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Abstract—Heart disease is highly prevalent in developed coun-
tries, causing 1 in 4 deaths. In this work we propose a method for
a fully automated 4D reconstruction of the left ventricle of the
heart. This can provide accurate information regarding the heart
wall motion and in particular the hemodynamics of the ventricles.
Such metrics are crucial for detecting heart function anomalies
that can be an indication of heart disease. Our approach is fast,
modular and extensible. In our testing, we found that generating
the 4D reconstruction from a set of 250 MRI images takes less
than a minute. The amount of time saved as a result of our work
could greatly benefit physicians and cardiologist as they diagnose
and treat patients.

Index Terms—Magnetic Resonance Imaging, segmentation,
reconstruction, cardiac, machine learning, ventricle

I. INTRODUCTION

Heart diseases are the leading cause of death for both men

and women; just in the United States, approximately 630,000

people die each year of heart disease [1]. Due to the high

number of cases and the importance of treatment, cardiologists

have limited time to perform the tests and screenings required

to diagnose heart disease. One method for diagnosing heart

disease consists of measuring the amount of blood that is

flowing through the heart. This measurement is called the

ejection fraction (EF) and is usually measured in the left

ventricle of the heart. A normal person will have an EF

between 50 and 70 percent [2].

Currently, physicians can measure the EF through various

medical imaging modalities, including ultrasound and MRI.

In either modality, this requires prior knowledge of the left

ventricle location and area, as well as an expert radiologist

that is able to correctly identify the left ventricle. Although

there are automatic methods to identify and segment the left

ventricle, they may not be as accurate as manual methods.

Therefore, in many cases, the radiologist must manually ana-

lyze the images, segment the left ventricle, and measure the

EF. This process is prone to human error and can take a long

time to complete, as seen in [3], where the average time it took

per image to manually trace the epicardium and endocardium

was 25.4 seconds. When heart disease affects so many people,

the time it takes for diagnosis is valuable and shortening it

is of the utmost importance. In addition, state-of-art MRI

scanners enable interactive control of the MRI scanner during

data acquisition (i.e. on-the-fly). These emerging techniques

offer unique opportunities in optimizing data acquisition; albeit

require fast and reliable data processing.

Within this context, we propose a fast, fully automated

method that generates a 4-dimensional (4D) reconstruction

of the left ventricle (LV). This reconstruction can be used

to quickly and accurately calculate the ventricular motion

parameters such as the end-diastolic volume (EDV), end-

systolic volume (ESV), and the EF. Our approach takes as

input a CINE sequence of MRI images of the heart and outputs

an accurate 4D reconstruction of the left ventricle that is able

to visualize motion as the heart is beating. Our approach is

able to generate a reconstruction from a set of 250 images in

under a minute, greatly reducing the amount of time it could

take a radiologist to perform the same process manually and

in turn reducing the amount of time required for a diagnosis.

In the following sections, we explain how our method works,

describe the datasets we use, show our experiments and results,

and discuss the ramifications of our findings.

II. METHODS

One of the complaints we most often hear from physicians

is that it takes too long to perform a test and obtain the results.

Furthermore, there is great interest in the continuous develop-

ment of new imaging and data visualization methods. For these

reasons, we constrained our system to be fast, modular, and

extensible. Each step in our process is independent to any other

process and can be exchanged with new or improved methods

as our work moves forward. In Fig. 1, we show the complete
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end-to-end automated process we designed for 4D ventricle

reconstruction. First, we obtain a complete set of CINE images

from the MRI machine. We then feed these images to a

machine learning module that automatically segments the left

ventricle. Afterwards, we pass the segmentation masks to the

3D reconstruction module which generates a 3D model of

the ventricle for each frame in the CINE sequence. Finally,

we interpolate the frames together to obtain our final 4D

reconstruction and interpose it with the original MRI scan

for visualization. We go into more details for each main step

in the following sub-sections. All experiments and tests were

performed on a single desktop computer equipped with a quad-

core 3.5 GHz CPU, 16 GB RAM and an NVIDIA GTX 1080

Ti GPU.
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Fig. 1. Diagram showing the design of our fully automated 4D ventricle
reconstruction system.

A. Datasets

For this work, we use two different datasets to design,

develop, and test our methods. The first dataset is the Left
Ventricle Segmentation Challenge (LVSC) [4] dataset obtained

from The Cardiac Atlas Project [5]. This dataset consists of

two partitions of 100 different cases each, one for training

and one for validation. For the training partition there is an

average of 378 images per case and a total of 37860 images.

The training partition also includes ground truth segmentation

masks obtained by expert rating consensus. The segmentations

cover both the endocardium and epicardium of the left ven-

tricle. We use the training partition to train our segmentation

model.

The second dataset was obtained from the Methodist Hospi-

tal in Houston. The dataset consists of short-axis cardiac MRI

images from a single patient. The dataset has 10 heart slices

over 25 frames, a total number of 250 images. Along with

the MRI images, we were provided with manual segmentation

masks of the left ventricle endocardium for each image. These

masks were segmented by a radiologist belonging to the

Methodist staff. Since we have the privilege of working with

data, we rely on it as the ground truth for our reconstruction

efforts. For clarity, we will refer to this dataset as Methodist

Left Ventricle Segmentation (MLVS ) from now on.

B. Segmentation

There have been various proposed methods for left ventricle

segmentation, ranging from thresholding methods that com-

pare signal intensities in the image against a threshold value to

obtain the segmentation [6], [7], atlas based methods that use

a statistical atlas to compare and adjust the segmentations into

accurate ones [8]–[10], to more recent deep learning methods

that rely on prior data to form a probabilistic model capable

of identifying new instances of input data [11]–[15]. In order

to select the best available segmentation method, we had to

make sure that it complied with our system constraints. We

analyzed and explored our options and opted for a machine

learning approach due to the massive segmentation speed

advantages over the other methods. There were two different

segmentation algorithms that we investigated: U-Net [15] and

a Fully Convolutional Neural Network (FCNN) approach [11].

FCNN

Convolution + ReLU + MVN
Max Pooling
Upsampling
Softmax

copy and crop
conv 3x3, ReLU
max pool 2x2
up-conv 2x2
conv 1x1

U-Net

Fig. 2. Diagrams of (a) the U-Net architecture and (b) the FCNN architecture.

U-Net is itself a fully convolutional neural network archi-

tecture designed specifically for biomedical image segmenta-

tion. The network famously consists of a downsampling or

encoding path and an upsampling or decoding path, giving

it its namesake U shape. The FCNN proposed by Phi Vu

Tran in [11] consists of a simpler feed-forward architecture.

We compare both architectures briefly in Fig. 2. In order

to reliably compare both algorithms, we first trained them

using the same training portion from the LVSC dataset. To



verify the segmentation performance, we used the ground truth

segmentation masks from the MLVS dataset to compute the

DICE Similarity Coefficient and the Jaccard Index metrics.

These metrics can be used to compare the similarity of two

sets, and in our case the similarity between two segmentation

masks.

The DICE Similarity Coefficient is defined as:

D =
2× |A ∩B|
|A|+ |B| (1)

where A and B are two different sets. In terms of a binary

segmentation mask, A = True Positives and B = True Nega-

tives. Having this in mind, we find that the DICE similarity is

an equivalent to the F1-Score, which is often used as machine

learning performance metric. On the other hand, the Jaccard

Index is defined as:

J =
|A ∩B|
|A ∪B| (2)

where Equation (2) is the intersection of the sets (or binary

masks) over the union. These are two of the most commonly

used metrics for segmentation.

TABLE I
COMPARISON OF SEGMENTATION PERFORMANCE

Model DICE Similarity Jaccard Index
U-Net 0.83 0.76
FCNN 0.90 0.82

In Table I, we can see that the FCNN model outperformed

the U-Net model significantly. Additionally, we noted that the

U-Net model requires a larger amount of memory to run when

compared to the FCNN model which is another advantage of

using the FCNN over the U-Net model. This smaller memory

footprint allowed us to run multiple instances of the FCNN

in a single GPU which contributed to faster inference of

the left ventricle’s epicardium and endocardium. Therefore,

we decided to move forward with the FCNN model for the

automated segmentation aspect of our system since it would

enable the most accurate 4D reconstruction.

C. 4D Reconstruction

For a dataset of M frames and N slices per frame, the

4D reconstruction is obtained by performing a 3D surface

reconstruction of each frame in the CINE sequence and then

adding them together into a 4D motion visualization. The

3D surfaces are modeled from the segmentation masks and

the meta-data found in the MRI DICOM file. To create the

3D surface for one frame, the first step is to extract a set

of 3D points from the segmentation mask of each slice. We

then interpolate the points of each slice using a closed spline,

resulting in N different rings. We then choose a point in ring0

and find the closest point to it in ring1. This is repeated for

each pair of rings until ringn-1. Taking those N points and their

mirrored points across the rings, we interpolate an open spline.

Once we have the splines, we apply Hugues Hoppes surface

reconstruction algorithm [16] on the points constituting the

splines to generate the 3D mesh. Finally, this entire process

is repeated on every frames segmentation to create the 4D

motion.

III. EXPERIMENTS AND RESULTS

A B

C

Endocardium

Epicardium

Endocardium

Epicardium

Epicardium

Endocardium

Fig. 3. Final 4D reconstruction. We can see the MRI image interposed with
the 3D volume of the left ventricle, with the endocardium in red and the
epicardium in yellow.

In Fig. 3 we show the final 4D reconstruction as it is

output by our system. The resulting reconstruction seems of

great quality from a qualitative viewpoint. In order to provide

a more quantitative assessment, we decided to use the 4D

reconstruction to do some real-world scenario computations

that cardiologists would be interested in. Mainly, we used

the reconstruction to compute the EDV, ESV, and the EF for

the left ventricle. The EDV and ESV are found by simply

measuring the volume in the ventricle during the heart’s

diastole phase (muscle relaxes) and the systole phase (muscle

contracts), respectively. The EF is a function that describes

how much blood is ejected from the left ventricle on each

heartbeat. It is defined as:

EF =
EDV − ESV

EDV
(3)

We performed the 4D reconstruction using the ground truth

segmentation masks (GT 4D) and the automated segmentation

masks (Auto 4D) and computed the values for each by looking

at the 3D volumes exclusively. We also estimated the values

from the MRI images directly by using the ground truth

segmentations (GT Seg) and the automated segmentations

(Auto Seg) to compute the area of the segmentation mask

for each slice and then extrapolating the volume with the

information in the DICOM meta-data. In Table II, we show

the results from our tests.

From these results, we see that although the values for ESV

and EDV vary across the different methods, the EF is within a

small percentage of error of 7.3% from the ground truth. Based

on this observation, we consider that our 4D reconstruction

is quantitatively correct and accurate. Finally, in Fig. 4, we

present a graph showing how the left ventricle volume changes

through time as the heart is beating. The graph compares the



TABLE II
COMPARISON OF HEART FUNCTION BIO-MARKERS.

Method EDV ESV EF
GT 4D 184.59 ml 128.96 ml 30.14%

Auto 4D 158.54 ml 114.25 ml 27.94%
GT Seg 179.2 ml 125.15 ml 30.16%

Auto Seg 170.75 ml 123.01 ml 27.96%

values obtained from the 4D reconstruction against the values

obtained from the MRI image estimations.
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Fig. 4. Plot showing the volume of the left ventricle as it changes though
time. We compare the values given by the 4D volume reconstruction against
the estimated values computed from the MRI images and meta-data.

IV. CONCLUSION

In this work, we described a computational pipeline for

automated segmentation and 4D reconstruction of the LV of

the human heart from CINE MRI sets. The automated pipeline

was investigated by comparing clinically relevant parameters

that characterize the LV motion to the corresponding ground

truths for the same datasets. We calculated the end-diastolic

volume (EDV), end-systolic volume (ESV) and ejection frac-

tion (EF); these are clinically important in the detection

and characterization of heart wall abnormalities secondary to

heart disease. We found that the values calculated from the

automated pipeline were within 7.3% error compared to those

calculated from the ground truth. Furthermore, the proposed

pipeline was proved to be fast within the clinical realm. On a

personal computer with a quad-core 3.5 GHz CPU, 16 GB

RAM and an NVIDIA GTX 1080 Ti GPU, the automatic

segmentation and 4D reconstruction of the beating heart from a

set of 250 CINE MRI images (10 slices and 25 time frames)

took 35 seconds on average. We are further developing the

pipeline toward two directions: (a) link it to the MRI scanner

for data segmentation and reconstruction on-the-fly, i.e. as the

raw MRI data are collected, and (b) to entirely run on a GPU

for further acceleration so it can be used with MRI guided

cardiac interventions. With its current and future features,

the described pipeline will benefit conventional diagnosis by

speeding up the workflow, as well as enhance MR guided

interventions and enable interactive scanner control.
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