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Abstract

Training convolutional neural network models is memory intensive since back-
propagation requires storing activations of all intermediate layers. This presents a
practical concern when seeking to deploy very deep architectures in production,
especially when models need to be frequently re-trained on updated datasets. In this
paper, we propose a new implementation for back-propagation that significantly
reduces memory usage, by enabling the use of approximations with negligible
computational cost and minimal effect on training performance. The algorithm
reuses common buffers to temporarily store full activations and compute the for-
ward pass exactly. It also stores approximate per-layer copies of activations, at
significant memory savings, that are used in the backward pass. Compared to sim-
ply approximating activations within standard back-propagation, our method limits
accumulation of errors across layers. This allows the use of much lower-precision
approximations without affecting training accuracy. Experiments on CIFAR-10,
CIFAR-100, and ImageNet show that our method yields performance close to exact
training, while storing activations compactly with as low as 4-bit precision.

1 Introduction

The use of deep convolutional neural networks has become prevalent for a variety of visual and other
inference tasks [9], with a trend to employ increasingly larger and deeper network architectures [8, 10]
that are able to express more complex functions. While deeper architectures have delivered significant
improvements in performance, they have also increased demand on computational resources. In
particular, training such networks requires a significant amount of on-device GPU memory—much
more so than during inference—in order to store activations of all intermediate layers of the network
that are needed for gradient computation during back-propagation.

This leads to large memory footprints during training for state-of-the-art deep architectures, especially
when training on high-resolution images with a large number of activations per layer. This in-turn
can lead to the computation being inefficient and “memory-bound”: it forces the use of smaller
training batches for each GPU leading to under-utilization of available GPU cores (smaller batches
also complicate the use of batch-normalization [12] with batch statistics computed over fewer
samples). Consequently, practitioners are forced to either use a larger number of GPUs for parallelism,
or contend with slower training. This makes it expensive to deploy deep architectures for many
applications, especially when networks need to be continually trained as more data becomes available.

Prior work to address this has traded-off memory for computation [2, 4, 5, 14], but with a focus on
enabling exact gradient computation. However, stochastic gradient descent (SGD) inherently works
with noisy gradients at each iteration and, in the context of distributed training, has been shown to
succeed when using approximate and noisy parameter gradients when aggregating across multiple
devices [3, 16, 19, 20]. Motivated by this, we propose a method that uses approximate activations
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propose a strategy that requires memory proportional to the square-root of the number of layers.
However, it requires additional computation, with cost proportional to that of an additional forward
pass. In a similar vein, [4] considered network architectures with “reversible” or invertible layers to
allow re-computing input activations of such layers from their outputs during the backward pass.

These methods likely represent the best possible solutions if the goal is restricted to computing exact
gradients. But SGD is fundamentally a noisy process, and the exact gradients computed over a batch
at each iteration are already an approximation—of gradients of the model over the entire training
set [17]. Researchers have posited that further approximations are possible without degrading training
ability. For distributed training, asynchronous methods [3, 16] delay synchronizing models across
devices to mitigate communication latency. Despite each device now working with stale models, there
is no major degradation in training performance. Other methods quantize gradients to two [19] or
three levels [20] so as to reduce communication overhead, and again find that training remains robust
to such approximation. Our work also adopts an approximation strategy to gradient computation,
but targets the problem of memory usage on a each device. We approximate activations, rather than
gradients, in order to achieve significant reductions in a model’s memory footprint during training.
Moreover, since our method makes the underlying backprop engine more efficient, for any group of
layers, it can also be used within checkpointing to further improve memory cost.

It is worth differentiating our work from those that carry out all training computations at lower-
precision [1, 6, 15]. This strategy allows for a modest lowering of precision—from 32- to 16-bit
representations, and to 8-bit with some loss in training quality for [1]—beyond which training error
increases significantly. In contrast, our approach allows for much greater approximation by limiting
accumulation of errors across layers, and we are able to replace 32-bit floats with 8- and even 4-bit
fixed-point approximations, with little effect on training performance. Of course, performing all
computation at lower-precision also has a computational advantage: due to reduction in-device
memory bandwidth usage (transferring data from global device memory to registers) in [15], and due
to the use of specialized hardware in [6]. While the goal of our method is different, it can also be
combined with these ideas: compressing intermediate activations to a greater degree, while using
16-bit precision for computational efficiency.

3 Proposed Method

We now describe our approach to memory-efficient training. We begin by reviewing the compu-
tational steps in the forward and backward pass for a typical network layer, and then describe our
approximation strategy to reducing the memory requirements for storing intermediate activations.

3.1 Background

A neural network is composition of linear and non-linear functions that map the input to the final
desired output. These functions are often organized into “layers”, where each layer consists of
a single linear transformation—typically a convolution or a matrix multiply—and a sequence of
non-linearities. We use the “pre-activation” definition of a layer, where we group the linear operation
with the non-linearities that immediately preceed it. Consider a typical network whose lth layer
applies batch-normalization and ReLU to its input Al:i followed by a linear transform:

[B.Norm.] Al:1 = (σ2

l + ǫ)
−1/2 ◦ (Al:i − µl), µl = Mean(Al:i), σ

2 = Var(Al:i); (1)

[Sc.&B.] Al:2 = γl ◦Al:1 + βl; (2)

[ReLU] Al:3 = max(0, Al:2); (3)

[Linear] Al:o = Al:3 ×Wl; (4)

to yield the output activations Al:o that are fed into subsequent layers. Here, each activation is a tensor
with two or four dimensions: the first indexing different training examples, the last corresponding
to “channels”, and others to spatial location. Mean(·) and Var(·) aggregate statistics over batch and
spatial dimensions, to yield vectors µl and σ2

l with per-channel means and variances. Element-wise
addition and multiplication (denoted by ◦) are carried out by “broadcasting” when the tensors are not
of the same size. The final operation represents the linear transformation, with × denoting matrix
multiplication. This linear transform can also correspond to a convolution.

Note that (1)-(4) are defined with respect to learnable parameters γl, βl, and Wl, where γl, βl are
both vectors of the same length as the number of channels in Al, and Wl denotes a matrix (for
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fully-connected layers) or elements of a convolution kernel. These parameters are learned iteratively
using SGD, where at each iteration, they are updated based on gradients—∇γl, ∇βl, and ∇Wl—of
some loss function computed on a batch of training samples.

To compute gradients with respect to all parameters for all layers in the network, the training algorithm
first computes activations for all layers in sequence, ordered such that each layer in the sequence
takes as input the output from a previous layer. The loss is computed with respect to activations of the
final layer, and then the training algorithm goes through all layers again in reverse sequence, using
the chain rule to back-propagate gradients of this loss. For the lth layer, given the gradients ∇Al:o

of the loss with respect to the output, this involves computing gradients ∇γl,∇βl, and ∇Wl with
respect to the layer’s learnable parameters, as well as gradients ∇Al:i with respect to its input for
further propagation. These gradients are given by:

[Linear] ∇W = AT
l:3 × (∇Al:o), ∇Al:3 = (∇Al:o)×WT

l ; (5)

[ReLU] ∇Al:2 = δ(Al:2 > 0) ◦ (∇Al:3); (6)

[Sc.&B.] ∇βl = Sum(∇Al:2), ∇γl = Sum (Al:1 ◦ (∇Al:2)) , ∇Al:1 = γl ◦ ∇Al:2; (7)

[B.Norm.] ∇Al:i = (σ2

l + ǫ)
−1/2 ◦

[

∇Al:1 − Mean(∇Al:1)−Al:1 ◦ Mean(Al:1 ◦ ∇Al:1)
]

; (8)

where Sum(·) and Mean(·) again aggregate over all but the last dimension, and δ(A > 0) is a tensor
the same size as A that is 1 where the values in A are positive, and 0 otherwise.

When the goal is to just compute the final output of the network, the activations of an intermediate
layer can be discarded during the forward pass as soon as we finish processing the subsequent layer
or layers that use it as input. However, we need to store all intermediate activations during training
because they are needed to compute gradients during back-propagation: (5)-(8) involve not just the
values of the incoming gradient, but also the values of the activations themselves. Thus, training
requires enough available memory to hold the activations of all layers in the network.

3.2 Back-propagation with Approximate Activations

We begin by observing we do not necessarily need to store all intermediate activations Al:1, Al:2,
and Al:3 within a layer. For example, it is sufficient to store the activation values Al:2 right before
the ReLU, along with the variance vector σ2

l (which is typically much smaller than the activations
themselves). Given Al:2, we can reconstruct the other activations Al:3 and Al:3 needed in (5)-(8)
using element-wise operations at negligible cost. Some libraries already use such “fused” layers to
conserve memory, and we use this to measure memory usage for exact training.

Storing one activation tensor at full-precision for every layer still requires a considerable amount

of memory. We therefore propose retaining an approximate low-precision version Ãl:2 of Al:2,
that requires much less memory for storage, for use in (5)-(8) during back-propagation. As shown
in Fig. 2, we use full-precision versions of all activations during the forward pass to compute

Al:o from Al:i as per (1)-(4), and use Al:2 to compute its approximation Ãl:2. The full precision
approximations are discarded (i.e., over-written) as soon they have been used—the intermediate

activations Al:1, Al:2, Al:3 are discarded as soon as the approximation Ãl:2 and output Al:o have
been computed (Al:o is itself discarded after it has been used by a subsequent layer). Thus, only the

approximate activations Ãl:2 and variance vector σ2

l for each layer are retained for back-propagation,

where it is also used to compute corresponding approximate versions Ãl:1 and Ãl:3, in (5)-(8).

Our method allows for the use of any generic approximation strategy to derive Ãl:2 from Al:2 that
leads to memory-savings, with the only requirement being that the approximation preserve the sign of
these activations (as will be discussed below). In our experiments, we use quantization to K-bit fixed
point representations as a simple and computationally-inexpensive approximation strategy to validate
our method. However, we believe that future work on more sophisticated and data-driven approaches
to per-layer approximation can yield even more favorable memory-performance trade-offs.

Specifically, given desired bit-size K and using the fact that Al:1 is batch-normalized and thus Al:2

has mean βl and variance γ2

l , we compute an integer tensor Ã∗

l:2 from Al:2 as:

Ã∗

l:2 = ClipK

(

⌊Al:2 ◦ 2
K(6 ∗ γl)

−1⌋+ 2K−1 − ⌊βl ◦ 2
K(6 ∗ γl)

−1⌋
)

, (9)

where ⌊·⌋ indicates the “floor” operator, and ClipK(x) = max(0,min(2K − 1, x)). The resulting

integers (between 0 and 2K − 1) can be directly stored with K-bits. When needed during back-
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operation in (8). Here, we do incur an error, but note that this is only in one of the three terms of
the expression for ∇Al:i—which accounts for back-propagating through the variance computation,
and is the only term that depends on the activations. Hence, while our activation approximation does
introduce some errors in the gradients for the learnable weights, we limit the accumulation of these
errors across layers because a majority of the computations for back-propagation to the input of each
layer are exact. This is illustrated in Fig. 2, with the use of green arrows to show computations that
are exact, and red arrows for those affected by the approximation.

3.4 Network Architectures and Memory Usage

Our full training algorithm applies our approximation strategy to every layer (defined by grouping
linear transforms with preceding non-linear activations) during the forward and backward pass.
Skip and residual connections are handled easily, since back-propagation through these connections
involves simply copying to and adding gradients from both paths, and doesn’t involve the activations
themselves. We assume the use of ReLU activations, or other such non-linearities such as “leaky”-
ReLUs whose gradient depends only on the sign of the activations. Other activations (like sigmoid)
may incur additional errors—in particular, we do not approximate the activations of the final output
layer in classifier networks that go through a Soft-Max. However, since this is typically at the final
layer for most convolutional networks, and computing these activations is immediately followed by
back-propagating through that layer, approximating these activations offers no savings in memory.
Note that our method has limited utility for architectures where a majority of layers have saturating
non-linearities (as is the case for most recurrent networks).

Our approach also handles average pooling by simply folding it in with the linear transform. For
max-pooling, exact back-propagation through the pooling operation would require storing the arg-max
indices (the number of bits required to store these would depend on the max-pool receptive field
size). However, since max-pool layers are used less often in recent architectures in favor of learned
downsampling (ResNet architectures for image classification use max-pooling only in one layer), we
instead choose not to approximate layers with max-pooling for simplicity.

Given a network with L layers, our memory usage depends on connectivity for these layers. Our
approach requires storing the approximate activations for each layer, each occupying reduced memory
rate at a fractional rate of α < 1. During the forward pass, we also need to store, at full-precision,
those activations that are yet to be used by subsequent layers. This is one layer’s activations for
feed-forward networks, and two layers’ for standard residual architectures. More generally, we will
need to store activations for upto W layers, where W is the “width” of the architecture—which we
define as the maximum number of outstanding layer activations that remain to be used as process
layers in sequence—this width is one for simple feed-forward architectures and two for standard
residual networks, but may be higher for DenseNet architectures [10]. During back-propagation, the
same amount of space is required for storing gradients till they are used by previous layers. We also
need space to re-create a layer’s approximate activations as full-precision tensors from the low-bit
stored representation, for use in computation.

Thus, assuming that all activations of layers are the same size, our algorithm requires O(W +1+αL)
memory, compared to the standard requirement of O(L). For our simple quantized fixed-point
approximation strategy, this leads to substantial savings for deep networks with large L since
α = 1/4, 1/8 when approximating 32-bit floating point activations with K = 8, 4 bits.

4 Experiments

In this section, we present experimental results which demonstrate that:

• Our algorithm enables up to 8x memory savings, with negligible drop in training accuracy
compared to exact training, and significantly superior performance over other baselines.

• The lower memory footprint allows training to fully exploit available parallelism on each GPU,
leading to faster training for deeper architectures.

We implement the proposed approximate memory-efficient training method as a general library
that accepts specifications for feed-forward architectures with possible residual connections (i.e.,
W = 2). As illustrated in Fig. 2, it allocates a pair of common global buffers for the direct and
residual paths. At any point during the forward pass, these buffers hold the full-precision activations
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Table 1: Accuracy Comparisons on CIFAR-10, CIFAR-100, and ImageNet with 164- (for CIFAR-10
and CIFAR-100) and 152- (for ImageNet) layer ResNet architectures. CIFAR results show mean ±
std over training with ten random initializations for each case. ImageNet results use 10-crop testing.

CIFAR-10 CIFAR-100 ImageNet
Test Set Error Test Set Error Val Set Top-5 Error

Exact (α = 1) 5.36%±0.15 23.44%±0.26 7.20%

Exact w/ fewer features (α = 1/4) 9.49%±0.12 33.47%±0.50 -

Naive 8-bit Approx. (α = 1/4) 75.49%±9.09 95.41%±2.16 -

Proposed Method

8-bit (α = 1/4) 5.48%±0.13 23.63%±0.32 7.70%

4-bit (α = 1/8) 5.49%±0.16 23.58%±0.30 7.72%

Table 2: Comparison of maximum batch-size and wall-clock time per training example (i.e., training
time per-iteration divided by batch size) for different ResNet architectures on CIFAR-10.

# Layers 1001 (4x) 1001 488 254 164

Maximum Exact 26 134 264 474 688
Batch-size 4-bit 182 876 1468 2154 2522

Run-time Exact 130.8 ms 31.3 ms 13.3 ms 6.5 ms 4.1 ms
per Sample 4-bit 101.6 ms 26.0 ms 12.7 ms 6.7 ms 4.3 ms

exact computation, and our approach with K = 8 and K = 4 bit approximations. As with the CIFAR
experiments, training losses using our strategy closely follow that of exact training (interestingly, the
loss using our method is slightly lower than that of exact training during the final iterations, although
this is likely due to random initialization), and the drop in validation set accuracy is again relatively
small: at 0.5% for a memory savings factor of α = 1/8 with K = 4 bit approximations.

Memory and Computational Efficiency. For the CIFAR experiments, we were able to fit the full
128-size batch on a single 1080Ti GPU for both exact training and our method. For ImageNet training,
we parallelized computation across two GPUs, and while our method was able to fit half a batch (size
128) on each GPU, exact training required two forward-backward passes (followed by averaging
gradients) with 64−sized batches per-GPU per-pass. In both cases, the per-iteration run-times were
nearly identical. However, these represent comparisons restricted to having the same total batch
size (needed to evaluate relative accuracy). For a more precise evaluation of memory usage, and the
resulting computational efficiency from parallelism, we considered residual networks for CIFAR-10
of various depths up to 1001 layers—and additionally for the deepest network, a version with four
times as many feature channels in each layer. For each network, we measured the largest batch size
that could be fit in memory with our method (with K = 4) vs exact training, i.e., b such that a batch
of b + 1 caused an out-of-memory error on a 1080Ti GPU. We also measured the corresponding
wall-clock training time per sample, computed as the training time per-iteration divided by this
batch size. These results are summarized in Table 2. We find that in all cases, our method allows
significantly larger batches to be fit in memory. Moreover for larger networks, our method yields a
notable computational advantage since larger batches permit full exploitation of available GPU cores.

Visualizing Accuracy of Parameter Gradients. To examine the reason behind the robustness of
our method, Fig. 4 visualizes the error in the final parameter gradients used to update the model.
Specifically, we take two models for CIFAR-100—at the start and end of training—and then compute
gradients for a 100 batches with respect to the convolution kernels of all layers exactly, and using
our approximate strategy. We plot the average squared error between these gradients. We compare
this approximation error to the “noise” inherent in SGD, due to the fact that each iteration considers
a random batch of training examples. This is measured by average variance between the (exact)
gradients computed in the different batches. We see that our approximation error is between one and
two orders of magnitude below the SGD noise for all layers, both at the start and end of training. So
while we do incur an error due to approximation, this is added to the much higher error that already
exists due to SGD even in exact training, and hence further degradation is limited.
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