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Abstract 

 
Trauma continues to be the leading cause of mortality and morbidity among US citizens aged <44 years. Literature 

suggests that geographical maldistribution of trauma centers (TCs) is associated with increasing fatality rate. Existing 

models for TC network design do not address the question often raised by trauma decision makers: how many TCs 

are required to achieve acceptable levels of mistriages? We propose a model to optimize the network of TCs under 

mistriage constraints. We propose a notional field triage protocol to estimate mistriages (under and over), based on 

existing guidelines in the trauma literature. Due to the complexity of the underlying model, we propose a Particle 

Swarm Optimization based solution approach. We use 2012 data from the State of Ohio, and model both ground and 

air transportation modes. Our results show that, for 2012 mistriage levels, it is possible to reduce the number of TCs 

from 21 to 10 by distributing them appropriately across urban and rural areas. Further, redistributing these 21 TCs can 

help satisfy the recommendation of under-triage ≤0.05 by the American College of Surgeons. In general, our study 

provides trauma decision makers an ability to determine a network that could improve care and/or reduce cost. 
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1. Trauma Care in the United States 
Trauma is a body wound or shock occurred due to a 

physical injury, as from accident or violence. It is the 

leading cause in the U.S. for disability, mortality, and 

morbidity for those under the age of 44, and results in 

millions of hospital admissions and hundreds of 

thousands of deaths per year, with an economic burden 

of $671 billion annually [1].  
In the U.S., Level I and II trauma facilities 

provide the highest level of services (including 

orthopedic, neurology, and even burn) to patients 

suffering from traumatic injuries. All other lower level 

trauma facilities (Level III-V) are intermediate facilities 

that help in stabilizing the patient before a transfer to a 

TC. In this study, we refer to Level I and II facilities as 

trauma centers (TCs); all other facilities are referred to 

as non-trauma centers (NTCs).  

If severely injured patients are able to receive care at TC rather than at an NTC, there could a 25% reduction 

in mortality [2]. Although trauma is a time-sensitive condition requiring rapid access to a TC for improved outcomes 

(mortality and morbidity), there is no access to a TC within 60 minutes (aka golden hour) for nearly 10% of the total 

U.S. population [1]. Brown et al. suggest that the reason for this is geographical misdistribution of TCs; 9 states had 

a clustered pattern, 22 had a dispersed pattern, and 10 had a random pattern of TC distribution [3]; see Figure 1. 

To evaluate the quality of care delivered by a trauma system, mistriages by the Emergency Medical Service 

(EMS) providers at the incidence site has been used as a surrogate. A mistriage is referred to as transporting a trauma 

Figure 1: Network of 520 L1/L2 TCs in U.S. Red 

dots=TCs, dark shade = 60-minute coverage via ground 

and air, and light = U.S. population 
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patient to a hospital that is not appropriate per the underlying injuries. In that sense, under-triage (UT) refers to 

transporting a severely injured patient to a non-trauma center, which could result in inimical conclusion (such as death 

and disability) due to delayed definitive care. On the other hand, over-triage (OT) refers to assigning a less severe 

injured patient to a trauma center, resulting in overcrowding of emergency department and increased cost of medical 

care for the patient [4]. UT and OT may occur either due to controllable (e.g., network of TCs, injury assessment 

protocols of EMS, mode of transportation) or uncontrollable (e.g., weather, law enforcement) factors. 

 It has been studied that distribution of and, thus, access to trauma centers could lead to higher injury mortality 

and unnecessary transfers [5, 6]. Thus, in the past decades, a few tools have been proposed for determining the optimal 

configuration of trauma care system. Branas et al. proposed a linear programming model that simultaneously locates 

trauma centers and medical helicopters with an aim of maximizing the coverage of severely injured patients using 

Maryland as a test region [7]. Jansen et al. proposed a data-driven approach that jointly considers minimizing the total 

travel time and the number of exception or system-related UT using Scotland and Colorado (US) as test regions [8, 

9]. Even the American College of Surgeons (ACS) proposed a tool, Needs-Based Assessment of Trauma System 

(NBATS), to suggest the number of TCs in a specified geographical region based on population, transport time, 

community support, and alike; however, NBATS does not identify the location of these TCs [10]. 

Even though patient safety in terms of coverage and access times were included in these tools, they do not 

address the question that is often discussed among trauma decisions makers: how many TCs do we need to ensure UT 

and OT are within acceptable range? There is an underlying assumption here – upgrading an NTC to a TC is 

expensive, let alone maintaining that status. It requires recruiting full-time specialized physicians and associate staff, 

equipment, infrastructure, and education/training. However, from a community welfare standpoint, the local 

government would lean towards improving safety (i.e., lower UT).  

We address this precise gap through our study by introducing an optimization model to determine the number 

and location of the TCs under UT and OT constraints, besides the standard coverage constraints. We not only 

characterize UT based on the injury type and on-scene decision making process of the EMS (extending prior work), 

we do the same to characterize OT (never done before). We now present this model, related details, and illustrate its 

use on a sample data set collected from the State of Ohio. 

2. A Model for Locating TCs 
Our model assumes that a geographically defined region, known as the Trauma Service Area (by the ACS), is known. 

This region could be a county, a region in the state, or the state itself. Further, the candidate sites for locating a TC are 

known and finite, which typically are the locations of existing TCs and NTCs. The Injury Severity Score (ISS) is used 

as a proxy to estimate, retrospectively, the severity of the injury of a patient at the incidence scene. The availability of 

ground ambulance for the transportation of patients from scene to a TC or NTC is assumed to be unlimited. Finally, 

to estimate coverage, a TC is assumed to cover the population of all adjacent zip-codes in the radius of 60 minutes 

using distances between the centroids using the Haversine formula.  

 

In the proposed optimization model for the entire state as the TSA, i=index for the candidate location for TC, j=index 

for zip-code, and k=index for trauma incidence. Tables 1 and 2 list the model parameters and decision variables. 

Constraint (1) specify that the overall population covered by the network of TCs exceeds a predefined proportion () 

of the total population in the TSA. Constraints (2) ensure that the population of a zip-code is only counted once. 

Constraint (3) limits on the lower bound on the trauma cases to be handled by a location i if it is a TC. Constraints (4) 

specify the permissible UT rate for the TSA, while constraints (5) defines the permissible OT rate for the TSA. 

Constraints (6) is the bounding constraint on the variables.  

Table 1: Parameters in the model 
Notation            Definition 

UTmax                Allowable UT rate for TSA 

OTmax                Allowable OT rate for TSA 

α, β Threshold for UT and OT (minutes) 

TP           Total population in the region 

Pj           Population in zip-code j 

Aij            1, if zip-code is covered by a TC;  

                          0, otherwise 

δ           Coverage parameter 

𝑉𝑚𝑖𝑛           Minimum trauma volume at location i 

ISSk            Injury severity score for incident k 

 

Table 2: Decision variables in the model 
Notation  Definition 

xi  {
1,   if TC is established at candidate location
0,   otherwise

 

yij {
1,   if zip code 𝑗 is covered by facility 𝑖
0,   otherwise

 

𝛾𝑖𝑘  {
1,   if incident 𝑘 is covered by facility 𝑖
0,   otherwise

 

zj  {
1,   if zip code 𝑗 is covered by any location 𝑖
0,   otherwise

 

UT, OT Estimated UT and OT rates for the TSA  

X             Vector representing the network (TCs & NTCs) 
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The above model is a classical combinatorial multi-facility location-allocation model and is NP-hard. As 

discussed later, for the test data we have, there are 

161 potential sites, resulting in 2161 potential 

combinations to evaluate. We, therefore, propose a 

Particle Swarm Optimization (PSO) metaheuristic 

approach to derive high-quality solutions. PSO is a 

nature-inspired population-based metaheuristic 

introduced by Eberhart & Kennedy [11], which 

mimics the social behavior of fish schooling or bird 

flocking. It is easy to understand and implement, 

makes few assumptions about the structure of the 

problem, and runs efficiently. 

Further, in the above model, it is difficult to express UT and OT rates in closed form. For a given network of 

TCs, these rates depend upon the determination of the most appropriate closest TC or NTC for each incidence’s injury 

severity score. Because this determination will change with modifications to the network, thus impacting resulting UT 

and OT rates, a notional field triage protocol is proposed. Below we discuss the PSO-based solution approach and 

then provide details of this notional field triage protocol. 

 

3. A Particle Swarm Optimization Solution Approach 

The PSO algorithm iteratively tries to improve a set of candidate solutions (particles) over a given measure of quality 

(fitness function) and moving these particles in a predefined search space using a mathematical operator in regard to 

particle’s position and velocity. Flying through the search space, each particle gathers historical information and gets 

influenced by its local best-known position (pbest) and is directed toward the best position (gbest) known so far.  

 Binary PSO (BPSO) is a variant of continuous PSO, in which each particle position is represented in binary 

values, and the particle velocity is defined as the probability that might change it to either zero or one. In our proposed 

BPSO, a swarm of 10 initial feasible particles is considered. An example of a solution represented by a particle is as 

follows: P1 = {0, 1, …, 0}; where |P1| is the total number of candidate sites (i.e., existing hospitals in the TSA); 1 and 

0 represents TC and NTC, respectively. The particle positions and velocities are updated per (7) and (8): 

                       𝑣𝑖𝑑
𝑡 = 𝐾(𝑣𝑖𝑑

𝑡−1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
𝑡−1) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑

𝑡−1))           (7) 

                                                       𝑖𝑓 (𝑟𝑎𝑛𝑑() < 𝑆(𝑣𝑖𝑑)), 𝑡ℎ𝑒𝑛 𝑥𝑖𝑑 = 1; 𝑒𝑙𝑠𝑒 𝑥𝑖𝑑 = 0    (8) 

where the ith particle in the d-dimensional search space is represented as xi= (xi1, xi2, …, xid) with the velocity as vi= 

(vi1, vi2, …, vid). In expression (7), the particle’s previous best position is denoted as pbesti= (pbesti1, pbesti2, …, pbestid) 

and the global best position as gbest= (gbest1, gbest2, …, gbestd). Acceleration constant, 𝑐1 and 𝑐2, are set at 2.05 with 

constriction coefficient, K = 0.7298, and  𝑟1 and 𝑟2 are two uniformly distributed random numbers in [0,1]. In 

expression (8), rand() follows Uniform [0, 1] and 𝑆(𝑣𝑖𝑑) = 1/(1 + 𝑒−𝑣𝑖𝑑) is the sigmoid limiting transformation 

function; see Eberhard & Kennedy [12] for further details. We now discuss how these UT and OT rates were estimated 

using the notional field triage protocol. 

 
3.1 A Notional Field Triage Protocol: In practice, field triage is conducted by the EMS personnel on scene to 

transport a trauma patient to the most suitable level of care (TC or NTC) depending on the underlying injuries. The 

decision-making process is highly variable in nature and depends on many factors. Instead of modeling each factor, 

we introduce a notional field triage protocol, similar in concept to Jansen et al. [8]. The protocol assigns the patient to 

an appropriate level of trauma care based on ISS, trauma network, and the threshold values. 

Trauma literature recommends that a patient with ISS>15 (severe injuries) should be assigned to the nearest 

TC, while a patient with ISS≤15 (non-severe injuries) should be assigned to the nearest NTC bypassing the nearest 

TC. However, mistriages occur when such recommendations are difficult to follow in practice due to access times; 

i.e., if the TC is too far, then the EMS may have no other choice but to take the patient to an NTC (a case of UT).  

To model how EMS providers in practice use access time (via both ground and air) during their decision 

making, we introduce two threshold values; (i) access threshold for TC transport and (ii) bypass threshold for NTC 

transport. Figure 2 illustrates the entire protocol. For instance, for a patient with ISS>15, if the actual time from the 

scene to the nearest TC via ground is lower than the access threshold, then the protocol assigns the patient to that TC 

(a case of appropriate triage, AT-1). If no, then the availability of an air ambulance (helicopter) is checked and, if 

available then the total fly time (i.e., helipad to scene, patient loading, and scene to TC) is compared to the access 

threshold. If the fly time is lower, then this the case of AT-1 (via air), otherwise the helicopter is not used, and the 

case is considered UT (i.e., transport to NTC via ground).  

Minimize: ∑ 𝑥𝑖𝑖  

Subject to: 
∑ 𝑧𝑗𝑃𝑗𝑗  ≥  𝛿(𝑇𝑃)     (1) 

𝑧𝑗 ≤  ∑ (𝑦𝑖𝑗𝑖 𝐴𝑖𝑗)        ∀ 𝑗      (2) 

∑ 𝛾𝑖𝑘𝑘  ≥  𝑥𝑖𝑉𝑚𝑖𝑛      ∀ 𝑖    (3) 

UT =  ∑ 𝑓𝑘 (𝑋, 𝐼𝑆𝑆𝑘 , 𝛼) ≤  𝑈𝑇𝑚𝑎𝑥      ∀  𝑖, 𝑘  (4) 

OT =  ∑ 𝑓𝑘 (𝑋, 𝐼𝑆𝑆𝑘 , 𝛽) ≤  𝑂𝑇𝑚𝑎𝑥     ∀  𝑖, 𝑘  (5) 

xi, yij, γik,, zj  ∈ {0, 1} ∀ i, j, k ; UT, OT  ∈ [0, 1] (6) 
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On the other hand, for a 

patient with ISS≤15, the protocol 

considers the time difference 

between nearest TC and nearest 

NTC. If this time difference is lower 

than the predefined time (bypass 

road threshold), then the patient is 

taken to NTC (via ground) and this 

case is recorded as AT-2 

(appropriately triage to NTC), else 

the protocol assigns it to the nearest 

TC (because the NTC is too far) and 

records it as OT.  

As is evident, the field 

triage decision is a binary 

classification problem, which 

renders results in a contingency 

matrix with AT-1 as true positive, 

AT-2 as true negative, and UT and OT as Type 1 and 2 errors. We estimate UT rate as (1-sensitivity) and OT rate as 

(1-specificity) [4]. 

  

3.2 Solution Implementation: We used Python programming platform to implement our proposed PSO and the 

notional field triage protocol on a Windows 7 desktop computer with 16 GB of memory running at 3.40 GHz on an 

Intel processor. We now discuss how we tested our proposed approached using the actual data from OH.  

 

5. Ohio as the Test Region 

The trauma network in OH serves over 11.7 million citizens. The Ohio Department of Public Safety (ODPS) had 

divided the state into 8 regions; this means, a TSA in our testing could either be the entire state or each of these 8 

regions. We obtained deidentified records of 6,242 trauma incidences for 2012 from the ODPS; this is about a 1/6th of 

the actual occurrences, and we adjust the Vmin accordingly. We also determined the location of the 21 designated TCs 

in OH during 2012 and the remaining 140 NTCs; see the GIS plot in 

Figure 3.  

We used Google Distance Matrix API to derive actual ground 

times from each incidence location to all hospital sites and used the 

Haversine formula for air travel times (assuming helicopter speed of 150 

mph). In modeling total air transport time, we also add helipad-to-scene 

(10 minutes) and preparing and loading of the patient (5 minutes). The 

available data indicated that air transport was used for 12.2% of the 

patients with ISS>15 (severely injured for whom air transportation may 

be required) and was kept constant in our testing. The resulting time 

matrices, one each for ground and air (6242  161 cells each), served as 

a look up table for later use in the estimation of UT and OT rates. 

To model coverage of a TC to its nearby population, distances 

between the candidate TC sites and 1,447 zip-codes in OH were 

calculated using the Haversine formula and converted into time. The 

coverage matrix (Aij) was estimated a priori based on zip-code 

information. Population information was obtained from the United States Census Bureau.  

We used an Access Threshold of 35 minutes and a Bypass Threshold of 8 minutes. Both these values resulted 

in UT and OT rates of 0.18 and 0.48, respectively, which closely matched the actual rates (UTactual=0.2 and 

OTactual=0.5) derived using the 2012 data using ISS and destination hospital type. Note that the recommended access 

threshold for EMS transport of ISS>15 patients is typically between 30 [13] and 45 [9] minutes per trauma literature, 

which adds credibility to the Access Threshold. We then derived two networks with varying EMS transportation 

capabilities; (i) unlimited ground transportation and (ii) unlimited ground and limited air transportation.  

We test our approach against three problems instances with coverage parameter set at 0.85 and Access Threshold 

for UT as 35 minutes (ground and air), and Bypass Threshold for OT as 8 minutes (ground). Table 3 summarizes the 

problem instances, and the corresponding results, across ground-only (G), and combined ground and air (G+A).  

Figure 3: Trauma Care in OH for 8 

regions. Red and Blue diamonds 

are TCs and NTCs, respectively. 

Figure 2: Notional Field Triage Protocol 
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For Problem 1, with 

only ground transportation, the 

best network resulted in 10 TCs 

instead of the 2012 network with 

21 TCs. Similar to the 2012 

network, the TCs in the PSO-

generated solution were also 

located in the major cities of 

Toledo, Lima, Cleveland, Dayton, Columbus, Mansfield, Akron, Canton, Youngstown, and Cincinnati, but in lower 

numbers. While the addition of air transport did not reduce the number of TCs, it led to a slight decrease in both UT 

and OT rates. Severely injured patients (ISS>15) who were not able to access the nearest TC via ground in 35 minutes 

were now able to access this TC via air, resulting in a decrease in the UT rate. In both G and G+A scenarios, the 

coverage was over 96%. These results indicate that the State of OH can achieve a slightly better level of trauma care 

(state-wide UT of 0.18 instead of 0.2, and state-wide OT of 0.40 instead of 0.5) with only 10 TCs (G+A) instead of 

21 in the 2012 network.  

Both solutions to 

Problem 1 (G and G+A) 

revealed that there could be 

wide variation in the UT rates 

among the 8 regions (range 0.04 

– 1.00) even if the state-wide 

total UT rate was within 0.2. 

This could cause differential 

care among state’s citizen 

(some receiving better and some 

worse). To resolve this, in 

Problem 2, we included 8 

additional UT≤0.2 constraints, 

one for each region. Solving this 

problem resulted in a network 

with 17 TCs (G), instead of 21.  

Figure 4 shows the 

difference in the heat map for 

UT and OT rate for both these 

network). Five NTCs were 

upgraded to TCs in region 1, 7 

and 8 and nine TCs were 

degraded to NTCs in region 1, 

2, 3, 4, and 5. This decreased 

both the UT rate (from 0.20 to 

0.11) and the OT rate slightly 

(from 0.50 to 0.49).  

The inclusion of air 

transportation in Problem 2 

decreased the number of TCs 

from 17 to 14 with a downgrade 

of TC to NTC in region 2, 4 and 5. The model was able to trade this decrease off with a slight increase in the UT rate 

(from 0.11 to 0.15), which still satisfying the regional UT constraint of 0.2.  In contrast, the OT rate decreased as now 

there are 3 more NTCs (as TCs have decreased from 17 to 14) resulting in easy access for less-severely injured patients 

(ISS≤15) to the nearest NTC. Both the approaches covered over 99% of the population.  

The collective outcome of Problems 1 and 2 suggest that the State of Ohio could employ a total of 14 TCs (3 

in Regions 1 and 5, 2 in Regions 7 and 8, and 1 in Regions 2, 3, 4, and 6) without exceeding the current levels of UT 

and OT in each of the 8 regions, providing uniform care across them. 

Problem 3 attempted to address the suggestion by the ACS to achieve UT rates of 5%. To model this, we set 

UT rate at 5%, state-wide. The best solution derived via PSO resulted in a network with 23 TCs (G) and 21 TCs 

(G+A). Naturally, to decrease the UT rate, more TCs are required, but that induces a higher OT rate (similar to the 

Table 3: Problem instances & results summary 

Prob 

# 
TSA 

Constraints # of TCs UT rate OT rate 

UT  OT  Vmin  G G+A G G+A G G+A 

1 State ≤0.2 ≤0.5 100 10 10 0.19 0.18 0.44 0.40 

2 
8 

regions 
≤0.2 ≤0.5 - 17 14 0.11 0.15 0.49 0.36 

3 State ≤0.05 ≤0.6 - 23 21 0.049 0.047 0.58 0.52 

 

UT = 0.20             OT = 0.50 

Current Network = 21 TCs (red diamonds) 

      UT = 0.11                 OT = 0.49 

Best Network (Problem 2, ground only) = 17 TCs (red diamonds) 

Figure 4: Heat maps of Mistriages.  

(Note: Darker shades indicate higher values; red diamonds indicate TCs.) 
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tradeoff between Type 1 and Type 2 errors in a binary classification problem). It, however, is interesting that the 2012 

network in OH also had 21 TCs, but with a UT rate of 0.2. These results suggest that un-clustering the TCs in urban 

areas and upgrading NTCs to TCs in a few strategic rural areas can achieve the ACS-suggested UT rate, with the same 

number of TCs (i.e., 21). Specifically, TCs by each region (vs. 2012 network) could be as follows: Region 1 – 3 (vs. 

5), Region 2 – 2 (vs. 3), Region 3 – 3 (vs. 2), Region 4 – 3 (vs. 4), Region 5 – 5 (vs. 6), Region 6 – 3 (vs. 1), Region 

7 – 1 (vs. 0), and Region 8 – 1 (vs. 0).  

 

6. Conclusion 

Trauma centers (TCs) are facilities that provide the highest level of emergency medical and trauma care to severely 

injured patients. Evidence in the trauma literature suggests maldistribution of TCs in the US affects patient care. Given 

the limitation of existing models for TC network design and aid trauma decision makers in making better decisions, 

we propose a model to determine the optimal number and location of TCs under prespecified UT and OT constraints. 

We propose a notional field triage protocol to estimate UT and OT based on the location of trauma incidences, 

underlying injury, location of TCs and NTCs, and mode of transportation. We tested our approach on 2012 data 

available from the State of Ohio and show that the TCs within the state could be redistributed reducing the number of 

TCs from 21 to 10. Results also show that it is possible that each of the 8 regions meet the UT constraints with a lower 

number of TCs (17 vs. 21). Meeting the ACS suggested UT rate of ≤0.05 is possible if the 21 TCs were reconfigured 

appropriately; un-clustered and some set up in rural areas. 

 Future work in this area could consider evaluating the sensitivity of the PSO-based solutions to input 

parameters (e.g., UT and OT thresholds, and minimum TC volume). If several years’ worth of data were made 

available, then it would be possible to design a network that is robust to changes in trauma patterns across years.  
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