the spending for
maintaining such quality level.
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