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Abstract

Many machine learning problems can be characterized by mutual contamination models. In
these problems, one observes several random samples from different convex combinations
of a set of unknown base distributions and the goal is to infer these base distributions. This
paper considers the general setting where the base distributions are defined on arbitrary
probability spaces. We examine three popular machine learning problems that arise in this
general setting: multiclass classification with label noise, demixing of mixed membership
models, and classification with partial labels. In each case, we give sufficient conditions
for identifiability and present algorithms for the infinite and finite sample settings, with
associated performance guarantees.

Keywords: multiclass classification with label noise, classification with partial labels,
mixed membership models, topic modeling, mutual contamination models

1. Introduction

In many machine learning problems, the learner observes several random samples from
different mixtures of unknown base distributions, with unknown mixing weights, and the
goal is to infer these base distributions. Examples include binary classification with label
noise, multiclass classification with label noise, classification with partial labels, and topic
modeling. The goal of this paper is to develop a unified framework and set of tools to study
statistical properties of these problems in a very general setting.

To this end, we use the general framework of mutual contamination models (Blanchard
and Scott, 2014). In a mutual contamination model, there are L distributions Py,..., Pp
called base distributions. The learner observes M random samples

L
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where: =1,...,M, m; > 0, and Zj m;; = 1. Here m; ; is the probability that an instance of
the contaminated distribution 15,; is a realization of P;. The 7; ;s and Pjs are unknown and

the P;s are observed through data. In this work, we avoid parametric models and assume
that the sample space is arbitrary. The model can be stated concisely as

P-T1IP (2)

where P = (Py,...,Pr)T, P = (Py,...,Py)T, and II = (m,j) is an M x L matrix that we
call the mizing matriz.

In this paper we study decontamination of mutual contamination models, which is the
problem of recovering, or estimating, the base distributions P from the contaminated dis-
tributions P from which data are observed, without knowledge of the mixing matrix II.
We focus our attention on three specific types of mutual contamination models, all of which
describe modern problems in machine learning: multiclass classification with label noise,
demixing of mixed membership models and classification with partial labels. We will demon-
strate that these three decontamination problems can be addressed using a common set of
concepts and techniques. Before elaborating our contributions in detail, we first offer an
overview of the three specific mutual contamination models, and associated decontamina-
tion problems, that we study.

Multiclass Classification with Label Noise: In multiclass classification with label
noise, M = L and the goal is to recover P. Each P; represents the distribution of a class
of examples. The learner observes training examples with noisy labels, that is, realizations
from the ]5js. This problem arises in nuclear particle classification (Scott et al., 2013).
When one draws samples of a specific particle, it is impossible to remove other types of
particles from the background. Thus, each example is drawn from a mixture of the different
types of particles.

Demixing of Mixed Membership Models: We consider the following decontamina-
tion problem in mixed membership models: given a sample from each P, recover P up to a
permutation. We refer to this decontamination problem as demizing of mired membership
models. This problem arises in the task of automatically uncovering the thematic topics
of a corpus of documents. Under the mixed membership model approach, the words of
each document are thought of as being drawn from a document-specific mixture of topics.
Specifically, documents correspond to the P;s and the topics to the P;s. This approach is
also referred to as topic modeling. As we discuss in the next section, our theory significantly
generalizes existing topic modeling theoretical guarantees.

Classification with Partial Labels:' In classification with partial labels, each data
point is labeled with a partial label Y < {1, ..., L}; the true label is in Y, but it is not known
which label is the true one. In our setup, we view the ¢th random sample as having partial
label Y; == {j : m; ; > 0} and being distributed according to P, = Zjeyi m;jPj. Thus, the
learner observes training examples from the contaminated distributions P and the partial
label matriz I1" = (1¢m, ;>0}), and the goal is to recover P.

There are many applications of classification with partial labels because often abundant
sources of data are naturally associated with information that can be interpreted as partial

1. Classification with partial labels has also been referred to as the “superset learning problem” or the
“multiple label problem” (Liu and Dietterich, 2014).
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labels. For example, consider the task of face recognition. On the internet, there are many
images with captions that indicate who is in the picture but do not indicate which face
belongs to which person. A partial label could be formed by associating each face with the
names of the individuals appearing in the same image (Cour et al., 2011).

Although our work emphasizes recovery of P, it is also possible to think of decontami-
nation of mutual contamination models as concerned with estimation of the mixing matrix
I1. This estimate of IT could be used as a plug-in for recently developed debiased losses for
multiclass classification with label noise and classification with partial labels, which require
knowledge of IT (Cid-Sueiro, 2012; Menon et al., 2015b; van Rooyen and Williamson, 2015;
Patrini et al., 2017).

In this paper, we make the following contributions: (i) We give sufficient conditions on
P 11, and IT" for identifiability of the three problems. (ii) We establish necessary conditions
that in some cases match or are similar to the sufficient conditions. (iii) We introduce novel
algorithms for the infinite and finite sample settings. These algorithms are nonparametric
in the sense that they do not model P; as a probability vector or other parametric model.
Our algorithmic contributions show that while all three problems can be described in a
unified way, the special structure of multiclass classification with label noise allows for a
substantially simpler algorithm. (iv) We develop novel estimators for distributions obtained
by iteratively applying the x* operator (defined below). (v) Finally, our framework gives
rise to several novel geometric insights about each of these three problems and leverages
concepts from affine geometry, multilinear algebra, and probability.

1.1. Notation

Let Z* denote the positive integers. For n € Z*, let [n] = {1,...,n}. If x € RX let ;
denote the ith entry of . If z; € RX, then xj; denotes the ith entry of x;. Let e; denote
the length L vector with 1 in the ith position and zeros elsewhere. Let m; € A C RE
be the transpose of the ith row of IT where Ay, denotes the (L — 1)-dimensional simplex,

ey Ap = {pw = (1, )T € RE| Ky = 1and Vi : p; = 0}. Let AM denote the
product of M (L — 1)-dimensional simplices, viewed as the space of M x L row-stochastic
matrices. Let P denote the space of probability distributions on a measurable space (X,C).
Let supp(F') denote the support of a distribution F' on a Borel space.

2. Related Work

Our work makes various contributions to the statistical understanding of multiclass clas-
sification with label noise, demixing of mixed membership models, and classification with
partial labels. In the following subsections, we discuss how our results improve upon and
relate to previous results in the literature.

2.1. Multiclass Classification with Label Noise

There has not been much work on classification with multiclass label noise. By contrast,
label noise in the binary setting has received a fair amount of attention. For a review of
work prior to 2013, see Scott et al. (2013). More recently, Natarajan et al. (2013) considered
the binary label noise case where the label noise rates are known (in our case, the label noise
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rates are unknown). van Rooyen and Williamson (2015) generalized the work of Natarajan
et al. (2013) to the multiclass case, but again assumed that the mixing proportions are
known. Recent work has proposed various algorithms for the binary setting where the label
noise rates are unknown (Scott, 2015; van Rooyen et al., 2015; Menon et al., 2015a), but
these algorithms have not been generalized to the multiclass case. Menon et al. (2016)
consider the binary setting with instance-dependent corruption, but they assume that the
class probability functions take the form of a single-index model, whereas we make no
parametric assumptions on the P;s. Ghosh et al. (2017) consider multiclass label noise, but
they make two restrictive assumptions: (i) in the infinite sample setting, they assume that
there exists some function belonging to the chosen hypothesis class that attains 0 risk and
(ii) in the finite sample setting, they assume that the label noise is symmetric, i.e., there
exists a constant ¢ € (0,1) such that m;; = ;% for all i # j. Patrini et al. (2017) also
study the multiclass setting, but they assume that if their neural network has access to
sufficiently many samples, it can perfectly model Pr(}} = k|x) where x is a given feature
vector and Y is a corrupted label. Unlike most previous work that aims to learn a classifier,
our focus is on estimating the base distributions. Given these estimates, one could then
design a classifier to optimize some performance measure. See, for example, Section 4.3 of
our initial work on this subject (Blanchard and Scott, 2014).

Another approach for modeling random label noise, in addition to the mutual contam-
ination model, is the label flipping model. Indeed, several of the above-cited papers adopt
this setting. In this model, the label Y of a data point is flipped independently of its features
X and

IU/l,k = PI‘(Y = k‘Y = l)

gives the probability that a data point with true label Y = [ is corrupted to have an observed
label Y = k. Under the assumption that ¥ and X are jointly distributed, the H1,%xS can be
related to the m; ;s via Bayes’ rule. We choose to study the mutual contamination model
because we find it more convenient to study the question of identifiability.

In this paper, we extend Scott et al. (2013), which examined binary classification with
label noise (the case where M = L = 2). The multiclass setting is significantly more
challenging and, as such, requires novel sufficient conditions and mathematical notions. In
particular, Scott et al. (2013) use the notion of irreducibility of distributions as one of their
sufficient conditions.

Definition 1 For distributions G and H, we say that G is irreducible with respect to H if
it is not possible to write G = yH + (1 — v)F where F is a distribution and 0 < v < 1.

Definition 2 For distributions G and H, we say that G and H are mutually irreducible if
G is irreducible with respect to H and H is irreducible with respect to G. We denote

IR ={(G,H): G and H are mutually irreducible distributions}.

Scott et al. (2013) require that P; and P» are mutually irreducible. To treat the multiclass

setting, we introduce a generalization of mutual irreducibility, namely joint irreducibility.
The work presented below on multiclass label noise originally appeared in a conference

paper (Blanchard and Scott, 2014). The purpose of the present paper is to demonstrate that
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the framework developed in that paper can be extended to the other two decontamination
problems, and to provide a unified presentation of the three settings. In particular, the
joint irreducibility assumption plays a pivotal role in all three settings, as does the task
of mixture proportion estimation. However, the decontamination procedures for the latter
two problems are substantially more complicated than for multiclass classification with label
noise.

2.2. Demixing Mixed Membership Models

Mixed membership models have become a powerful modeling tool for data where data points
are associated with multiple distributions. Applications have appeared in a wide range of
fields including image processing (Li and Perona, 2005), population genetics (Pritchard
et al., 2000), document analysis (Blei et al., 2003), and surveys (Berkman et al., 1989).
One particularly popular application is topic modeling on a corpus of documents, such as
the articles published in the journal Science. Topic modeling is closely related to demixing
of mixed membership models and our work may be viewed as studying topic modeling on
general domains.

In topic modeling, the base distributions P; correspond to topics and the contaminated
distributions P; to documents, which are regarded as mixtures of topics. In most cases, the
P;s are assumed to have a finite sample space. A variety of approaches have been proposed
for topic modeling. The most common approach assumes a generative model for a corpus of
documents and determines the maximum likelihood fit of the model given data. However,
because maximum likelihood is NP-hard, these approaches must rely on heuristics that can
get stuck in local minima (Arora et al., 2012).

Recently, a trend towards algorithms for topic modeling with provable guarantees has
emerged. Most of these methods rely on the separability assumption (SEP) and its vari-
ants (Donoho and Stodden, 2003; Arora et al., 2012, 2013; Ding et al., 2013, 2014; Recht
et al., 2012; Huang et al., 2016). According to (SEP), Py,..., P, are distributions on a
finite sample space and for every i € {1,...,L}, there exists a word x € supp(F;) such
that « ¢ Uj.;supp(P;). Our requirement that Pi,..., P, are jointly irreducible is a nat-
ural generalization of separability of Pi,..., Py, as we will argue below. Specifically, if
P, ..., Pr have discrete sample spaces, separability and joint irreducibility coincide; how-
ever, if P,..., P; are continuous, under joint irreducibility, Pi,..., Pr can have the same
support.

A key ingredient in these algorithms is to use the assumption of a finite sample space
to view the distributions as probability vectors in Euclidean space; this leads to approaches
based on non-negative matrix factorization (NMF), linear programs, and random projec-
tions (Donoho and Stodden, 2003; Arora et al., 2012, 2013; Ding et al., 2013, 2014; Recht
et al., 2012; Huang et al., 2016). However, more general distributions cannot be viewed
as finite-dimensional vectors. Therefore, topic modeling on general domains requires new
techniques. Our work seeks to provide such techniques.

Topic modeling on general domains has several applications, including in high-energy
physics (Metodiev and Thaler, 2018a,b). In collider data, quantum chromodynamics causes
data samples to be a mixture of different types of particles, where the underlying fraction of
the particle type is unknown. In this setting, it is of interest to recover information about
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each of the particles. Recently, Metodiev and Thaler (2018b) applied the Demix algorithm,
Algorithm 4 in the current paper, to this problem in the case M = L = 2.

Topic modeling on general domains is also relevant to recent empirical research on topic
modeling with word embeddings, e.g., (Das et al., 2015; Li et al., 2016b,a; Xun et al., 2017;
Zhao et al., 2018). Word embeddings map words to vectors in R? in a semantically and
syntactically meaningful way. Their use has been pivotal to the state-of-art performance
of many algorithms in NLP (Luong et al., 2013). Several algorithms for topic modeling
with word embeddings model the topics as multivariate Gaussian distributions in order to
handle words that do not belong to the vocabulary of the training dataset (Das et al., 2015;
Xun et al., 2017). Whereas current topic modeling algorithms with theoretical guarantees
do not cover such a modeling approach, the generality of our algorithms does.

2.3. Classification with Partial Labels

Classification with partial labels has had two main formulations in previous work (Liu
and Dietterich, 2014). In one formulation (PL-1), instances from each class are drawn
independently and the partial label for each instance is drawn independently from a set-
valued distribution. In another formulation (PL-2), training data are in the form of bags
where each bag is a set of instances and the bag has a set of labels. Each instance belongs
to a single class, and the set of labels associated with the bag is given by the union of the
labels of the instances in the bag. Our framework is similar to (PL-2), although it does
not assume a joint distribution on the features of instances and the partial labels.

Most work takes an empirical risk minimization approach to classification with partial
labels (Jin and Ghahramani, 2002; Nyugen and Caruana, 2008; Cour et al., 2011; Liu and
Dietterich, 2012). Typically, these algorithms aim to pick a classifier that minimizes the
partial label error: the probability that a given classifier assigns a label to a training instance
that is not contained in the partial label associated with the training instance. By contrast,
our approach is to estimate the base distributions. One could then use these estimates to
train a classifier under some performance measure.

There has not been much theoretical work on developing a statistical understanding of
classification with partial labels. Cid-Sueiro (2012) and van Rooyen and Williamson (2015)
develop methods for classification with partial labels that require knowledge of the mixing
proportions, e.g., the probability that a label is in a partial label, given the true label. In
this work, we make the more realistic assumption that the mixing proportions are unknown.

Liu and Dietterich (2014) consider the question of learnability where the mixing pro-
portions are unknown. They consider two main sufficient conditions for learnability of a
partial label problem. First, they require that for every label [ € [L], the probability that
[ occurs with any particular distinct label I’ is less than 1. Our condition on the partial
label (described in the next Section) is considerably weaker. For example, it permits the
case where there are two labels [ # I’ such that whenever [ occurs in a partial label, I’ also
occurs.

The second sufficient condition of Liu and Dietterich (2014) is based on the class dis-
tributions, partial label distributions and the hypothesis class of choice. It requires that
every hypothesis that attains zero partial label error also attains zero true error. While
this condition may be useful for the selection of a suitable hypothesis class for an ERM
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approach, it is important to develop interpretable sufficient conditions that only depend on
the characteristics of a partial label problem. Our work provides such conditions.

We also note that Liu and Dietterich (2014) consider the realizable case, that is, the case
where the supports of Pi,..., Pr, do not overlap. By contrast, we make the significantly
weaker assumption that Py, ..., Pr are jointly irreducible, which allows Py, ..., Py, to have
the same support. Thus, our work addresses the agnostic case in classification with partial
labels.

3. Sufficient Conditions for Identifiability

We can think of each problem as requiring a specific factorization of P in terms of P and
II. We say P is factorizable if there exists (IT, P) € AM x PL such that P = IIP; we
call (I1, P) a factorization of P. Multiclass classification with label noise requires a specific
ordering of the elements of P; classification with partial labels requires that IT is consistent
with TIT and a specific ordering of the elements of P.

A factorization is not guaranteed to exist. For example, there is no factorization in the
case where M = 3, L = 2, and 151, ]52, Pj are linearly independent. When a factorization ex-
ists, in general it is not unique. For instance, consider the case where L = M, (I1, P) solves
(2), and IT is not a permutation matrix. Then, another solution is P=1IP. Furthermore,
there are infinitely many solutions in the following general case.

Proposition 1 Suppose that P has at least two distinct Pjs and has a factorization (I1, P).
If there is some P; in the interior of conv(Py, ..., Pp), then there are infinitely many distinct
non-trivial factorizations of P.

Proof Without loss of generality, suppose that ¢ = 1 and 151 #* }52. Then, since }51 is
in the interior of conv(P, ..., Pr), there is some 6 > 0 such that for any a € (1,1 + 9),
Qo = aP 4+ (1—a)Py is a distribution. Then, conv(Py, ..., Pr) < conv(Qa, Py, . .., Pr) and,
consequently, there is some IT' € AL such that (IT', (Qa, Py, ..., Pp)T) solves (2). Clearly,
by varying «, there are infinitely many solutions to (2). |

Identifiability of each problem is equivalent to the existence of a unique factorization
for that problem. Therefore, to establish identifiability for the three problems, we must
impose conditions on (II, P) and II*". To this end, we use the notion of joint irreducibility
of distributions.

Definition 3 The distributions { P;}1<i<r, are jointly irreducible iff the following equivalent
conditions hold

(a) Foralll < [L] suchthat1 < |I| < L, and €; such thate; = 0 and 3 ;c; € = Dy € = 1,

O ePi,) eP) e IR.

iel il

(b) 25:1 viP; is a distribution implies that v; > 0Vi.
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Conditions (a) and (b), whose equivalence was established by Blanchard and Scott (2014),
give two ways to think about joint irreducibility. Condition (a) says that every convex
combination of a subset of the P;s is irreducible (see Section 2.1) with respect to every
convex combination of the other P;s. Condition (b) says that if a distribution is in the span
of Py,..., Pr, it is in their convex hull. Joint irreducibility holds when each P; has a region
of positive probability that does not belong to the support of any of the other P;s; thus,
separability (see Section 2.2) of the P;s entails joint irreducibility of Py, ..., Pr. However,
the converse is not true: the P;s can have the same support and still be jointly irreducible
(e.g., P;s Gaussian with a common variance and distinct means (Scott et al., 2013)).
For all three problems, we assume that

(A) P,...,Pp are jointly irreducible.

Henceforth, unless we say otherwise, P, ..., Py are assumed to be jointly irreducible. In
Appendix G, we provide experiments on real-world datasets that suggest that this assump-
tion is reasonable.

We make different assumptions on Il for each of the three problems. For multiclass
classification with label noise, we assume that

(B1) II is invertible and TI~! is a matrix with strictly positive diagonal entries and non-
positive off-diagonal entries.

According to Lemma 1 below, this assumption essentially says that the problem has low
noise in the sense that for each i, ]5Z mostly comes from P;. In particular, each P; can
be recovered by subtracting small multiples of ]5j, j # i from P,. For example, consider
the following case where II satisfies (B1). Suppose that there is a “common background
noise” ¢ € Ay, that appears in different proportions in each of the distributions; formally,
we have m; = ;¢ + (1 — v;)e; with «; € [0,1). In other words, we shift each of the vertices
e; towards a common point ¢ (see panel (iii) of Figure 1). See Blanchard and Scott (2014)
for a proof that this setup satisfies (B1). In the binary case where M = L = 2, (B1) is
equivalent to the simple condition that m; 1 + m2 2 < 1. This assumption roughly says that
in expectation the majority of labels are correct. In Section 4.3, we present Lemma 1, which
gives a geometric interpretation of (B1).
For the demixing problem, we assume that

(B2) II has full column rank.

We note that (B2) is considerably weaker than (B1), e.g., it allows M > L. Of course,
it is natural to demand a weaker sufficient condition for demixing the mixed membership
problem than muliticlass classification with label noise because the goal of the former prob-
lem is to recover any permutation of P while the goal of the latter is to recover P exactly.
Nevertheless, the identifiability analysis to establish (B2) as a sufficient condition is also
significantly more involved than the analysis of (B1).

For classification with partial labels, we assume that

(B3) II has full column rank and the columns of IIT are unique.

The assumption that the columns of It are unique says that there are no two classes that
always appear together in the partial labels. In Appendix C, we argue that several of the
above conditions are also necessary, or are not much stronger than what is necessary.
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4. Algorithms for the Population Case

In this section, to establish that the above conditions are indeed sufficient for identifiability,
we give a population case analysis of the three problems. The results on multiclass classi-
fication with label noise appeared in a conference paper (Blanchard and Scott, 2014); we
refer the reader to that paper for the proofs.

4.1. Background
This paper relies on the following quantity from Blanchard et al. (2010).
Definition 4 Given probability distributions Fy, Iy, define

K*(Fy | F1) = max{k € [0,1]|3 a distribution G s.t. Fy = (1 — k)G + kF1}.

The following Proposition from Blanchard et al. (2010) establishes some useful properties
of K*.

Proposition 2 Given probability distributions Fy, F1 on a measurable space (X,C), if Fy #
F1, then k*(Fy| F1) < 1 and the above mazimum is attained for a unique distribution G
(which we refer to as the residue of Fy wrt. Fy). Furthermore, the following equivalent
characterization holds:
inf FO(C).
cec,F (C)>0 F1(C)
Note that x*(Fo | F1) = 0 iff Fp is irreducible wrt Fy. x*(Fp | F1) can be thought of as the
maximum possible proportion of F} in Fy. We can think of 1 — k*(Fy | F1) as a statistical
distance since it is non-negative and equal to zero if and only if Fy = F;. We refer to
k* as the two-sample k* operator. To obtain the residue of Fy wrt Fj, one computes
Residue(Fy | F1) (see Algorithm 1); this is well-defined under Proposition 2 when Fy # F}.
In order to gain intuition about x*, we briefly discuss how it can be used to recover IT~*
in the case L = 2. Under conditions discussed above (Scott et al., 2013), it holds that

f% =:(1<— Hl)}%,+-ﬁlj%, and
ﬁé =:(1-— ﬂg)fﬁ +—H2j%.

K*(Fo | Fy) =

and k1 = k*(Py, | P,) and ky = k*(Py | Py). By rearranging this system of equations, we can
write

B 1 Kkl 5
P=1II""'P = < - 11m> P.

1—ko 1—ko
Next, we turn to the multi-sample generalization of x*, which we call the multi-sample
k* operator.

Definition 5 Given distributions Fy, ..., Fx, define

K
K (Fo | Fu,. .. Fg) = nax K (FD | ;MiFi)
K K K K
= max (Z vi:v; =0, Z v; < 1,3 distribution G s.t. Fy = (1 — Z V)G + Z V,FZ) (3)
= i i=1 i=1
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Algorithm 1 Residue(Fp | F1)

Algorithm 2 MultiResidue(Fy | {F1, ..., Fx})

1 (V1. vi)T «—— (V). .., V)T achieving the maximum in x*(Fy | FY,. .., Fk)
Fo—-YEK uF
2: return %
1= v

Blanchard and Scott (2014) establish the equivalence in line (3), as well as Lemma 15,
which shows that the outer maximum is always attained at some p € Ag, i.e., k* is well-
defined. Although there is always a G achieving the max, it is not necessarily unique.
Any G attaining the maximum is called a mazimizer of k*(Fy | F,. .., Fk). The algorithm
MultiResidue(Fp | {F1, ..., Fk}) returns one of these G (see Algorithm 2). If G is unique,
we call G the multi-sample residue of Fy with respect to {F1,...,Fx}. Under our proposed
sufficient conditions, certain residues are shown to exist, and our decontamination methods
compute such residues via Algorithm 2. In Section 4.3, we discuss Lemma 1, which estab-
lishes useful conditions under which a multi-sample residue exists and is equal to one of the
vertices of Ay,

In general, one cannot express the multi-sample version of x* in terms of the two-sample
version. However, it is possible in some special cases. For example, if one had access to
feasible v, ..., vk that attain the optimum in (3), then it holds that x*(Fy | F1,..., Fk) =

K . .
K*(Fo | %) Further, it is possible to replace the multi-sample x* with several calls
=177

of the two-sample x* when K = L — 1, F; = P, for all ¢ # 0 and Fy = Zle o; P; where
D> =1and Vi a; > 0 (see Lemmas 6 and 13).

We remark that in previous work that assumes P; are probability vectors, distributions
are compared using [, distances. By contrast, in our setting of general probability spaces,
we use k¥ to compare different distributions.

4.2. Mixture Proportions

Recall that we assume that Pj,..., Py, are jointly irreducible. If 5 € RY and Q = 5’ P,
we say that n is the mizture proportion of Q). Since by Lemma 16, joint irreducibility of
Py, ..., Pr implies linear independence of Py, ..., Py, mixture proportions are well-defined,
i.e., the mixture proportions are unique.

An important feature of our decontamination strategy is recovering various mixture
proportions in the simplex Ay. To make this precise, we introduce the following definitions.
If i € [L], we say that conv({e; : j # i}) is a face of the simplex Ar; if A < [L] and |A| = &,
we also say that conv({e; : j € A}) is a k-face of Ar. If n € RL, @ is a distribution, and
Q = n' P, we say that N'(Q) = N(n) = {j : m; > 0} is the support set of n or the support
set of @. Note that by joint irreducibity, A (n) consists of the indices of all the nonzero
entries in the mixture proportion 1. Finally, for n; € Ap, and Q; = nZ-TP for i = 1,2, we

10
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Algorithm 3 Multiclass(Py, ..., Pp)
1: fori=1,...,L do
21 Q; <« MultiResidue(P; | {P; : j # i})
3: end for
4: return (Q1,...,Qr)T

say that the distributions @1 and Q2 (or the mixture proportions 7m; and 7y) are on the
same face of the simplex Ay, if there exists j € [L] such that m1,m2 € conv({ey : k # j}).

The heart of our approach is that under joint irreducibility, one can interchange distri-
butions @1, ..., Qx and their mixture proportions 71, ..., Nk, as indicated by the following
Proposition. We note that it is valid to to apply the k* operator to n1,...,nx since they
can be viewed as discrete probability distributions over [L].

Proposition 3 Let Q; = nl' P for i € [L] and n; € Ar. Suppose m1,...,nL are linearly
independent and Py, ..., Pr, are jointly irreducible. Then,

1. for any i€ [L] and A < [LI\{i}, s*(Q:i [{Qj : 1€ A}) = c*(mi|{n; : j € A}) <1,
2. for any i€ [L] and A < [L)\{i}, a mazimizer of k*(Q; |{Q; : j € A}) exists, and

3. v € AL is a mazimizer to k*(n; | {n; : j € A}) if and only if G = ¥ P is a mazimizer

to K*(Q; [ {Qj : j € A}).

In words, this proposition says that the optimization problem given by «*(Q;|{Q; : j €
A}) is equivalent to the optimization problem given by x*(n;|{n; : j € A}). Thus, joint
wrreducibility of Pi,...,Pr and linear independence of the mizture proportions enable a
reduction of each of the three problems to a geometric problem where the goal is to recover
the vertices of a simplex by applying k* to points (i.e., the mizture proportions) in the
simplex. This makes the figures below valid for general distributions (see Figures 1, 2, 3,
and 4).

4.3. Multiclass Classification with Label Noise

Our algorithm for multiclass classification with label noise is by far the simplest of the three.
It simply computes a maximizer of k*(P; |{P; : j # i}) for every i € [L].

Theorem 1 Let Pi,...,Pp be jointly irreducible and I1 satisfy (B1). Then,
Multiclass(Py, . .., Pr) returns Q € PL such that Q = P.

The proof of this result has two main ideas. First, it applies the one-to-one correspon-
dence established in Proposition 3 between the maximizers of x*(P; | {P; : j # i}) and the
maximizers of K*(7; | {m; : j # i}).

Second, the proof shows that x*(7; | {m; : j # i}) is well-behaved in the sense that the
residue of 7; wrt {m; : j # i} is e;. The key idea is encapsulated in the following Lemma
from Blanchard and Scott (2014).

Lemma 1 (Blanchard and Scott, 2014) The following conditions on my,..., T are
equivalent:

11
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€2

3
%]

2é--ob

(i)

Figure 1: Illustration of the (B1) when there are L = 3 classes where e; denotes the ith
unit vector. Panel (i): Low noise, IT recoverable. Each 7r; can be written as a
convex combination of e; and the other two 7; (with a positive weight on e;),
depicted here for [ = 1. Panel (ii): High noise, II not recoverable. Panel (iii):
The setting of “common background noise” described in the text.

1. For each i, the residue of m; with respect to {m;,j # i} is e;.

2. For every i there exists a decomposition 7; = kie; + (1 — k;)w, where k; > 0 and ]
is a convex combination of w; for j # 1.

3. II is invertible and II™" is a matriz with strictly positive diagonal entries and non-
positive off-diagonal entries.

This lemma establishes that under (B1), for each i, the residue of m; with respect to
{mj,j # i} is ;. The main step in the proof of this Lemma is establishing that 3 implies
1. The argument identifies the residue of 7r; with respect to {m;};«; by reformulating the
linear program in £*(7v; | {;} ;i) such that the objective is to maximize e!II" 'y subject to
some appropriately defined constraint. By the structure of TI"! assumed in (B1), it follows
that the v € Ap that maximizes this objective is e;, and it can further be shown that this
maximizer satisfies the other constraints.

Thus, combining the above two ideas yields the result. In addition, Lemma 1 provides
geometric intuition as to when (B1) is satisfied through condition 2. Figure 1 illustrates
the case L = 3. See Panel (i) for an example where condition (b) is satisfied and Panel (ii)
for an example where (b) is not satisfied.

4.4. Demixing Mixed Membership Models

In this section, we assume that M = L; we consider the nonsquare case in the appendix.
For certain simple cases of mixture proportions, a straightforward resampling strategy can
be used to reduce the problem of demixing mixed membership models to multiclass classi-

12
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fication with label noise. For example, suppose that there are L = 3 classes and

|
I

(4)

O NN
= O N
N[=NI= O

Inspection shows that the inverse of IT does not satisfy the condition in (B1) and, therefore,
one cannot simply apply Algorithm 3. A simple procedure to circumvent this issue is to
resample from the contaminated distributions to obtain the following distributions:

~ 1~ 1~ = 1~ 1= ~ 1~ 1=
=-P+ =P =—-P+ =P d =—P,+ —P;s.
O =5P+ 5P, Q=gP+5P and Qs =P+ 5P
Then, it can be shown that the resulting mixing matrix

II =

I[N

NN NI
RO s [

associated with the Q;s satisfies the conditions of Lemma 1 so that Multiclass(@l, Qo, Qg)
gives the desired solution. However, this approach breaks down for most possible mixing
matrices. Thus, the challenge is to develop an algorithm that works for a large class of
mixture proportions and does not rely on knowledge of the mixture proportions. To meet
this challenge, we propose the Demix algorithm.

The Demix algorithm is recursive. Let S1,..., Sk denote K contaminated distributions.
In the base case, the algorithm takes as its input two contaminated distributions S; and
Sy. It returns Residue(Sy | S2) and Residue(S3 | S1), which are a permutation of the two
base distributions (see Figure 2). When K > 2, Demix uses a subroutine FindFace (see
Algorithm 5) to find K — 1 distributions Rs,..., Rk on the same (K — 1)-face. FindFace
iteratively generates candidates for distributions on the same (K — 1)-face, which it tests
using FaceTest (see Algorithm 6). FaceTest(S1,...,Sk_1) determines whether a set of
distributions Si,...,Sk_1 are on the interior of the same face by using the two-sample x*
operator; equivalently, it tests whether there exists a pair of distributions S; and \S; such
that S; is irreducible with respect to S;. Once Demix finds K — 1 distributions Ry, ..., Rk

on the same (K —1)-face, it recursively applies Demix to Ra, ..., Rx to obtain distributions
Q1,...,QK_1 that are a permutation of K — 1 of the base distributions. Subsequently, the
algorithm computes a maximizer Qg of H*(% Zfil Si|Q1,...,QK—1). Since Q1,...,QK_1

are a permutation of K — 1 of the base distributions, the maximizer @k is guaranteed to
be unique and to be the remaining base distribution (see Figure 3 for an execution of the
algorithm).

A number of remarks are in order regarding the Demix algorithm. First, although we
compute the residue of %Si + %Q wrt S for each i # 1, there is nothing special about
the distribution S;. We could replace S; with any S; where j € [K], provided that we
adjust the rest of the algorithm accordingly. Second, we can replace the sequence {%}le
with any sequence oy, ' 1. Finally, we could replace line 7 with the following sequence of
steps: fori =1,..., K — 1, compute Qx «— Residue(Qx | @;) (see Lemma 13). Then, the
algorithm would only use the two-sample k* operator. We use such an algorithm in the
finite-sample setting.

13
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Algorithm 4 Demix(Si,...,Sk)
Input: Si,...,Sk are distributions
1: if K =2 then
2:  return (Residue(S;|S), Residue(Ss |S1))T
3: else
4: (Rg,...,Rg)T «— FindFace(S1, ..., Sk)
5. (Q1,...,Qx 1) «— Demix(Ry, ..., Rk)
6: Qr % Zfi1 Si
7
8
9

Qx «— MultiResidue(Qk | Q1,. .., Qx—1)

return (Q1,...,Qx)"
. end if

Algorithm 5 FindFace(Si, ..., Sk)
Input: Si,..., Sk are distributions

1: Q «— uniformly distributed element in conv(Ss, ..., Sk)
2: forn=1,2,...do
3:  Set R; «— Residue(%Si + ”T_lQ | S1) forallie {2,...,K}

4:  if FaceTest(Ra,...,Rk) then
5: return (Ry,...,Rg)?

6: end if

7: end for

We also remark that a simplified version of Demix solves the demixing mixed member-
ship models problem if we assume (B1) from the multiclass label noise setting. In that
case, finding L — 1 distributions on the same face can be accomplished by simply computing
Qi «— MultiResidue(P | {]Sj }ji) for i =2,... L. Indeed, then, each Q; is equal to P; and
P, can be obtained by computing MultiResidue(ﬁl [{Qj}j=2,..1)

We establish the following theorem.

Theorem 2 Let Py,. .., Pp be jointly irreducible and 11 have full column rank. Then, with
probability 1, Demiz(P) returns a permutation of P.

We briefly sketch three key aspects of the proof. First, in the FindFace subroutine, sampling
@ uniformly at random from conv(Ss,...,Sk) ensures that w.p. 1 Residue(Q|S;) is on
the interior of a face of the simplex. Then, conditional on this event, we show that by
a continuity property of Residue(-|S;) there is a large enough n such that Ra,..., Rg
are on the same face of the simplex Ag_; (see panels (c) and (d) of Figure 3). Second,
Proposition 8 in Appendix D establishes that the subroutine FaceTest(Ra, ..., Rx) returns
1 if and only if Rs,..., Rx are on the same face of the simplex. Combining the above
two observations implies that eventually FindFace(S1,...,Sk) terminates at which point
{Ri}re(x\f1} © {Pr}rer)\ 1y for some [ € [K]. The final key observation is that { Ry} e[\ {1}
and {Pk}k:e K\{1} form an instance of the demixing problem that satisfies the sufﬁment
conditions (A) and (B2) (see Figure 2). Therefore, this instance can be solved recursively.

14
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Algorithm 6 FaceTest(S1,...,Sk)
1: Set Z; j = 1{x*(S;| S;) > 0} for all i and j
2: if Z has a zero off-diagonal entry then

3 return 0

4: else
5
6

return 1
. end if

(a) (b) (c)

Figure 2: In (a), we consider a demixing problem where there are two classes and M = L
(the base case of Algorithm 4). The diamonds represent the mixture proportions
of P; and P,. The circles represent the base distributions. In (b), the residue of a
contaminated distribution wrt the other contaminated distribution is computed
(line 3), yielding a base distribution. In (c), the residue is computed again switch-
ing the roles of the contaminated distributions (line 4); this yields the remaining
base distribution.

4.5. Classification with Partial Labels

As in the case of demixing mixed membership models, a simple resampling strategy works in
certain nice settings of classification with partial labels. For example, consider an instance of
classification with partial labels with the mixing matrix from equation (4). The resampling
procedure that yields Q1, Q2, Q3 (described in Section 4.4) also works here. Nevertheless,
as in demixing mixed membership models, this approach does not meet our goal of an
algorithm that solves a broad class of mixing matrices and partial labels.

Indeed, we observe that the partial labels do not provide enough information for choosing
the resampling weights. Consider another instance of the problem with the same partial
label matrix:

1 9 9
190 10 1
0 L 2

10 10

Applying the resampling approach to (5) can be shown to fail by observing that the inverse
of the resampled mixing matrix does not satisfy condition & of Lemma 1. Thus, although the

15
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(a) (b) (c)
(d) (e) ()

Figure 3: In (a), we consider a demixing problem where there are three classes and M = L.
The diamonds represent the mixture proportions of P;, P, and P5. In (b), the blue
circle is a random distribution chosen in the convex hull of two of the distributions
(line 7). In (c), two of the distributions are resampled so that their residues
wrt the other distribution are on the same face of the simplex (lines 12-15).
In (d), these particular residues are computed (lines 12-15). In (e), two of the
distributions are demixed (lines 3-5). In (f), the residue of the final distribution
wrt the final two demixed distributions is computed to obtain the final demixing
(line 18-21).

Algorithm 7 PartialLabel(II*, (Py, ..., Py)7")
1: fori=1,...,L do ) )
2: Qi < uniformly random distribution in conv (P, ..., Py)

3: end for
4: for k=2,3,... do

5. (Wi,...,Wr)T «— GenerateCandidates(k, (Q1,...,Qr)T)

6:  (FoundVertices, C) «— VertexTest(II*, Py, ..., Py, W1, ..., Wp)
7. if FoundVertices then

8: return C(Wy,..., W)

9: end if

10: end for

problem instances (4) and (5) have the same partial label matrix, the resampling procedure
only works for one of these.

Next, we turn to presenting an algorithm that solves classification with partial labels for
a wide class of mixing matrices and partial labels. We propose the PartialLabel algorithm

16
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Algorithm 8 GenerateCandidates(k, (Q1,...,Qr)7)
1: Set W; «— @Q; for all i € [K]
2: fori=1,...,L do
3 Qi — 2. Q5 + X Wil
4: W; «— MultiResidue(%Qi + (1 — %)Qz ‘ {Qj}j>i U {Wj}j<i>
5
6

: end for
. return (Wo,...,Wp)T

Algorithm 9 VertexTest(IT*, (P, .., Py)", (Q1,...,Qr)T)
Form the matrix Y; ; == 1{x*(Q; | Q;) > 0}
if Y has a non-zero off-diagonal entry then
return (0,0)
end if
Form the matrix Z; j = 1{s*(P;|Q;) > 0}
Use any algorithm that finds a permutation matrix C such that ZC = II" (if it exists)

7. if such a permutation matrix C exists then
return (1,C7)

9: else

10:  return (0,0)

11: end if

(see Algorithm 7). PartialLabel proceeds by iteratively creating sets of candidate distribu-
tions W := (W1y,...,Wr)T via the subroutine CreateCandidates (see Algorithm 8). Given
each W, it runs an algorithm VertexTest (see Algorithm 9) that uses P and the partial
label matrix ITT to determine whether W is a permutation of the base distributions P.
If W is a permutation of P, VertexTest constructs the corresponding permutation matrix
for relating these distributions. If not, it reports failure and the PartiallLabel algorithm
increments k and finds another set of candidate distributions.

The VertexTest algorithm proceeds as follows on a vector of candidate distributions Q :=
(Q1,...,Qr)T. First, it determines whether there are two distinct distributions Q;, Qj such
that @; is not irreducible wrt @;, in which case @ cannot be a permutation of P. If there
is such a pair, it reports failure. Otherwise, it forms the matrix Z; ; = 1{s*(P;|Q;) > 0}
and uses any algorithm that finds a permutation C (if it exists) of the columns of Z to
match the columns of ITT. If such a permutation C exists, it returns CT and, as we show
in Lemma 7, CTQ = P; otherwise, VertexTest reports failure.

We remark that finding the permutation in line 6 of Algorithm 9 is not NP-hard. One
algorithm (but most likely not the most efficient) proceeds as follows: define a total ordering
on the columns of binary matrices. Sort the columns of Z and IT* according to this total
ordering. Check whether the resulting matrices are equal.

The following theorem gives our identification result for classification with partial labels.
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Theorem 3 Suppose that Py, ..., Pr are jointly irreducible, I1 has full column rank, and
the columns of TIT are unique. Then, PartialLabel(TI*, (P)T) returns R € P such that
R=P.

There are two key ideas to the proof of Theorem 3. First, the randomization in line 2 of
Algorithm 7 ensures through a linear independence argument that with probability 1, the
operation MultiResidue(+Q; +(1—2)Qi [ {Q;};=i {W;};<i) in line 4 of Algorithm 8 is well-
defined. Second, in the GenerateCandidates algorithm, let Q); = 'roP and W; = 'ijP. We
make the simple observation that the affine hyperplane given by ~1,...,9i—1, Tit1,---, TL
bisects Ay, such that 7; and a nonempty subset of {e1,...,er}\{7v1,...,vi—1} are in the
same halfspace. Using this observation, we show that for large enough k, W; is one of the
base distributions and is distinct from all W; with j < 4.

The VertexTest algorithm connects the demixing problem and classification with partial
labels by showing that any algorithm that solves the demixing problem can be used as a
subroutine to solve classification with partial labels. For example, consider the following
algorithm for classification with partial labels. First, use the Demix algorithm to obtain a
permutation @ of the base distributions P. Second, use VertexTest to find the permutation
matrix relating @ and P. This alternate algorithm is the basis of our finite sample algorithm
for classification with partial labels (see Section 5.3 for a more thorough discussion).

5. Estimators for the Finite Sample Setting

In this section, we develop the estimation theory to treat the three problems in the finite
sample setting. Let X = R? be equipped with the standard Borel o-algebra C and P1, e Py
be probability distributions on this space. Suppose that we observe for i = 1,..., L,

i i tad. 7
Xt L XS R B

Let € be any Vapnik-Chervonenkis (VC) class with VC-dimension V' < o0, containing the
set of all open balls, all open rectangles, or some other collection of sets that generates the
Borel o-algebra C. For example, £ could be the set of all open balls wrt the Euclidean
distance, in which case V' = d + 1. Define ¢;(J;) = 3\/Vlog("i+i)iflog(6"/2) fort=1,...,L.
Our estimators are based on the VC inequality (Devroye et al., 1996). This inequality says
that for each i € [L], and ¢ > 0, the following holds with probability at least 1 — d:

sup | (E) — P/(E)| < e(9)
FEe&

where the empirical distribution is given by JSJ(E) =1 2t Yixieny
K J

5.1. Multiclass Classification with Label Noise

Let Fg . .,F}\L/[ denote the empirical distributions based on i.i.d. random samples from
respective distributions Fy,..., Fy;. We introduce the following estimator of the multi-
sample k*:

R(FS|FL,... Fl) = max inf 0 () + col55)

6
pely EeE (Zf‘il MFJ(E) -4 ,uiei(n%.))Jr o
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A A A A A
A AA A A
A A A A A

Figure 4: (a) depicts an instance of the partial label problem where there are L = 3 classes,
M = 3 partial labels, and each partial label only contains two of the classes.
In (a), the red diamonds represent the mixture proportions of the distributions
Py, Py, Ps. In (b), three distributions Q1, Qa, @3 are sampled uniformly randomly
from the convex hull of P, P», Ps; the blue circle, black triangle, and green square
represent their mixture proportions. Figures (c)-(h) show how the algorithm
generates a set of candidate distributions (WI(Q),W2(2),W§2))T with £ = 2. In
(h), PartialLabel runs VertexTest on (WI(Q),W2(2),W§2))T and determines that
(WI(Q), WQ(Q), W3(2))T is not a permutation of (Py, Py, P3)T. In (i)-(0), PartialLabel
begins again with Q1,Q2, Qs and executes the same series of steps with k = 3,
generating (Wl(g), W2(3), Wég))T. In (o), it runs VertexTest on (Wl(g), W2(3), W§3))T
and determines that (VVl(?’)7 W2(3), Wég))T is a permutation of (P, Py, P3)T.

where the ratio is defined to be o0 when the denominator is zero. This estimator arises from
applying the VC inequality to the following expression:

F(E
K*(Fy | F1, ..., Fy) = max &%( FO\Z/LZ ;) = max inf #
HEA N MEAN Eeg ZZ 1 1iFi (E)>0 Zi:l ,LLZFz(E)

)

where the last equality uses Proposition 2. Let [ denote a point where the maximum is
achieved in (6). Then, v = K estimates the vector (vy,...,v) attaining the maximum
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in (3). See Proposition 2 of Blanchard and Scott (2014) to find a proof that the proposed
estimator is consistent.

Based on this estimator, we introduce estimators that under the assumptions of Theorem
1 converge to the base distributions uniformly in probability. Let n = (n1,...,nr); we write
n — o to indicate that min; n; — c0.

Theorem 4 Let (U; )i+ be a vector attaining the mazimum in the definition of k; =

E(Pj | {15].T 1 j #1i}) and

- Pl 0P
1—&; '

Then, under the assumptions of Theorem 1, Vi = 1,...,L, supgeg |@,(E) — Pi(E) Lp
as n — Q0.

5.2. Demixing Mixed Membership Models

In this section, we develop a novel estimator that can be used to extend the Demix algorithm
to the finite sample case. Uniform convergence results typically assume access to i.i.d.
samples. The challenge of developing an estimator for Demix is that because of the recursive
nature of the Demix algorithm, we cannot assume access to i.i.d. samples to estimate every
distribution that arises. Nonetheless, we show that uniform convergence of distributions
propagates through the algorithm if we employ an estimator of k* with a known rate of
convergence.

Let ' and H be estimates of distributions F and H , respectively. We introduce the
following estimator:

)

(P = inf LE)
Beg (H(E) — )+

where v, = ZZL 1 (L -). Our estimator is closely related to the estimator from Blanchard

et al. (2010): if F and H are empirical distributions, e.g., F= PZ-Jr and H = PJ-T7 then their

F (B)+ei(5)
(A(E)*Ej(%j)){
include the terms €; (- L) corresponding to P; that the estimators F and H use samples from;
to simplify presentatl(;n however, we include all the terms, which leads to bounds that are
looser by only a constant factor.

Based on the estimator &, we introduce the following estimator of the residue of F' wrt
H.

estimator for k*(F | H) is inf gee Note that our proofs only require that s,

Definition 6 Let ' and H be estimators ofF and H, respectively, where F' # H and let

G — Reszdue(F | H) and G — ReszdueHat(F | H) We call G a ResidueHat estimator of

order k > 1 if (i) F,H € conv(P\, ..., Pr), and (i) at least one of F' and H is a ResidueHat

estimator of order k — 1 and the other is either an empirical distribution or a ResidueHat

estimator of order less than or equal to k — 1. We call G a ResidueHat estimator of order
0 if (i) holds, and F and H are empirical distributions.
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Algorithm 10 ResiducHat(F | H)

Input: ﬁ, H are estimates of F.H
1. R R(F|H)
F—r(1-H)
1-k

2: return

Algorithm 11 DemiXHat(gl, 8k le)
Input: §1, cee S i are ResidueHat estimates

1: if K = 2 then
2 return (ResidueHat(S; |S2), ResidueHat(Ss | S1))T

: else R R
(Ry,...,Rk)" «— FindFaceHat(S1, ..., Sk | )
(Ql, s ,QK_l)T <« DemixHat(Rg, e ,RK)

Qr «— % Z{il §2

fori=1,...,.K—-1do
Qi «— ResidueHat(Qx | Q)

. end for

10: return (@1, e ,@K)T

11: end if

3
4
5:
6:
7
8
9

Note that the above definition is recursive and matches the recursive structure of the Demix
algorithm. We suppress the qualifier “of order k” when it is not relevant.

To use ResidueHat estimators to estimate the P;s, we build on the rate of convergence
result from Scott (2015). In Scott (2015), a rate of convergence was established for an
estimator of xk* using empirical distributions; we extend these results to our setting of
recursive estimators and achieve the same rate of convergence. To ensure that this rate of
convergence holds for every estimate in our algorithm, we introduce the following condition.

(A”) Pi,...,Pp are such that Vi supp(P;) & Uz supp(FP;).

Note that this assumption implies joint irreducibility and is a natural generalization of the
separability assumption.

The following result establishes sufficient conditions under which ResidueHat estimates
converge uniformly.

Proposition 4 If Py, ..., Py satisfy (A”) and G is a ResidueHat estimator of a distribution
G e conv(P,...,Pp), then suppes |G(E) — G(E)| =2 0 as n —> 0.

Based on the ResidueHat estimators, we introduce an empirical version of the Demix
algorithm—DemixHat (see Algorithm 11). The main differences are that (i) we replace
the Residue function with the ResidueHat function, (ii) we replace line 7 in the Demix
algorithm with a sequence of applications of the two-sample «* operator, as mentioned just
before Theorem 2, and (4ii) DemixHat requires specification of a hyperparameter € € (0, 1).
We replace the multi-sample x* with the two-sample k* because there is no known esti-
mator with a rate of convergence for the multi-sample £*, and the rate of convergence is
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Algorithm 12 FindFaceHat(Sy, ..., Sk |€)

Input: §1, ceey S k are ResidueHat estimates

1: Q «— uniformly distributed random element from conv(Ss, ..., Sk)
2: forni2,3,...do R A
3 Set R; «— ResidueHat(25; + 2=2Q) [ S)) for all i € {2,..., K}

4. if FaceTestHAat(}ABg, R , Rk |€) then
5 return (R, -, Q)T

6: end if

7: end for

Algorithm 13 FaceTestHat(@l, e ,@K l€)

1: Set Z; j = 1{R(Q;| Q;) > €} for i # j

2: if Z has a zero off-diagonal entry then
3 return 0

4: else
5
6

return 1

. end if

essential to our consistency proof. The hyperparameter € gives a tradeoff between runtime
and accuracy. The runtime increases with increasing €, but the amount of uncertainty about
whether DemixHat executes successfully decreases with increasing e.

We now state our main estimation result.

Theorem 5 Let § > 0 and € € (0,1). Suppose that Pi,..., Py, satisfy (A") and II has
full rank. Then, with probability tending to 1 as n — o0, Demz’xHat(PlT, ce P]-I | €) returns

(Q1,...,QL) for which there exists a permutation o : [L] —> [L] such that for every i € [L],

sup |Q4(E) — Py (E)| < 6.
Ee&

5.3. Classification with Partial Labels

In this section, we present a finite sample algorithm for the decontamination of a partial
label model (see Algorithm 14). This algorithm is based on a different approach from Par-
tialLabel (Algorithm 7): it combines DemixHat with an empirical version of the VertexTest
algorithm (see Algorithm 17). The reason for this is that we have an estimator with a rate
of convergence for the two-sample k¥, whereas there is no known estimator with a rate of
convergence for the multi-sample «*. We leverage this rate of convergence to prove the
consistency of our algorithm.
We make an assumption that simplifies our algorithm: IT" satisfies

(D) there does not exist 4, j € [L] such that H:f: = e?.
In words, this says that there is no contaminated distribution P; and base distribution
P; such that P, = P;. We emphasize that we make this assumption only to simplify the
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Algorithm 14 PartialLabelHat(IT", (F’T ..., P} 0T e)

1 (Q1,...,Qr)" «— DemixHat(P],.. PM €)

2: (FoundVertices, C) «— VertexTestHat(HJF7 (]31T, e PJL)T, (Q1, ...
3: return C(Q1,...,Qr)"

presentation and development of the algorithm; one can reduce any instance of a partial
label model satisfying (B3) and (A) to an instance of a partial label model that also
satisfies (D). We defer the sketch of this reduction to Section E.3.

We now state our main estimation result for classification with partial labels.

Theorem 6 Let § > 0 and € € (0,1). Suppose that Py,..., Py, satisfy (A”), II has full
rank, the columns of II" are unique and X1 satisfies (D). Then, with probability tending
to 1 as n — 0, PartialLabelHat(TI ™, (PlT, .., Pl )T | €e) returns (Q1,...,Q1)T such that
for every i € [L],

sup |Qi(E) — P{(E)| < 6.

Ee&

5.4. Sieve Estimators

In the preceding, we have assumed a fixed VC class to simplify the presentation. However,
these results easily extend to the setting where £ = & and & — o0 at a suitable rate
depending on the growth of the VC dimensions Vj. This allows for the P;s to be estimated
uniformly on arbitrarily complex events, e.g., & is the set of unions of k open balls.

6. Discussion

In this paper, we have studied the problem of how to recover the base distributions P from
the contaminated distributions P without knowledge of the mixing matrix II. We used a
common set of concepts and techniques to solve three popular machine learning problems
that arise in this setting: multiclass classification with label noise, demixing of mixed mem-
bership models, and classification with partial labels. Our technical contributions include:
(i) We provide sufficient and sometimes necessary conditions for identifiability for all three
problems. (ii) We give nonparametric algorithms for the infinite and finite sample settings.
(iii) We provide a new estimator for iterative applications of k* that is of independent in-
terest. (iv) Finally, our work provides a novel geometric perspective on each of the three
problems.

Our results improve on what was previously known for all three problems. For multiclass
classification with label noise and unknown II, previous work had only considered the case
M = L = 2. Our work achieves a generalization to arbitrarily many distributions. For
demixing of mixed membership models, previous algorithms with theoretical guarantees
required a finite sample space. Our work allows for a much more general set of distributions.
Finally, for classification with partial labels, previous work on learnability assumed the
realizable case (non-overlapping Pi,..., Pr) and assumed strong conditions on label co-
occurence in partial labels. Our analysis covers the agnostic case and a much wider set of
partial labels.
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Our work has also highlighted the advantages and disadvantages associated with the
two-sample k* operator and multi-sample k* operator, respectively. Algorithms that only
use the two-sample x* operator have the following two advantages: (i) the geometry of the
two-sample k* operator is simpler than the geometry of the multi-sample £* operator and,
as such, can be more tractable. Indeed, in recent years, several practical algorithms for
estimating the two-sample x* have been developed (see Jain et al. (2016) and references
therein). (ii) We have estimators with established rates of convergence for the two-sample
Kk* operator, but not for the multi-sample £* operator. On the other hand, algorithms that
use the multi-sample k* operator have fewer steps.

The aims of this work are mainly theoretical, but we believe that our work can inform
practical algorithms. First, we note that while we have emphasized recovery of P, another
interpretation is that our work deals with estimating IT. One can then plug our estimate
of IT into corrected losses for multiclass classification with label noise and classification
with partial labels that require knowledge of II (Cid-Sueiro, 2012; Menon et al., 2015b;
van Rooyen and Williamson, 2015; Patrini et al., 2017). Thus, in general, our work can be
applied in this two-stage approach. Second, when L or M are small, the Demix algorithm is
practical. For example, Metodiev and Thaler (2018b) apply the Demix algorithm to a high-
energy physics application where L = M = 2. It is of interest to examine more generally
whether variants of Demix work when M or L are small. Third, we conjecture that our
analysis suggests novel principles for designing algorithms. For example, an alternative
approach to the three problems in question is to embed the contaminated distributions
in a reproducing kernel Hilbert Space and to estimate the II matrix by setting up an
optimization problem (e.g., see Ramaswamy et al. (2016) for the setting where there are
two distributions). One of our necessary conditions, maximality (see Appendix C), suggests
formulating the optimization problem to search for base distributions that (i) explain the
observed contaminated distributions and (i) whose convex hull is as large as possible. In
this way, we believe that our general treatment of these three problems that arise in mutual
contamination models provides intuitions that could be useful for designing new algorithms.

Although our experiments in Appendix G suggest that joint irreducibility of the base
distributions is a reasonable assumption, it is nevertheless worthwhile to consider what
questions arise if the base distributions are not exactly jointly irreducible. We see two
possible research directions. First, one could perform a stability analysis: when the base
distributions are not jointly irreducible, but are nearly jointly irreducible (in some sense
that would need to be defined precisely), does the estimate of IT remain close to the true IT?
A second research question is to reinterpret the problem of demixing of mixed membership
models as a dimensionality reduction problem. That is, given a large set of distributions,
one could seek to represent them as convex combinations of a small set of irreducible base
distributions. Then, the challenge would be to define an appropriate measure of approx-
imation quality and to determine whether our approach could be useful for designing a
consistent algorithm for the best approximation.
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Appendix A. Outline of Appendices

To begin, we introduce additional notation for the appendices. In Section C, we discuss
how strong our sufficient conditions are and present factorization results that suggest that
they are reasonable. In Section D, we give our identifiability analysis of demixing mixed
membership models and classification with partial labels. In Section E, we prove our results
on the ResidueHat estimator, as well as the finite sample algorithms for demixing mixed
membership models and classification with partial labels. In Section F, we state some
lemmas from related papers that we use in our arguments.

Appendix B. Notation for Appendices

Let A < R? be a set. Let aff A denote the affine hull of A, ie., affA =
{Zfil Oixilxy,...,xx € A, Zfil 0; = 1}. A° denotes the relative interior of A, i.e.,
A° ={zx e A|B(x,r) naff A € A for some r > 0}. Then, 0A denotes the relative boundary
of A, ie., 0A = A\A°. In addition, let |-| denote an arbitrary finite-dimensional norm on
RE. For two vectors, &,y € RE, define

min(ccT,yT) = (min(z1,41), ..., min(zx, yr)).

x >y means z; > y; Vie [K].
For distributions Q1, ..., Qk, we use conv(Q1,...,Qk)° to denote the relative interior
of their convex hull and have that

K K
conv(Q1,...,Qk)° = {Z a;Q; : a; >0, Z a; = 1}

i=1 i=1

Note that when Q1,...,Qx are discrete distributions, this definition coincides with the
definition of the relative interior of a set of Euclidean vectors.

We use the following affine mapping throughout the paper: m,(z,y) = (1 — v)z + vy
where x,y € R and v € [0,1]. Overloading notation, when @1 and Qs are distributions,
we define m, (Q1,Q2) = (1 — v)Q1 + Q2. Note that if 91,m2 € Ay and Q1 = n{ P and
Q2 = n¥ P, then m,,(m1,m2) is the mixture proportion for the distribution m, (Q1, Q2).

Appendix C. Factorization Results

In this section, we discuss whether our sufficient conditions are necessary. For the problems
of demixing mixed membership models and classification with partial labels, we provide
factorization results that suggest that our sufficient conditions are not much stronger than
what is necessary.
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C.1. Multiclass Classification with Label Noise

Our sufficient condition (B1) for multiclass classification with label noise is not necessary.
Rather, (B1) is one of several possible sufficient conditions, and one that reflects a low
noise assumption as illustrated in Figure 1. Consider the case L = M = 2 where (B1) is
equivalent to 71 2 +m2 1 < 1. Recovery is still possible if 71 o +m2 1 > 1 since one can simply
swap 151 and 152 in a decontamination procedure. 79 + 721 < 1 is only necessary if one
assumes that most of the training labels are correct, which is what 71 2 +m21 < 1 essentially
says. For larger L = M, (B1) says in a sense that most of the data from P, come from
P; for every i. Other sufficient conditions are possible (as in the binary case), but these
would require at least one P; to contain a significant portion of some Pj, j # i. Regarding
(A), Blanchard et al. (2016) study the question of necessity for joint irreducibility in the
case L = M = 2 and show that under mild assumptions on the decontamination procedure,
joint irreducibility is necesssary.

C.2. Demixing Mixed Membership Models

Recall the definition of a factorization: P is factorizable if there exists (IT, P) € AM x pL
such that P = IIP; we call (II, P) a factorization of P.

Our sufficient conditions are not much stronger than what is required by factorizations
that satisfy the two forthcoming desirable properties.

Definition 7 We say a factorization (I, P) of P is maximal (M) iff for all factorizations
(I, P') of P with P' = (P},...,P;)T € PL, it holds that {P],...,P,} < conv(Py,..., PL).

In words, P = (Py,..., Pr)T is a maximal collection of base distributions if it is not possible
to move any of the P;s outside of conv(Py, ..., Py) and represent P.

Definition 8 We say a factorization (I, P) of P s linear (L) iff {P.,...,P;} <
span(Py, ..., Py).

We believe that (L) is a reasonable requirement because it holds in the common situation
in which there exist m;,,...,7;, that are linearly independent. Then for I = {iy,...,iL},
we can write 131 = II; P where Il; is the submatrix of IT containing only the rows indexed
by I and P is similarly defined. Then, II; is invertible and P = H;lf’[.

Factorizations that satisfy (A) and (B2) are maximal and linear.

Proposition 5 Let (IL, P) be a factorization of P. If (IL, P) satisfies (A) and (B2), then
(I1, P) satisfies (M) and (L).

Proof We first show that (II, P) satisfies (L). By hypothesis, P,..., P, are jointly ir-
reducible. By Lemma 16, Py,..., Py are linearly independent. Since by hypothesis II
has full rank, there exist L rows in II, ;,...,m;,, that are linearly independent. By
Lemma 16, 151-1, . -,13@ are linearly independent. Since ITP = P, span(ﬁl, . _,PM) c
span(P,...,Py). Since dimspan(Py,...,Py) > L, we have span(Pi,...,Py) =
span(P, ..., Pr). Therefore, (II, P) satisfies (L).

Now, we show that (II, P) satisfies (M). Suppose that there is another solution
(I, P') with P’ = (P},...,P})" such that TI'P’ = P and with some P/ such that

1
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P! ¢ conv(Py,...,Pr). We claim that P/ ¢ span(Pi,...,Pr). Towards a contradic-
tion, suppose that P/ € span(P,...,Pr) so that we can write P = Zle a;P;. Then,
at least one of the a; is negative since, by assumption, P/ ¢ conv(Py,...,Pr). But,
by joint irreducibility of Pi,...,Pr, P/ is not a distribution, which is a contradiction.
So, the claim follows. But, then, since span(Pi,...,Pr) = span(P,..., Py), we must
have that ~spaur1(Pl~, ..., Py) € span(Py,...,P;_,, P/ ..., Pr), which is impossible since
dimspan(Pi, ..., Py) = L. [ |
Maximal and linear factorizations imply conditions that are not much weaker than our
sufficient conditions.

Theorem 7 Let (II, P) be a factorization of P. If (IL, P) satisfies (M), then

(A') Vi, P; is irreducible with respect to every distribution in conv({P; : j # i}).

If (I1, P) satisfies (L), then

(B’) rank(II) > dimspan(P, ..., Pr).

Proof

(A’) We prove the contrapositive. Suppose that there is some P; and Q) € conv({P; : j # i})

with @ = Zj 4; BiPj such that P; is not irreducible wrt . Then, there is some
distribution G and 7 € (0,1] such that P, = vQ + (1 — v)G.

Suppose v = 1. Then, P, = Q € conv({P; : k # i}). But, then Py,..., Py €
conv({P; : j # i} u {R}) for any distribution R ¢ conv(P,..., Pr). This shows that
(IT, P) does not satisfy (M).

Therefore, assume that v € (0,1). Either G € conv(Py,...,Pr) or G ¢
conv(Py, ..., Pr). Suppose that G € conv(P,...,Pr). Then, there exist aq,...,ar,
all nonnegative and summing to 1 such that

Pi=9Q+ (1 —y)(arPL+ ...+ arPp).

Therefore, P; € conv({ P} : k # i}). Then, by the argument in the previous paragraph,
(IT, P) does not satisfy (M).

Now, suppose that G ¢ conv(P, ..., Pr). Since P; € conv(G, Q) and Q € conv({FP; :
J # 1}), we have that conv({P; : j # i}U{G}) D conv(P,...,Pr). Then, Pi,..., Py €
conv({P;j : j # i} u {G}). This shows that (IL, P) does not satisfy (IM). The result
follows.

(B') Clearly, dimspan(Py, ..., Py) < dimspan(Py, . . ., Pp) since ]%Z = m] P for all i € [M].
Since (I, P) satisfies (L), span(Py, ..., Pr) < span(Py, ..., Pr), which implies that

dimspan(Py, ..., Py) < dimspan(Py, ..., Py).

Therefore, dimspan(Py, ..., Py) = dimspan(Py,...,P;). Then, since Pj,..., Py €
range(II), dimspan(P;,. .., Pr) < dimrange IT. By Result 3.117 of Axler (2015),

rank(IT) = dimrange IT > dimspan(P,. .., Pr).
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As a corollary, Theorem 7 implies that if there is a linear factorization (II, P) of P and
Py, ..., P; are linearly independent, then there must be at least as many contaminated
distributions as base distributions, i.e., M > L. Also, note that (A’) appears as a sufficient
condition in Sanderson and Scott (2014).

By comparing (A) with (A’) and (B2) with (B’), we see that the proposed sufficient
conditions are not much stronger than (M) and (L) require. Since joint irreducibility of
Py, ..., Py entails their linear independence by Lemma 16, under (A), (B2) and (B’) are the
same. (A) differs from (A’) in that it requires that a slightly larger set of distributions are
irreducible with respect to convex combinations of the remaining distributions. Specifically,
under (A), every convex combination of a subset of the Pjs is irreducible with respect to
every convex combination of the other P;s whereas (A’) only requires that every P; be
irreducible with respect to every convex combination of the other P;s.

C.3. Classification with Partial Labels

Most of our definitions and results for classification with partial labels parallel those of
demixing mixed membership models. We say that P is ITT-factorizable if there exists a
pair (IT, P) € AM x PL that solves (2) such that IT is consistent with IT*; we call (I, P)
an IT"-factorization of P. We say a partial label model is identifiable if given (157 I1h), P
has a unique IT"-factorization (II, P).

Our definitions of maximal and linear IIT-factorizations resemble definitions 7 and 8.

Definition 9 We say a II"-factorization (II, P) of P is maximal (M) iff for all II*-
factorizations (II', P') of P with P' = (P],...,P;)T € PL, it holds that {P],...,P;} <
COnV(Pl, ey PL).

Definition 10 We say a II"-factorization (IL, P) of P is linear (L) iff {Py,...,Pr} <
span(Py, ..., Pyr).

Similarly, IT*-factorizations that satisfy (A) and (B3) are maximal and linear. The
proof is identical and, accordingly, omitted.

Proposition 6 Let (IT, P) be a II* -factorization of P. If (I1, P) satisfies (A) and (B3),
then (IL, P) satisfies (M) and (L).

Linear IT"-factorizations must satisfy (B’); indeed, the proof is identical to the proof for
linear factorizations. However, maximal TT*-factorizations need not satisfy (A’). Consider
the following counterexample. Let Q1 ~ unif(0,2) and Q2 ~ unif(1,3). Let P, = %QH—%QQ,
P, = %Ql + %Qg, P = P, and Py = Py Then, IT"™ = I,—the identity matrix. Then,
any (IT', P') that satisfies (2) and is consistent with TI™ must be such that (P, P»)T = P'.
Therefore, (M) is satisfied. But, clearly, (A’) is not satisfied.

In summary, we are unable to offer a necessary condition that is close to (A). On the
other hand, (B3) is necessary.

Proposition 7 Let (IL, P) be an II*-factorization of P. If (P,II") is identifiable, then
the columns of II are distinct.
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Proof First, suppose (P,II1) is identifiable. Then, we can write P = ILP where II is
consistent with II*. We claim that for all ¢ # j, P; # P;. To the contrary, suppose that
there exists ¢ # j such that P; = P;. Without loss of generality, suppose i = 1,j = 2. Then,
we can write

P= (2L, TLyz ... TLp)| |,
Py,
which contradicts the uniqueness of P and II.

Next, we give a proof by contraposition. Suppose that there exists ¢ # j such that
I, = HJFJ Without loss of generality, let ¢ = 1 and j = 2. Suppose that (II, P) is

)

consistent with TI* and solves P = ITP. Then, the pair (IT', P’) given by
Ir = (H:,Q H:,l 1_-[:,3 B H:,L)

P —| B

solves P = IT'P’ and is consistent with II*. If P, = P, then (P,II*) is not identifiable,
so we may rule out this case. Therefore, P’ # P, yielding the result. |

Appendix D. Identification

In this section, we establish our identification results, i.e., Theorems 2 and 3. We begin
by proving Proposition 3. Second, we prove a set of useful lemmas in Section D.2. Third,
we present our results on demixing mixed membership models in Section D.3. Finally, we
present our results on classification with partial labels in Section D.4.

D.1. Proof of Proposition 3
Proof We prove the claims in order.

1. Without loss of generality, suppose @ = 1 and let A = [L]\{1}. There is at least one
point attaining the maximum in the optimization problem x*(ni[{n; : j # 1}) by
Lemma 15. Take a G that achieves the maximum in «*(Q1[{Q; : j # 1}), which
exists also by Lemma 15. Then, we can write:

Q1= (1=, )G+ > Q. (7)
j=>2 j=2

Note that since m1,...,nr are linearly independent and Pi,..., Py are jointly irre-
ducible, @1, ...,Q are linearly independent by Lemma 16. Therefore, x*(Q1 |{Q; :

J#1}) = Xjs0 iy <1 because, if not, Q1 = 3,5, 1;Q;-
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Further, any G that satisfies (7) has the form Y%, 4;P; because (7) implies that
G € span(Q1,...,Qr) and each Q; € conv(Py,..., Py) by hypothesis. The 7; must
sum to one, and we have that they are nonnegative by joint irreducibility. That is,

v = (’yl, . ,fyL)T is a discrete distribution. Then, the above equation is equivalent
to
mP=01= ' P+ um P. (8)
j=2 j=2

Since Py, ..., Py are jointly irreducible, Py, ..., P are linearly independent by Lemma

16. By linear independence of Py, ..., Pr, we obtain
mo= (1= D )y + D, mymy- (9)

J=2 j=2

Consequently, £*(Q1 |{Q; : 7 # 1}) = &*(m |{n; : 7 # 1}) < 1. This completes the
proof of statement 1.

2. This result follows immediately from Lemma 15.

3. By equations (8) and (9), there is a one-to-one correspondence between the maximizer
G to k*(Q1]{Qj : j # 1}) and the maximizer v to x*(m1 |{n; : j # 1}). The one-to-
one correspondence is given by G = v P.

D.2. Lemmas for Identification

We present some technical results that are used repeatedly for our identification results.
Lemma 2 gives us some useful properties of the two-sample * that we exploit in the
PartialLabel and Demix algorithms. Statement 1 gives an alternative form of *. Statement
2 gives the intuitive result that the residues lie on the boundary of the simplex. Statement
8 gives a useful relation for determining whether two mixture proportions are on the same
face; we use this relation extensively in our algorithms.

Lemma 2 Let Fy,...,Fx be jointly irreducible distributions with F = (Fy,...,Fg)7T,
Q1,Q2 be two distributions such that Q; = n] F where n; € Ak for i = 1,2 and m # n2.
Let R be the residue of Q1 wrt Q2 and R = p"'F.

1. There is a one-to-one correspondence between the optimization problem in £*(Q1 | Q2)
and the optimization problem

max(a = 1|3 a distribution G 5.t G = Q2 + a(Q1 — Q2))

via a = (1 — k)7L
2. M E aAK

3. N'(n2) € N'(m) if and only if R = Q1 if and only if £*(Q1|Q2) = 0.
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Proof We note that we may assume that R = p’ F since by definition of the residue,
R e span(Q1,Q2) and Q1, Q2 € conv(F1,. .., Fk).

1. Consider the linear relation: Q1 = (1 — k)G + kQ2 where k € [0,1]. Since F1,..., Fx
are jointly irreducible and 1; and mo are linearly independent, @}1 and )2 are linearly
independent by Lemma 16. Therefore, x < 1. We can rewrite the relation as

1 K

G = Ql_l—m

Q2 =aQ1+ (1 —a)Q2

1—k

where o = ﬁ The equivalence follows.

2. Since R is the residue of )1 wrt QQ2, by Proposition 3, p is the residue of 1y wrt 12
and pu € Ag. Therefore, by statement 1 in Lemma 2, p is such that o™ is maximized
subject to the following constraints:
p=1-a")m+a"m
a* =1
J IS A K-

Suppose that min; g; > 0. Then,

p=(1-a*)ne+a*n =mn+a(m—n2) >0
so that there is some € > 0 such that
p=0-a"—em+ (@ +em
a* +ex>1
[1,/ € AK
But, this contradicts the definition of a* and . Therefore, min; y; = 0. Consequently,

M E 8AK

3. By definition of k*, it is clear that R = @ if and only if k*(Q1 | Q2) = 0. Therefore,
it suffices to show that N (m2) & N(m1) if and only if k*(Q1|Q2) = 0. Suppose
N(n2) € N(m). Then, there must be ¢ € [K] such that ny; > 0 and 7;; = 0. For

any o > 1,
min (1 — a)n2; + ani; < 0;
z‘e[K]( )772,1 M
but, this violates the constraint of the optimization problem. Therefore, a = 1.

By statement I in Lemma 2, x*(m;|n2) = 0. By statement 1 of Proposition 3,
£*(Q1]Q2) = k*(m1|m2) = 0.

Now, suppose N (n2) € N(n1). Then, for any i € [K], if n2; > 0, then 7y ; > 0. Then,
there is o > 1 sufficiently close to 1 such that

min 79; + a(m; —n2) = 0.
el K] 2, (771,1 772,1)

By statement 7 in this Lemma, x*(n; |n2) > 0. By statement I of proposition 3,
(@1 Q2) = £*(m|m2) > 0.
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|
Lemma 3 Let 0 < k < L. Ifvy,...,vr € A are linearly independent and wgy1,...,wyr, €
Ay are random vectors drawn independently from the uniform distribution on a set A
Ay, with positive (L — 1)-dimensional Lebesgue measure, then vy, ..., Vg, Wki1,..., W, are

linearly independent with probability 1.

Proof We prove the result inductively. To begin, we prove the base case, i.e.
v1,...,V, Wy are linearly independent w.p. 1. It suffices to show that wgy; ¢
span(vi,...,vg) w.p. 1. Thus, it is enough to show that span(vi,...,v;) N A has (L — 1)-
dimensional Lebesgue measure 0. Since

span(vy,...,vE) N A c span(vy,...,v5) N Ap,
it suffices to show that span(vy,...,vx) N A has (L — 1)-dimensional Lebesgue measure 0.
Next, we claim that span(vy,...,vx) N A € aff(vy, ..., v). Let Zle o;v; € Ar. Since

v; € Ayp, for all i € [k], we can write v; = Z]'L:1 Bijei where 3; ; > 0 and Z]L=1 Bij = 1.
Then, since Zle oU; = Zle «; Z]LZI Bije; € Ap, it holds that

k k
1:Zai2@7j=2ai.

i=1  j=1 i=1
Thus, Zle a;v; € aff(vy, ..., vg), establishing the claim.

Thus, it suffices to show that aff(vy, ..., vg) has (L — 1)-dimensional Lebesgue measure
0. aff(vy,...,v;) has affine dimension at most k& — 1. Since it is not possible to fit a (L —1)
dimensional ball in an affine subspace of affine dimension k —1 < L — 1, aff(vy,...,vx) has
(L—1)-dimensional Lebesgue measure 0. Thus, with probability 1, w1 ¢ span(vy, ..., vg).

This establishes the base case.
The inductive step follows by a union bound and a similar argument to the base case.
Thus, the result follows. |

D.3. Demixing Mixed Membership Models

In this section, we prove our identification result for demixing mixed membership models,
i.e., Theorem 2. First, we present technical lemmas in Section D.3.1. Second, in Section
D.3.2, we present the key subroutine FaceTest and prove that it behaves as desired. Third,
we prove Theorem 2 in Section D.3.3. Finally, in Section D.3.4, we extend our results to
the nonsquare case (where M > L).

D.3.1. LEMMAS

Lemma 4 establishes an intuitive continuity property of the two-sample version of x* and
the residue. Recall that |-| denotes an arbitrary finite-dimensional norm on R”.
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Lemma 4 Let n1,m2 € A, be distinct vectors and let p be the residue of mo wrt n1. Let
Yn € AL be a sequence such that |y, —m2| — 0 as n —> o, and let T, be the residue of
Yo wrt M. Then,

1. lim,,_ ., K*('Yn | 771) = K* (772 |771): and

3. If, in addition, p, € AL is a sequence such that |p, —m2| — 0 as n — o and
N(n2) = N(vn) = N(pn) for all n. Then, lim,, o £*(vn | pn) = 1.

Proof

1. In order to apply the residue operator * to 11, 12, ¥, we think of 11, 12, 7, as discrete
probability distributions. By Proposition 2,

. 2.1
#*(m2|m) = min 2L
4,11,:>0 7)1 5

Clearly, there is a constant § > 0 such that min; , ;~0m1; > ¢. Let € > 0. By
the equivalence of norms on finite-dimensional vector spaces, there exists a constant
C > 0 such that ||, < C|-|| where |-|,, denotes the supremum norm. Thus, since
[vn — m2|| — 0 as n — o0, we can let n large enough such that |v,; — 72| < € for
all i € [L]. Then,

Y 2, + €
5 (g [m) = min 20 < min 222
Lm>0 M1 6ne>0 0 M

€
< w2 m) + 5.
Similarly,
. Tn,i
K = min —=
(%L | 771) 4,m1,:>0 M1 4
n2,; — €
M,

w*(m2 ) — g

V

A\

Since € > 0 was arbitrary, statement I follows.

2. Write u = kmo + (1 — k)m1 and 7, = Kpyn + (1 — kp)m1 where kK = kK*(n2|m1) and
Kn = K*(¥n | m1). Then, by the triangle inequality,

[sme = K| + (1 = K)m — (1 = £n)m|
|k = fnl [m2] + [l n2 = Ynl + [ = fnl [m] — 0

[ =7l <
<

as n — 0.
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3. W.Lo.g., suppose that [K] = N (n2) = N(vn) = N(p,) where K < L. Observe that

K*(Yn | pn) = min i ppip I

4 Pn,i>0 P i€[K] Pni

There exists a constant § > 0 such that min;c[x)n2; = . Let § > € > 0. By the
equivalence of norms on finite-dimensional vector spaces, we can let n large enough
such that |y, — 12| < € and |pp; — m24| < € for all i € [L]. Then,

o (Yn | Pn) = min Tni
€[ K] Pni

. 2.4 T €
< min 12,3
ie[K] 12,5 — €
; + €
< 12,
N2, — €

for any ¢ € [K], which goes to 1 as ¢ — 0. Similarly,

Tn,i

K* = min
(Yn | Pn) s

M2, — €
- i€[K] 1m2,; + €

Since for any i € [K],

N2, — €
M2, +€

— 1]

as e —> 0, the above lower bound goes to 1 as ¢ —> 0. Thus, statement 3 follows.

Lemma 5 guarantees that certain operations in the Demix algorithm preserve linear inde-
pendence of the mixture proportions. The proof uses tools from multilinear algebra.

Lemma 5 Let 7,...,7x € Ag be linearly independent and Py, ..., P be jointly irre-
ducible. Let Q; = 71 P forie [K]. Then for anyi,j € [K] such that i # j,

1. If n = ZkK:l apTy with a; # 0, then T1,...,Tj—1,71, Tj+1,- .., Tk are linearly indepen-
dent.

2. Let Ry, be the residue of Qi with respect to Q; for all k € [K|\{j}. Then, Ry =nl P

where M, € Ap and N1, ..., Mj—1,Tj, Nj+1,-- -, MK are linearly independent.
3. Let 7* € conv(Ti,...,T)° and n; € conv(r;, 7%)° for i € [k] where k < K. Then,
neLM2, -5 Nk The41, -+ - TK

are linearly independent.
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Proof We use the multilinear expansion and usual properties of determinants.
1. Viewing each 7; as a column vector,

det(Tl, o ,Tj_l,Zaka,Tj+1, o ,TK) = ay det(rl, .. ,TK) # 0.
k

2. Linear independence of 7,..., Tk implies that the @Q1,...,Qk are distinct. Hence,
by Proposition 2, we can write n, = (1 — ay)7Tj + ag T where oy, # 0VE # j. Then,
it holds that

det(nl, ey =15 Ty M1y - - ,T[K) = (H Oéi) det(n, cey TK> # 0.
i#j
3. Since n; = (1 —«a;)T* + ;7 where a;j € (0,1) for all j < k, and 7% =}, §;7;, it holds

k
1—aq;
det(7717~~-777k—177'k7-~-77'K) = <1+ 2 ( J>/8.7> <
j=1 Y

k
041-) det(71,...,7K) #0.
=1
|

Lemma 6 gives a condition on the mixture proportions under which the multi-sample residue
is unique. Lemma 2 in Blanchard and Scott (2014) is very similar and is proved in a very
similar way. We give a useful generalization here that reproduces many of the same details.

Lemma 6 Let I,k € [L]. Let 7i,...,7, € Ap be linearly independent. We have that
condition 1 implies condition 2 and condition 2 implies condition 3.

1. There exists a decomposition
7, = reg + (1 — k)1]

where k > 0 and 7/ € conv({T; : j # l}). Further, for every e; such that i # k, there
exists a decomposition

L
e;, = Z CL]'T]'
7j=1

such that a; < %

2. Let

the matriz T is invertible and T~ is such that (TY); > 0 and (T~Y),; < 0 for
i # k and (T V) > (T 1)k for j # 1. In words, the (I,k)th entry in T~ is
positive, every other entry in the Ith row of T~ is nonpositive and every other entry
in the kth column of T~ is strictly less than the (1, k)th entry. 2

2. (T™Y);, is the i x j entry in the matrix T
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3. The residue of 7 with respect to {T;,j # l} is ey,.

Proof Without loss of generality, let [ = 1 and k = 2. By relabeling the vectors ey, ..., ey,
we can assume without loss of generality that £ = 1. First, we show that condition I implies
condition 2. Suppose that condition I holds. Then, there exists x > 0 such that

L

T = ke + (1 — k) Z 13T
i=2

with p; = 0 for ¢ € [L]\{1}. Then,

e = %(Tl - Z(l — R)iTi)-

12

Hence, the first row of 7! is given by (1, —(1 — k)pa, -, —(1 — k)pz). This shows that
the first row is such that (T71);; > 0 and (T%);; <0 for i # 1.

Consider e; such that ¢ # 1. Then, we have the relation: e; = ZJL:I a;Tj, which gives
the ith row of T—!. By assumption, a; < %, so the (7,1)th entry is strictly less than the
(1,1)th entry. Hence, 2 follows.

Now, we prove that condition 2 implies condition 3. Suppose condition 2 is true.
Consider the optimization problem

L L
maXZ v s.t. 1= (1— Z Vi)Y + Z VT
R i>2 i=2
over y € Ay and v = (vg, - ,vp) € Croy = {(va,- - ,vp) v = 0; 2 F v < 1},

By the same argument given in the proof of Lemma 2 of Blanchard and Scott (2014),

this optimization problem is equivalent to the program

max el (TT) 1y s.t. v((TT) 1) e Cp_y

YEAL
where v(n) = 771_1(—772, .-+, —nr). The above objective is of the form a’~ where a is the
first column of T~!. Since [ = 1, by assumption, for every i # 1, Tf’ll > Tfll. Therefore,
the unconstrained maximum over v € Ay is attained uniquely by v = 617' Notice that
(TT)"te; is the first row of T—!. Denote this vector b = (by,---,by). We show that
v(b) = bl_l(—bz,"' ,—br) € Cr—1. By assumption, b has its first coordinate positive
and the other coordinates are nonpositive. Therefore, all of the components of v(b) are
nonnegative. Furthermore, the sum of the components of v(b) is

L L
—0; - bl 1
> b =1-Zz;1=1——<1.
b by by

The last equality follows because the rows of T™' sum to 1 since T is a stochastic

matrix. Then, we have v((T7) 'e;) € Cr_1. Consequently, the unique maximum of the
optimization problem is attained for v = e;. This establishes 3. [ |
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D.3.2. THE FACETEST ALGORITHM

Next, we consider the main subroutine in the Demix algorithm: the FaceTest algorithm (see
Algorithm 6). Proposition 8 establishes that FaceTest(Q1,...,Qx) returns 1 if and only if
Q1,...,QK are in the relative interior of the same face of the simplex.

Proposition 8 Let Q; = n]-TP for mj € Ak and all j € [K]. Let Py,..., Pk be jointly
irreducible, Q1,...,Qk € conv(P,..., Pr) be distinct, and for each i € [K], let m; lie in
the relative interior of one of the faces of Ai. FaceTest(Q1,...,Qk) returns 1 if and only
if n1, ..., mK lie in the relative interior of the same face of Ak .

Proof Suppose that n1,...,nx lie on the relative interior of the same face of Ag. Then,
N(Q1) = ... = N(Qk). By statement 3 of Lemma 2, x*(Q;|Q;) > 0 for all ¢ # j. Hence,
FaceTest(Q1,...,Qx) returns 1.

Suppose that Q1,...,Qx do not all lie on the relative interior of the same face. Then,
there exists @4, Q; (¢ # j) that do not lie on the relative interior of the same face. Without
loss of generality, suppose that N (Q;) € N(Q;). Then, by statement 3 of Lemma 2,
k*(Qi] Q;) = 0. Hence, FaceTest(Q1,...,Qk) returns 0. [ |

D.3.3. THE DEMIX ALGORITHM

Proof [Proof of Theorem 2]
Let K < L,~;€ A for all i € [K], S; = ! P for all i € [K], and

We claim that for any {i1,...,ix} < [L] and {Si,...,Sx} < conv(P;,,...,P;.), if
Py, ..., Py are jointly irreducible, and I" has full row rank, then w.p. 1 Demix(S1,...,Sk)
returns a permutation of (P, ..., P, ). If the claim holds, then setting K = L and putting
P, =5, yields the result. We prove the claim by induction on K.

Consider the base case: K = 2. Suppose that {S1,S52} < conv(P;, P») (the other
cases are similar). Note that 4 # 72 by linear independence of «; and =,. Either ~; €
conv(ey,=yz) or 1 € conv(es,y2). Suppose v € conv(er,~2). Condition 2 of Lemma 1 is
satisfied so that e; is the residue of «y; with respect to 2 and es is the residue of o with
respect to 1. Thus, by statement 8 of Proposition 3, Pj is the residue of S with respect
to Sy and P, is the residue of Sy with respect to Si. If 1 € conv(eg,~2), then similar
reasoning establishes that P, is the residue of S; with respect to Sy and P; is the residue
of Sy with respect to S;. Thus, the base case follows.

Suppose L > K > 2. The inductive hypothesis is:

Inductive Hypothesis: for any {ij,...,ix—1} < [L] and {Si,...,Sx-1} <

conv(P;,,..., P, ), if P1,..., Pp, are jointly irreducible and I' has full row rank,
then w.p. 1 Demix(S1,...,Sk_1) returns a permutation of (P;,,..., P, _,).
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Suppose that {Si,...,Skx} < conv(P,...,Pg) (the other cases are similar). Set E =
conv(ey,...,ex). With probability 1, @ € conv(Ss,...,Sk)°. We can write Q = n’ P
where 7 is a uniformly distributed random vector in conv(vys, ...,k ). Let R be the residue
of @ with respect to S;. By statement 3 of Proposition 3, we can write R = AT P where A
is the residue of n with respect to 1. By statement 2 of Lemma 2, A € 0=.

Step 1: We claim that with probability 1, there is [ € [K] such that X € conv({e; : j €
[K\{l}})°. Let B;j = conv({v1} u {ex : k € [K|\{4,j}}) where 4,j € [K] and i # j
and let C = conv(vys,...,7vK). First, we argue that C' n B; ; has affine dimension
at most K — 3.3 Since 7s,...,vx are linearly independent, C' has affine dimension
K — 2. Since {ey, : k € [K]\{i,j}} are linearly independent, B; ; has affine dimension
K —2or K —3. If B; ; has affine dimension K — 3, then C n B; ; has affine dimension
at most K — 3. So, suppose that B;; has affine dimension K — 2. If C' n B;; has
affine dimension K — 2, then aff C' = aff B; ;. Then, in particular, v, € aff C. But,
this contradicts the linear independence of v1,...,vk. Therefore, C' n B; ; has affine
dimension at most K — 3.

Because C' has affine dimension K — 2 and n is a uniformly distributed random vector
in C, with probability 1, n ¢ U; je[x],iz;Bij- Since y1 € By for all 4,5 € [K] and
1 € conv(A, 1) by definition, the convexity of B;; implies that X ¢ U; je(x],i»;Bij-
Since A € d=, the claim follows.

Step 2: Let Rgn) be the residue of m -1 (S;, Q) with respect to S1. We claim that there is
some finite integer N > 2 such that for all n > N ,

FaceTest(Rgn), ceey R%))

returns 1. By Proposition 8, this is equivalent to the statement that there exists

N = 2 such that for all n > N, the mixture proportions of R;n), e R%) are on the

relative interior of the same face. Let mn-1(S;, Q) = (Ti(n))TP for i € [K]\{1}; note
that Ti(n) = 14,4+ 2=1y and, consequently, TZ.(”)

probability 1, PR

7

€ =. Since n € conv(7ya, ...,vx)° with

€ conv(v;,n)° for all i € [K]\{1} and n € N, and ~1,...,vk are

linearly independent, it follows that for all n € N with probability 1, 1, 72(”), e ,Tl({n )

are linearly independent by statement & in Lemma 5. Fix ¢ € [K]\{1}. It suffices to
show that there is large enough N such that for n > N, Residue(mn-1(S;,Q) | S1) =

Rz(n) is on the same face as R. Let Rz(n) = (ugn))TP; by statement & of Proposition 3,

ul(-n) is the residue of Ti(n) En)
It suffices to show that N(ugn)) = N (), ie., every ul(-n) is on the same face as A.
As n —> o0, Ti(n) = (1 - 2=1)y, + =1y — n, hence by statement 2 in Lemma 4,

Hu§"> — )\H — 0. Since with probability 1, X € conv({e; : j € [K]\{l}})° for some [

(step 1), it follows that for large enough n, ,ul(n) e conv({e; : j € [K]\{l}})°.

—_
€ =.

with respect to 71 and by statement 2 of Lemma 2 u

3. Note that if v1, ..., v, € R are linearly independent and n < L, then aff(v1,...,vy) has affine dimension
n—1.
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Algorithm 15 NonSquareDemix (P}, ..., Py)
1: Ry,...,R; < independently uniformly distributed elements in conv(]sl, e ]—:’M)
2: (Ql, ceey QL)T «— Demix(Rl, ce ,RL)
3 return (Q1,...,Qr)"

Step 3: Assume that n is sufficiently large such that Rén) Y ,R%) are on the same face.
The algorithm recurses on Rgn), ey Rg?). Since 71, 7'2(”), . ,Tl((n ) are linearly indepen-
dent, it follows by statement 2 in Lemma 5 that u,;n), . ,u%) are linearly indepen-

dent. Suppose wlog that {Rg"), e ,Rg?)} c {P1,...,Px_1}. Then, by the inductive
hypothesis, if (Q1,...,Qx_1) «— Demix(Rgn), e R%)), then (Q1,...,QK—1) is a
permutation of (Pp,..., Px_1). Note that % Zfil S; € conv(Py, ..., Pk)° since T has
full rank by assumption.

Write Q; = p! P for i € [K]. Then, there exists of a permutation o : [K — 1] —
[K —1] such that p; = e,(;). Since px € Z° and p; = e,(;) for i < K —1, the conditions
in statement I of Lemma 6 are satisfied. Therefore, by Lemma 6, the residue of pg
with respect to {p1,...,pKx-1} is ex. Then, by statement 3 of Proposition 3, the
residue of Qg with respect to {Q1,...,Qr—_1} is Px. This completes the inductive
step.

D.3.4. THE NON-SQUARE DEMIX ALGORITHM

Now, we examine the non-square case of the demixing problem (M > L). Note that
knowledge of L is needed since one must resample exactly L distributions in order to run
the square Demix algorithm.

Corollary 1 Suppose M > L. Let Pi,..., P be jointly irreducible and II have full
rank. Then, with probability 1, NonSquareDemiz(Py, ..., Py) returns (Q1,...,QL) such
that (Q1,...,Qr) is a permutation of (P1,...,Pr).

Proof We can write R; = TZ-TP where 7, € Ap and ¢ = 1,...,L. 7,...,7T are drawn
uniformly independently from a set with positive (L — 1)-dimensional Lebesgue measure
since IT has full rank by hypothesis. By Lemma 3, 7,...,7; are linearly independent
with probability 1. Then, by Theorem 2, with probability 1, Demix(R;, ..., Ry) returns a
permutation of (Py,..., Pr). [ |

D.4. Classification with Partial Labels

In this section, we present our identification result for classification with partial labels,
i.e., Theorem 3. To begin, in Section D.4.1, we prove an important lemma for the main
subroutine of the algorithm PartialLabel: VertexTest (algorithm 9). Second, in Section
D.4.2, we present the proof of Theorem 3.
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D.4.1. VERTEXTEST ALGORITHM

Lemma 7 establishes that the VertexTest algorithm determines whether one vector of dis-
tributions is a permutation of another vector of distributions.

Lemma 7 Letny,...,n. € Ay and Q; = nl P forie[L] and Q = (Q1,...,Qr)T. Suppose
that Py, ..., Pr, are jointly irreducible, I1 has full column rank, and the columns of IIT are
unique. Then, VertexTest(IIT, P, Q) returns (1,CT) with C a permutation matriz if and
only if Q is a permutation of P. Further, if VertexTest(H*,P,Q) returns (1,CT), then
c’Q="P.

Proof If Q = (Q1,...,Qr)7T is such that DTQ = P where D is a permutation matrix,
then it is clear that VertexTest(IT*, (P, ..., Py)7T,(Q1,...,Qr)T) returns (1, CT) for some
permutation matrix C since the entries of IIT are H:j = 1{&*(1% | P)>0}" Since DTQ = P,
clearly, ZD = ITI". But since the columns of IT* are unique, there is a unique permutation
of the columns of Z to obtain the columns of II*. Therefore, D = C.

Consider the “only if” direction. We use the notation from Algorithm 9. Suppose
Algorithm 9 has returned (1, CT) where C is a permutation matrix. W.l.o.g. (reordering
the @;) we can assume that C is the identity and thus Z = IT™".

In the sequel denote ¢(z) := 1(;~0y and ¢(M) the entry-wise application of ¢ to the
matrix or vector M. We denote v < w when all entries of v are less than or equal to the
corresponding entries of w (where v and w are vectors). This is a partial order, which
will be used only for 0 — 1 vectors below (essentially to denote support inclusion). W.l.o.g.
(reordering the P;) we can assume that the columns of I are reordered in some sequence
compatible with < in decreasing order, i.e. such that if H+] < HJr then ¢ < j.

Introduce the following additional notation: let A be the matrix with rows A, =
#(nl). Observe that by statement 3 of Lemma 2, for any i,j,k, & (P|Qj) >0 ‘and
x*(Q;|P,) > 0 implies x*(P;|P;) > 0. Note that we can write A;j = Liex(Q, | Py)>0)
and H;tk = Ly (B, | Py)>0}- Thus, we must have ¢(ZA) < ITT.

We now argue that this implies that A is sub-diagonal, i.e., A;; = 0 for i < j. Let ¢ < j.
If Ajj >0, then Z.; < H+] by the above relation. Since Z = HJr this implies HJr < HTJ,
which implies j < ¢ by the assumed ordering of the columns of HJr a contradlctlon Hence
A;; =0 for i < j.

Now, since the matrix Y (line 1 of Algorithm 9) is diagonal, Statement 3 of Lemma 1
gives that for any 7 # j we have A;. £ A;.. One can conclude by a straightforward recursion
that since A is sub-diagonal, this implies that A is in fact diagonal. Start with the first
row Aj, which must be (1,0,...,0)T (by sub-diagonality). Since A;. ¥ A;. for j > 1, this

implies the first column A. ; is also (1,0, ...,0). The subsequent columns/rows are handled
in the same way.
Hence A is the identity, which implies that Q = P. |

D.4.2. PROOF OF THEOREM 3

Proof We adopt the notation from the description of Algorithm 7 with the exception that
we make explicit the dependence on k by writing Wi(k) instead of W; and Qz(k) instead of
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Q;. We show that there is a K such that for all £k > K, (Wl(k), ey Wék))T is a permutation
of (Py,...,Pr)T. Then, the result will follow from Lemma 7.
_ T T

Let Qi = /P, Q) = £ P and W = A% P Further, let 0 < n < L,
{i1,...,in} < [L], I # j € [L], and define the following events wrt the randomness of
Tly.--sTL:

Ei,. i, =1{€i,...,€i,,Tht1,..., T are linearly independent}
E =gy, il osn<iBin,oin
F; = {e; —ej, T,..., T are linearly independent}

F = 0qzjernF

l,j . .
G = {e;—ej,ei,...,€i, 1, Tat1,...,Tr are linearly independent}
j— l7j
G = Oirsin—1}e[L10<n<LI#Ge[ LN i sovsin—1 Y Tiy - in s
By Lemma 3, for any 0 < n < L, {i1,...,in} < [L], the event Ej; _;, occurs with

probability 1. Similarly, by Lemma 3, for any [ # j € [L], the event Fj; occurs with
probability 1. Finally, by Lemma 3, for any 0 < n < L, {i1,...,in—1} < [L] and any
I # je[L]\{i1,...,in-1}, the event Giljzn,l occurs with probability 1. Hence, the event
En FnG occurs with probability 1. For the remainder of the proof, assume event EnFnG
occurs.

We prove the claim inductively. We show that for all n < L there exists K, such that

if £ > K,,, then Wl(k), cees ,(Lk) are distinct base distributions.
Base Case: n = 1. We will apply Lemma 6. By event F, 71, ..., 71 are linearly indepen-
dent. Therefore, aff(7y,...,71) gives a hyperplane with an associated open halfspace H
that contains 7 and at least one e;. Inspection of Line 3 of Algorithm 8 shows that i'l(k) is
simply the average of 79, ..., 77 and does not depend on k. Thus, there exists K7 such that
for all k > K, if ej € H, then Ay = %7‘1 + %fl(k) € conv(ej, To,...,7r)°. Fix k > K.
Then, by event E, for all e; € H, there exists a unique x; > 0 and unique a; 2, ..., a;  such
that

L

)\k = Kj€; + Z a;iT;
i=2

= rjej + (1= K;)7;

where T; € conv(7y, ..., 7r) is unique. We claim that for all i # j and {e;,e;} € H, Kk; # K;.
Suppose to the contrary that there is i # j such that {e;,e;} € H and k; = k; = k. Then,

Ak = ke + (1 — k)T
A = Kej; + (1 — I{)7~'j.

Then, (1—-k)(7; —7;) — k(e; —e;) = 0, from which it follows that e; —e; € span(7y, ..., 7r).
But, by event F, e; — e, T, ..., 7 are linearly independent and, hence, we have a contra-
diction. Thus, the claim follows.

Consequently, there is a unique j that minimizes x;. Note that for all e; ¢ H, if we
write e; = 2l>2 a;T; + a1\, then aq < 0. Then, by Lemma 6, e; is the residue of A, with
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respect to T, ..., Tr,. Therefore, by Proposition 3, MultiResidue(%Ql +(1— %)Ql 1{Q;j}j>1)

is well-defined and if Wl(k) «— MultiResidue(+Q1 + (1 — 2)Q1 | {Q;};>1), Wl(k) is one of the
base distributions. This establishes the base case.

The Inductive Step: The proof is similar to the base case. Suppose that there ex-
ists K, _1 such that for all k > K, _1, Wl(k),...,Wéli)l are distinct base distributions.

Let {i1,...,in—1} < [L] denote the indices of the base distributions that are equal to
Wl(k), e W,Eli)l under the inductive hypothesis. By the event E, e;,,...,€;, |, Tn,...,TL

are linearly independent. Hence, aff(e;,,...,€e; ., Tn+1,...,71) gives a hyperplane with
an associated open halfspace H;, . ;. , such that 7, € H;, ;. . We claim that there is
ej ¢ {ei,...,ei,_,} such that e; € H;, _;, _,. Suppose not. Then, ei,...,er € H .

and 7, € H;, ;. ,, which implies that 7, ¢ Ar_;. This is a contradiction, so the claim
follows.
Define

(i1yemsin—1) . 1 k-1, 1 .
Akl 1 — %Tn—i_[T]ﬁ(Z TS+Zels)'

s>n s<n

There exists an integer Kgl"”’i”_l) such that if k > Ky(fl’””i"_l), then for all e; € Hy, i, .,

(#15eesBn—1) o
AL " econv(e;, € ,..., € 1 Tntl,--.,TL) . Set

K,, = max( max (Kr(fl""’i"_l)),Kn—l)-
{i1,in—1}c[L]

Fix k > K,,. Define
e = o [Elyp0

k—1. 1
== 772 E (k)

s>n s<n

By the inductive hypothesis, k > K,,_1, and Proposition 3, there exists {i1,...,i,—1} < [L]
such that ’yj(k) = e;, for all j € [n —1]. For the sake of abbreviation, let H = Hj, ;. _,.
Thus, 7, € H and there exists e; € H such that e; ¢ {e;,,...,e;, ,}. Hence, by our choice
of K, for every e; € H

(9150 eyin—1) o
A=A, e conviej, ey, €5, Tt -, TL)

By event E for all e; € H, there is a unique x; > 0 and unique

Aj1s---5Ajn—1,5n+1y---,05 L > 0 such that
AL = Kje; + Z aji€i + Z a; 1T
l<n I>n

rjej + (1= k)T
where 7; € conv(e;,,...,€;, ,,Tntl,-..,Tr) is unique.
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We claim that for all I # j such that {e;,e;} < H, k; # ;. Suppose to the contrary
that there exists [ # j such that {e;,e;} ¢ H and k; = k; = k. Then,

Ak = ke + (1 — k)T = kej + (1 — k)T

This implies that e; — e; € span(e;,,..., €, ,,Tnt1,...,7r). Observe that {e;, e;} ¢ H
implies that e; ¢ {e;,,...,e;, .} and e; ¢ {e;,,...,e;, _,}. Thus, event G implies that e; —
€j,€i,...,€, |,Tnytl,...,Tr are linearly independent. Therefore, we have a contradiction,

establishing the claim.
Consequently, there is a unique j that minimizes ;. Note that for all e; ¢ H, if we
write €; = Y . am€, + D, GmTm + anAk, then a,, < 0. Then, by Lemma 6, e; is

the residue of A, with respect to 'yfk), e ,'yr(ji)l,rnﬂ, ..., 7. Therefore, by Proposition

3, MultiResidue(1Qn + (1 — 1)@ | {Q;}j5n U {W]§k>}j<n) is well-defined and if W, «—
MultiResidue(%Qn +(1— %)Qn 1{Qj}j>nu {Wj(k) Yi<n), W,gk) is one of the base distributions.

Since e; € H implies that e; ¢ {e;,...,e;, .}, it follows that I/Vl(k)7 .. .,W,Ek)
base distributions. This establishes the inductive step.
The result follows from applying Lemma 7. |

are distinct

Appendix E. Estimation

In this section, we present the estimation results of our paper. To begin, in Section E.1,
we present the proof of sufficient conditions under which ResidueHat estimators converge
uniformly in probability (Proposition 4). Second, in Section E.2, we prove our main esti-
mation result for demixing mixed membership models (Theorem 5). Finally, in Section E.3,
we prove our main estimation result for classification with partial labels (Theorem 6).

E.1. ResidueHat Results

Let A, Ao, ... denote positive constants whose values may change from line to line. We
introduce the following definitions.

Definition 11 Let F and H be ResidueHat estimators of F' and H, _respectively, where
F # H and let G «— Residue(F|H) and G — ReszdueHat(F|H) If G is a
ResidueHat estimator of order 0, we say its distributional ancestors are {F,H} and de-
fine ancestors(G ) = {F,H}. IfG is a ResidueHat estimator of the kth order, we define its
distributional ancestors to be ancestors(G) = ancestors(F) U ancestors(H).

The constants in our bounds depend on the distributional ancestors.

Definition 12 We say that the distribution F' satisfies the support condition (SC) with
respect to H if there exists a distribution G and v € [0,1) such that supp(H) & supp(G)
and F = (1—~v)G+~H.

Definition 13 If

sup |F(E) - F(E)| %0
Ee&

43



KATZ-SAMUELS, BLANCHARD, AND SCOTT

as n — o0, we say that F—F uniformly (or F converges uniformly to F) with respect
to £.

Definition 14 Let F' be a ResidueHat estimator of a distribution F'. We say that F satisfies
a Uniform Deviation Inequality (UDI) with respect to & if for all e > 0, there exist constants
Ay, Az >0 and N depending on ancestors(F') such that if n = N, then for all E € &

F(E) = F(B)| < Ay + ¢
with probability at least 1 — Ag¢ 3 er; L

Henceforth, for the purposes of abbreviation, we will only say that a ResidueHat estimator
satisfies a Uniform Deviation Inequality (UDI) and omit “with respect to £” because the
context makes this clear.

Definition 15 Let F' and H be ResidueHat estimators. We say that E(ﬁ\ﬁ) satisfies
a Rate of Convergence (RC) with respect to E if for all € > 0, there exists constants
Ay, Az >0 and N depending on ancestors(F) u ancestors(H) such that for n > N,

R(F|H) - k*(F|H)| < Apevn + €

1

n; "

with probability at least 1 — As . Zie[L]
Lemma 8 gives sufficient conditions under which F satisfies (SC) with respect to H.

Lemma 8 Let P, ..., P, satisfy (A”) and let F, H € conv(P,...,Pr) such that F # H.
Then, F satisfies (SC) with respect to H.

Proof Let A = arg min(|B|: B < {Py,...,Pr}, F,H € conv(B)). Without loss of gener-
ality, suppose that A = {Py,..., Pg}. F either lies on the boundary of conv(P,..., Pk)
or doesn’t. If F' lies on the boundary of conv(P, ..., Px), then H € conv(Pi, ..., Px)° by
minimality of A. Then, we pick G = F and v = 0 to obtain F = (1 —v)F + vH. Since
Py, ..., Py satisty (A”), supp(H) < supp(F).

Now, suppose that F' € conv(Py,...,Px)°. Let G «— Residue(F' | H); we can write
F = (1—-v)G+ ~H for v € [0,1) since ' # H. Then, by Statement 2 of Lemma 2
and statement 3 of Proposition 3, G is on the boundary of conv(Pi,..., Px). Without
loss of generality, suppose that G € conv(Pi,...,Px_1). Since F = (1 —v)G + vH €
conv(Py,...,Pg)° and G € conv(Py,...,Px_1), H ¢ conv(P,...,Px_1). Since Py,..., Pp
satisfy (A”), supp(H) & supp(G). This completes the proof. [ |

Lemma 9 gives sufficient conditions under which an estimator G satisfies a (UDI).
Lemma 9 Let

1. F and H be distributions such that F # H,

2. G «— Residue(F | H), and

3. G «— ResidueHat(F | H).
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IfR(F | H) satisfies a (RC), H satisfies a (UDI), and F satisfies a (UDI), then G satisfies
a (UDI).

Proof For the sake of abbreviation, let # = A(F|H), k* = x*(F|H), & = L= and
a* = 171*@*' Let € > 0. We claim that there are constants A, Ao > 0 such that for
sufficiently large n,

A~ 1
Pr(la—a*| < Ajevn+€) =1— Ay, Z e (10)
ie[L]

—_ 2 . ~ . .
Let & = U=5° Qince & satisfies a (RC), there exists constants A; 5, As 5 > 0 such that

for large enough n,

~

[k — K" < A1 s +0
with probability at least 1 — Ag s Zie[L] ni Since F' # H, k* < 1 by Proposition 2, so we
can let n large enough so that

1 1
A= m=7) S a—r)2

with high probability. Then, on this same event, for large enough n,

1 1 A5 + 90
= ~ 127 S (1—r*)(1—R)
Al,é’Yn +0
(1 —k*)2
Al,ﬂn

<2—————— +e
(1 — k*)? ¢

Thus, we obtain the claim.
We can write G = aF + (1 — a)H with a > 1. Then, by the triangle inequality,

IG—G|=|aF+(1—a)H —aF — (1 —a)H|
<|aF —aF|+|(1-&)H — (1 - a)H|
—|aF —aF +aF —aF|+|1-a)H - (1-a)H+ (1 -a)H — (1 — a)H|
<|a||F = F|+|d—al+|1—a||H — H| +]a — o

Since F satisfies a (UDI), H satisfies a (UDI), inequality (10) holds, and |&| and |1 — @
are bounded in probability, the result follows by an application of a union bound and
picking the es in the uniform deviation inequalities appropriately for each term. |

Lemma 10 gives sufficient conditions under which & satisfies (RC).
Lemma 10 Let F' and H be distributions such that F' # H. If
o [ satisfies (SC) with respect to H,
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o F satisfies (UDI), and
o H satisfies (UDI),
then R(F'| H) satisfies (RC).

Proof For abbreviation, let k* = k(F' | H) and k = R(ﬁ’ | f])

We first prove the upper bound. F satisfies (SC) with respect to H, so there exists a
distribution G such that F' = (1 — )G + vH for some « € [0,1) and supp(H) & supp(G)
Therefore, we have that G is irreducible with respect to H and, by Proposition 2, K* = .

Let § > 0 (to be chosen later). Since by hypothesis Fand H satisfy (UDI) there
exist constants A; 5, A s > 0 such that for large enough n, with probability at least 1 —
A15[Der) n%], for all £ € &,

|F(B) — F(B)| < As57n + 0 (11)
|H(E) — H(E)| < Ay 57n + 0. (12)

Without loss of generality, let A5, A2 5 > 1.
Pick R € € such that H(R) > 0. By inequality (12), there exists N1 such that n > N

implies that H(R) — vy, > 0 with high probability. This implies that for n > Ny, & is finite.
Let € > 0. By definition of &, there exists E € £ such that

F(B) + n

+R D oS ——
(H(E) =)+

N

Since 7 is finite, we have that H(E) > vy, and H(E) > 0. Then,

SR> Ij(E) T n
2 H(E) = n
L F(B) = (A5 — Dy — 0
T H(E)+ (A2 — D)y + 6
- VH(E) _ (A25 — D)y B J
T H(E)+ (A5 — D)+ H(E)+ (A5 — Dy +6  H(E) + (A5 —1)yn + 0
_YH(E)  (A2s—Dym +6 (A25 — D)ym B 5
~ H(E) H(E) H(E) + (Ag5 — D)y +0  H(E) + (Ags — D)yn + 0
% A275 —1 n 1
>t 2! H<E>)7 ~PHE)

where in the second to last 1nequahty we used the elementary fact that if a,b,¢ > 0 and
< b, then 3¢ > ¢ — §. Picking § = ( Je
The proof of the other direction of the 1nequality is very similar to the proof of Theorem 2
in Scott (2015). By hypothesis, F' satisfies (SC) with respect to H, so there exists a distribu-
tion G such that F' = (1—+)G+~H for some ~y € [0,1) and supp(H) & supp(G). Therefore,
we have that G is irreducible with respect to H and, by Proposition 2, k*(F' | H) = ~. For
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abbreviation, let k* = k*(F' | H) and < R(F | H). Since supp(H) & supp(G), there exists
an open set O such that

F(0) G(O) .

) (1 - ) gy = KR

Then, since € contains a generating set for the standard topology on R¢, there exists F € £
such that
FE) .

H(E)

Let § > 0 such that 6 < % (E). Since by hypothesis F and H satisfy (UDI), there
exist constants As s, Ass > 0 such that for large enough n, with probability at least 1 —

A3 5D ety 75l
- F(E)+ Aysyn + 6
(H(E) — Ay sm —0)+

F(E)+e
T (H(E) = e)+
where € = 244 svn + . The rest of the proof is identical to the proof of Theorem 2 from
Scott (2015) and, therefore, we omit it. [ |

The following theorem gives sufficient conditions under which a ResidueHat estimator sat-
isfies (UDI). It is the basis of Proposition 4.

Lemma 11 If Py,..., Py satisfy (A”) and G is a ResidueHat estimator of order k of a

distribution G € conv(Py, ..., Pr), then G satisfies (UDI).
Proof Let G «— Res1dueHat(F]H) where G «— ResidueHat(F' |H), F # H, F,H €
conv(Py,...,Pr) and F H are ResidueHat estimators of F' and H respectively. We use

induction on k Suppose k = 0. T hen F and H are empirical dlstrlbutlons Therefore,
the VC inequality applies to F and H. Consequently, Fand H satisfy (UDI). Since
Py, ..., Py satisfy (A"), F,H € conv(Py,...,Py) and F' # H, by Lemma 8, F' satisfies
(SC) with respect to H. Then, by Lemma 10, /@(F|H) satisfies (RC). Then, all of the
assumptions of Lemma 9 are satisfied, so G satisfies (UDI). Note that G € conv(P, ..., Pr)
by Proposition 3.

The inductive step (k > 0) follows by similar reasoning. The dlfference is that instead
of applying the VC inequality to F and H we use the fact that F' and H are ResidueHat
estimators of order k — 1 and, therefore, satisfy (UDI) by the inductive hypothesis. |

Proof [Proof of Proposition 4] Let 0 < § < e. By Lemma 11, G satisfies (UDI). Conse-
quently, there exist constants A 5, Ao 5 > 0 such that for large enough n with probability

at least 1 — Ay s Zie[L] n%_, G satisfies for every K e &,

A~ 1
|G(E) — G(E)| < A257n+5—A25261n )+ —d<e
i€[L] t
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E.2. Demixing Mixed Membership Models

In this section, we prove our main estimation result for demixing mixed membership models,
i.e., Theorem 5. First, in Section E.2.1, we present an important lemma for FaceTestHat.
Second, in Section E.2.2, we present an empirical version of Demix and prove Theorem 5.

E.2.1. THE FACETESTHAT ALGORITHM

The following establishes that FaceTestHat behaves as desired.

Lemma 12 Let € € (0,1). For all j € [K], let Q; = n;fFP and n; € Ak such that every
n; lies in the relative interior of the same face of Ag. Let P, ..., Pk satisfy (A”), and
Q1,...,QK € conv(Py,..., Pg) be distinct. Let Q; be a ResidueHat estimate of Q; Vi € [K].

1. With probability tending to 1 as n — o0, if FaceTestHat(@l, e ,@K |e) returns 1,
then m1,...,Mx are in the relative interior of the same face.

2. Let r7; = r*(Qi|Qj). If mi,....,mk are in the relative interior of the same
face and min; ; /{;"J > ¢, then with probability tending to 1 as n —> 0,

FaceTestHat(@l, . ,@K |e) returns 1.

Proof Let e >0, v}, = k*(Qi|Q;) and R; j = R(Qs | Qj) Since P, ..., Pk satisfy (A”)
and Q; # @, by Lemma 8, Q; satisfies (SC) wrt @;. Since Q; and @); are ResidueHat
estimators, @; and @; satisfy (UDI) (Lemma 11). Then, by Lemma 10 &; ; satisfies (RC).

1. We prove the contrapositive. Suppose that Q1,...,Qx are not in the relative interior
of the same face. Then, by Proposition 8, FaceTest(Q1,...,Qk) returns 0, which
occurs if and only if there exist i # j such that 7 ; = 0. Since &; ; satisfies (RC), as
n — o0, with probability tending to 1, k; ; — 0. This completes the proof.

2. If min, ; ﬁ;"j > €, then as n — o0, with probability tending to 1, min; j K; ; > €.

E.2.2. THE DEMIXHAT ALGORITHM

The DemixHat algorithm (see Algorithm 11) differs from the Demix algorithm in that (7)
it requires the specification of a constant € € (0,1) and (i) it only uses the two-sample
k* operator. In the interest of clarity, we state the population version of the algorithm
DemixHat, which we call Demix2. The only difference between Demix and Demix2 is that
line 7 in Demix has been replaced with lines 6-8 in Demix2.

Lemma 13 establishes that it is possible to replace line 7 of the Algorithm 4 with the
sequence of applications of the two-sample x* in lines 6-8 of Algorithm 16, without changing
the conclusion of Theorem 2.

Lemma 13 Let {i1,...,ix} < [L] be distinct indices. Let Py, ..., Py be jointly irreducible,
(Q1,...,Qk-1) be a permutation of (P, ..., Pi._,) and Q} € conv(P,,, ..., P, )°. Define
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Algorithm 16 Demix2(Si,...,Sk)
Input: Si,...,Sk are distributions
1: if K = 2 then
2:  return (Residue(S;|S), Residue(Ss |S1))T

3: else

4. (Rg,...,Rg)T «— FindFace(Sy,...,Sk)
5 (Q1,...,Qx_1)T «— Demix2(Ry,. .., Ry)
6: fori=1,..., K—1do

T: Rk «— Residue(Qx | Qi)

8: end for

9. return (Qq,...,Qg)T

10: end if

the sequence
Qi — Residue(Qic" | Qi1):
then, Qﬁ = Pj,.

Proof Relabel the distributions so that (J; = P;. Let p; denote the mixture proportion
of sz and e; the mixture proportion of P;. Write pq = Zfi 1 aie;. We claim that py =
Dizk Qi€

» ka‘i for all £ < K. We prove this inductively. The base case k = 1 follows since

2>1 @ = 1. Next, we prove the inductive step. Suppose that pj 1 = Lizho1 i€ By

2i>k~—1 Qg
Proposition 3, the mixture proportion of Q'}O ., is the residue of wi_1 with respect to
ei_1. By statement 1 of Lemma 2, we can write

M = ep—1 + " (pp—1 —ep_1)
B Disk_1 i(l—a®) + a*ag_1]ex 1 +a* 3, aze;

a Zz‘>k—1 Qg

where
B 1
1 — k*(pr—1| er—1)

OZ*

Dlizk—1 Yi€i
Zi;k—1 T
following optimization problem (in statement 1 of Lemma 2):

*

and we have used the inductive hypothesis pr_1 = o™ is the value of the

max(a > 1|3G,G = pp—1 + a(ep_1 — pr—1)).

Inspection of the above optimization problem reveals that o™ = Zi#:aal Plugging this
into the above equation gives p; = ZZZL:ZQ This establishes the claim.
Setting k = K, it follows that ux = % = eg. [ |
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Corollary 2 Let Py, ..., Py, be jointly irreducible and I1 have full column rank. Then, with

probability 1, Demiz2(P) returns a permutation of P.

Proof [Proof of Theorem 5] Note that every estimator of a distribution in the DemixHat
algorithm is a ResidueHat estimator since (i) the Demix2 algorithm 16 only considers
distributions that are in conv(Py, ..., Pr) and (ii) only computes Residue(F | H) if F' # H.
To see why (7i) is true, consider: the Demix2 algorithm computes Residue(- | -) at lines 2 and
7 in Demix2 and line 3 in FindFace. In the proof of Theorem 2, we showed that Si,...,Sk
are always linearly independent and therefore distinct. This implies that in lines 2 and 7
in Demix2 and line 3 in FindFace, the residue function is called on distinct distributions.
Thus, every estimator of a distribution of the DemixHat algorithm satisfies the assumptions
of Lemma 11.

First, we argue that the order of the ResidueHat estimators is bounded; this implies
that the constants in the uniform deviation inequalities associated with the ResidueHat
estimators are bounded. We give a very loose bound. DemixHat calls itself at most L — 1
times and in each call recurses on at most L — 1 ResidueHat estimators and calculates at
most L — 1 more ResidueHat estimators. Therefore, each ResidueHat estimator has order
at most (L — 1)3.

Second, let A; denote the event that DemixHat recurses on i distributions lying in the
relative interior of an i-face in the (L — i)th recursive call. We show that the event miL:_QlAi

occurs with probability tending to 1 as n — oo. Consider Ay_;. Let ]%En) denote the
estimate of the ith distribution in line 3 in the nth iteration of the for loop in Algorithm

12 and let Rl(n) denote the corresponding distribution. Let sf;, = n*(REn) ]R§-n)). From
the proof of Theorem 2, there exists an integer N; > 0 such that for n > Ny, Rz(n) lies in

the relative interior of the same face for all ¢ = 2,..., L. Further, using the notation from

Z(n)s, i.e., the p,gn)

pu™ — AH — 0. Thus, by

the proof of Theorem 2, we have that the mixture proportions of the R S,

converge to a common X on this face, i.e., for all: =2,..., L,

statement 3 of Lemma 4, for all i # j € [L]\{1} /i*([,l,z(n) | ujn)) — 1. Hence, there exists
Ny > Nj such that n*(uZ(NQ) | ”§N2)) > ¢ for all i # j. By statement 1 of Lemma 12 and

a union bound argument, with probability increasing to 1, FaceTestHat(f%én), e Ié(Ln) K3)
returns 0 for all n < Njp since Rén), . ,R(Ln) are not on the relative interior of the same face.

Thus, with probability tending to 1, FaceTest does not make the mistake to return 1 before
the distributions Rén), ce R'™ are on the relative interior of the same face. By statement
2 of Lemma 12, with probability tending to 1 as n — o0, FaceTestHat(}%éNZ), e }AES;NQ) |€)
returns 1. Hence, with probability increasing to 1, the event A;_; occurs. Applying the
same argument to A; for i < L — 1 and taking the union bound shows that miL;QIAi occurs
with probability tending to 1 as n — 0.

Now, we can complete the proof. Under the assumptions of Theorem 2, there is
a permutation o such that for each distribution Q; estimated by Q;, P, = Qi. By

Proposition 4, as n — 0, @Z converges uniformly to @);. The result follows. |
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Algorithm 17 VertexTestHat(II™, (PIT, ce f’;(/[)T, (Q1,...,Qu)")

1: Form the matrix ]/\/L"j = E(]sj | @J)
2: Let |IIT| denote the number of nonzero entries in IT*

3: Form the matrix Z by making the [II*| largest entries of M equal to 1 and the rest of
its entries equal to 0
4: Use any algorithm that finds a permutation matrix C such that ZC = IT™" (if it exists)

if such a permutation matrix C exists then
return (1,C7)

else
return (0,0)

end if

E.3. Classification with Partial Labels

In this section, we prove Theorem 6. To begin, we briefly sketch an argument that one
can reduce any instance of a partial label model satisfying (B3) and (A) to an instance
of a partial label model that also satisfies (D). Let J = {i : HZ: = e? for some j € [L]} =
{71,-.-,Jk}, the set of indices of contaminated distributions that are equal to some base
distribution. Compute Residue(P; | P;,) for i € [L]\J if there is  such that H:l = 1'[;’1’[ =1
Replace P; with Residue(P; | Pj,) (and call it P; for simplicity of presentation). Update IT*
and remove j; from J. Repeat this procedure until J is empty. Then, there will be (L —|J])
P; lying in a (L — |.J|)-face of A that are not equal to any of the base distributions and
the other contaminated distributions will be equal to base distributions. Then, it suffices
to solve the instance of the partial label model on the (L — |.J|)-face, which satisfies (D).

Next, we introduce VertexTestHat (Algorithm 17), an empirical version of VertexTest,
and prove that it satisfies a useful consistency property.

Lemma 14 Suppose that Pi,..., Py satisfy (A”), II has full column rank, the columns
of IIY are unique and IIT satisfies (D). Let @1, cees @L be ResidueHat estimators of
Q1,...,Qr, respectively. Suppose that (Q1,...,QL) is a permutation of (Py,...,Pr). Then,
with probability tending to 1 asm —> o0, VertexTestHat(ITT, (]—T’f7 ce ﬁL)T, (@1, e ,@L)T)
returns a permutation matriz C such that Vi, Ci,;(@l, ce @L)T is a ResidueHat estimator
of F;.

Proof Define k; j = 2(15;r | @J) and k7 ; = #*(P;|Q;). We claim that R; ; satisfies a (RC).
Since Py, ..., Pp, satisfy (A”) and by assumption (D) Q; # P;, by Lemma 8, P; satisfies
(SC) wrt Q. Since lf’;r is an empirical distribution, ﬁ; satisfies a (UDI). Since @j is a
ResidueHat estimator, @j satisfies a (UDI) by Lemma 11. Therefore, the hypotheses of
Lemma 10 are satisfied and ; ; satisfies a (RC).

Form the matrix Z;; = 1{5*(151"Qj)>0} as in Algorithm 9. Since @Qq,...,Q are

a permutation of Pi,...,Pr, Z is formed by permuting the columns of IIt appro-
priately. Thus, there are |[II*| (i,j) pairs such that x;; > 0 and the rest are such
that x;; = 0. Then, using Lemma 10 and a union bound, with probability tend-
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ing to 1 as n — o, R;; is among the |S| largest values in the matrix M if and
only if x;; > 0. On this event, VertexTestHat(H*,(Pf,...,]E’JL)T,(@l,...,@L)T)
and  VertexTest(II*, (Py,..., Py)7,(Q1,...,Qr)T) return the same  output.
Since (Q1,...,Qr) is a permutation of (Pi,...,Pr) by hypothesis, by Lemma
7 VertexTest(IT*, (Py,..., Py)7, (Q1,...,Qr)")  returns  (1,CT)  such  that
CT(Q1,...,Qr)" = P. The result follows. |

Proof [Proof of Theorem 6] Let (@1, e ,@L) — DemixHat(PlT, . ,ISX/[ |€). By Theorem
5, w.p. tending towards 1 as n — 0, there exists a permutation o : [L] — [L] such that
for every i € [L],

sup |Qi(E) — P,y (E)| < 6.
Ee&

From the proof of Theorem 5, each @Z is a ResidueHat estimator. The assumptions of
Lemma 14 are satisfied. The result follows immediately from Lemma 14. |

Appendix F. Previous Results

Lemma 15 (Lemma A.1 (Blanchard and Scott, 2014)) The mazimum operation in
the definition of k* and k (lines (3) and (6), respectively) is well-defined, that is, the outside
supremum is attained at at least one point.

Lemma 16 (Lemma B.1 (Blanchard and Scott, 2014)) If II satisfies (B1), then

T1,..., 7 are linearly independent. If Py,..., Py are jointly irreducible, then they are
linearly independent. If m,..., 7L are linearly independent and Py, ..., P are linearly
independent, then Py, ..., Py are linearly independent.

Appendix G. Experiments

In this Section, we perform experiments that suggest that joint irreducibility of Py, ..., Pg
is a reasonable assumption. In particular, our experiments suggest that on the datasets
in question, (A”) holds (which is a strictly stronger condition than joint irreducibility).
We consider three datasets: classes 1, 2, and 3 of MNIST (LeCun et al., 1998), the Iris
dataset (Fisher, 1936), and the Breast Cancer Wisconsin (Diagnostic) Data Set (Dheeru and
K. Taniskidou, 2017). We use the Spectral Support Estimation algorithm (De Vito et al.,
2010; Rudi et al., 2014) to estimate the support of each class in each dataset. We split each
dataset into training, validation, and test sets, applying the algorithm to the training set,
using the validation set to pick the hyperparameters, and evaluating the performance on
the test set. We average our results over 60 trials where in each trial we randomly permute
the dataset, thus altering the training, validation, and test sets. Let §z denote an estimate
of the support of class i. Tables 1, 3, and 5 display an estimate of the probability that a
point sampled from P; belongs to the estimate of the support §z They indicate that the
Spectral Support Estimation has reasonably good performance in producing gis containing
the support of the associated class. Tables 2, 4, and 6 use the S; to estimate the quantity
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Pryp,(x € Ujzisupp(P;)), which must be strictly less than 1 for (A”) to hold. We find
that our estimates are considerably less than 1, which suggests that joint irreducibility holds
on these datasets.
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i=1 i=2
Pryp(xeS) 087 089

Table 1: Cancer Support Results.

i=1 i=2 i=3
Prg-p(zel;) 086 084 084

Table 3: Iris Support Results.

i=1 i=2 i=3
Pryp(xeS;) 098 087 083

BLANCHARD, AND SCOTT

i=1 i1=2
PI'ENPl(LL' € u]#iSj) 0.18 0.38

Table 2: Cancer Separability Results.

i=1 1=2 =3

Pro-p(z e ujzS;) 00 017 0.19

Table 4: Iris Separability Results.

i=1 1=2 =3

Pl'mwpl(w € U]%Z‘Sj) 0.08 0.17 0.14

Table 5: MNIST Support Results. Table 6: MNIST Separability Results.
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