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Abstract. Human brain networks convey important insights in under-
standing the mechanism of many mental disorders. However, it is diffi-
cult to determine a universal optimal among various tractography meth-
ods for general diagnosis tasks. To address this issue, tentative studies,
aiming at the identification of some mental disorders, make an effective
concession by exploiting multi-modal brain networks. In this paper, we
propose to predict the clinical measures as a more comprehensive and
stable assessment of brain abnormalities. We develop a graph convolu-
tional network (GCN) framework to integrate heterogeneous brain net-
works. Particularly, an adaptive pooling scheme is designed, catering to
the modal structural diversity and sharing the advantages of locality, loy-
alty and likely as in standard convolutional networks. The experimental
results demonstrate that our method achieves state-of-the-art prediction
results, and validates the advantages of the utilization of multi-modal
brain networks in that, more modals are always at least as good as the
best modal, if not better.

1 Introduction

Large-scale connection in the brains convey important insights in understand-
ing the underlying yet unknown mechanism of many mental disorders [16, 3,
7]. With whole brain tractography, brains anatomical networks represented as
major fiber bundles can be reconstructed from diffusion-weighted MRI (DWI).
There are various brain networks, generated from different tractography algo-
rithms based on either voxel-wise diffusion model or cross-voxel fiber tracking,
each finding the place in revealing targeted brain abnormalities, such as autism
spectrum disorder [12], Parkinsons disease [4], and even in genetics. Neverthe-
less, for distinctive diagnosis tasks it is elusive to decide a universally optimal
method and accompanied processing, e.g. dimension reduction [19], as that these
tractography algorithms differ in the selection and accuracy of fiber extraction,
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robustness, and particularly the relevance between the extracted fiber bundles
and the tasks. Essentially, tentative studies have demonstrated that multi-modal
brain networks can provide complementary viewpoint toward the classification
tasks, in leveraging the scattered information from acquisitions with diverse trac-
tography algorithms. For example, it is showed that multi-view graph convolu-
tional network [20] has state-of-the-art performance in classifying Parkinson’s
disease (PD) status.

To take one step further, we propose to predict the clinical measures, in-
stead of directly classifying the disease status. The behind motivation lies in
that, many mental disorders are degenerative, which can be inferred from the
gradual progress of brain connectivity patterns, and that clinical measures, com-
pared to simply classification, better capture the progress. Through integrating
multi-modal brain networks in our prediction, a comprehensive assessment is
constructed, and the potential deterioration from sub-optimal of single tractog-
raphy is alleviated. To address the prediction problem, we resort to a cascade
model, composed of a heterogeneous graph convolutional network (GCN) for
brain network embeddings and a multi-layer perceptron (MLP) for regression.
Our contributions are two-folded: first, we propose a heterogeneous GCN to
predict the clinical scores from multi-modal brain networks, which benefits from
the natural graph structures of diverse brain networks; second, an adaptive pool-
ing scheme, driven by both graph structure and network patterns, is proposed,
which is beneficial from gathering local information, yielding a faithful graph
with smaller size, and enjoying efficiency in both computation and training. We
name the proposed method as “heterogeneous” in that the graph convolution
and pooling are customized for varied modal. The proposed method is verified
on the data from the Parkinson Progression Marker Initiative (PPMI) [13], a
cohort study aiming at identifying and validating PD progression markers. The
experimental results show that our method outperforms related baselines signif-
icantly. It is also demonstrated that by integrating multi-modal brain networks,
the proposed method achieves higher accuracy, and yields more stable prediction.

The rest of this paper is organized as follow. §2 provides the preliminary and
describes the detail of the proposed method. §3 shows the experiments and the
results. §4 concludes the paper.

2 Methodology

2.1 Preliminary

A graph can be represented as {V,E,W}, with V = {v1, v2, · · · , vn} the set
of n vertices, E ⊆ V × V the set of m edges, and W ∈ Rn×n the weighted
adjacency matrix of the graph. In this paper, vertices are Region Of Interest
(ROIs). Graph Laplacian is an operation in spectral graph analysis, typically
defined as Lc = D −W in combinatorial form and Ln = In − D−1/2WD−1/2

in normalized form, with D ∈ Rn×n the diagonal matrix and In an iden-
tity matrix. Graph convolutional network (GCN) [5] is designed as an exten-
sion of convolutional neural network (CNN), to analysis the signals on nodes,
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with a given graph structure. One strategy is to conduct graph convolution
in frequency domain using the eigenvalue decomposition of graph Laplacian,
L = UTΛU , and U = [u0, u1, · · · , un−1] specifies a Fourier basis. The graph
Fourier transform [15] is then defined as x̂ = UTx, with x ∈ Rn the signal,
and the inverse transform x = Ux̂. The spectral representation of node sig-
nals, x̂, allows the fundamental filtering operation for graphs. For computa-
tional accessibility, polynomial parametrization for localized filters [5] is pro-
posed through learning the coefficients ΘK of a K-order Chebyshev polynomial.
The filter is defined as gθ(Λ) =

∑K−1
k=0 θkTk(Λ), and the graph convolution is

defined as y = Ugθ(Λ)UTx, with y the filtered signal, θk the trainable param-
eters and Tk(Λ) the polynomials. Parallel to CNN, pooling operation in graph
settings is accomplished by the graph coarsening [6] procedure. By truncating
the Chebyshev polynomial to only first order, a faster version of GCN can be
reformulated [11] similar to multi-layer perceptron, with each layer defined as
y = σ(D̃−1/2ÃD̃−1/2xΘ), with Ã = A+ In, D̃ accordingly defined as D, Θ the
trainable parameters, and σ(·) an activation function.

In graph classification, a major concern is to represent graphs with embed-
dings. Previous approaches [18] include averaging all the node embeddings in
a final layer, computing “virtual node” connected to all nodes, operating over
sets using deep node aggregation, concatenating all embeddings, and training
hierarchical structure. A majority of these methods apply a deterministic graph
clustering subroutine, while some end-to-end [21, 18] methods require additional
structure to compute the pooling structure.

At last we want to include a short discussion on the relation of graph convo-
lution and traditional methods. Essentially GCN is a flexible and mixed model
of classical methods: it is rooted in graph spectral theory, in the manner the
node signals are analyzed; meanwhile, the convolution is closely related and can
be re-formulated as random-walk [8] or Weisfeiler-Lehman Method [17].

2.2 Predicting PD Clinical Scores via Heterogeneous GCN

The proposed method has two stages, as illustrated in Figure. 1. In the first stage,
the per-modal embeddings for brain networks are generated via heterogeneous
GCN; in the second, the concatenated embeddings are regressed to the clinical
scores via MLP. Parallel to convolutional neural networks, the proposed GCN
is formed by stacking graph convolutional layer and pooling layer sequentially.
The fast graph convolutional [11] is applied, using corresponding rows of brain
network matrix as node features. We also propose a novel efficient adaptive pool-
ing scheme to learn data-driven pooling windows, which in turns can construct
reduced while structural-preserving graphs and aggregate pooled features.

Although graph convolution is a quite established technique, pooling on
graphs is challenging in many senses. A major difficulty is the structural irreg-
ularity of graph data, compared to naive application scenarios such as images.
For CNNs, typically pooling layer defines the operation on a window sliding
along images with strides, which shrinks the input size and augments the re-
ceptive field of convolution. However, the window and the minified graph are
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Fig. 1. The proposed heterogeneous GCN for PD clinical scores prediction. (a) illus-
trates the entire structure, in which multi-modal brain networks are generated from
MRIs, and sequentially processed by GCN and MLP; (b) depicts the stacked con-
volutional layer and pooling layer; (c) provides a detailed description of the pooling
procedure, including node merge, graph distillation and feature pooling.

ambiguous due to the diverse topology. Another issue dedicated to our task is
that the heterogeneity of brain networks calls for modal-specific designs. Last
but not least, practical models should avoid potential computational inefficiency
caused by complicated node operation. We prefer graph pooling sharing several
appealing properties as CNN:

– Locality: The pooling windows aggregate local information from neighbor
or related nodes.

– Loyalty: The reduced graph characterizes the structure of primary graph
and data.

– Likely: The computation is efficient. Additionally, the data-driven pooling
scheme should be end-to-end trainable, subject to deep learning principle.

To address these challenges, we imitate the process of CNN pooling, and de-
compose the graph pooling into two steps, node merge and graph distillation [18].
In the first step, nodes are clustered and features are computed accordingly; in
the second, graph is reduced for follow-up graph convolution. Formally, the l-th
pooling layer is defined as,

H l
p = P lH l, (1)

here H l ∈ Rnl−1×kl

is the output of graph convolutional layer l, P l ∈ Rnl×nl−1

is a trainable pooling matrix, H l
p ∈ Rnl×kl

is the output of pooling layer, and
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nl and kl are the number of nodes and feature length, respectively. The reduced
graph is defined as,

Al = arg min
A

‖Al−1 − P lAP lT ‖F + f(A, x), (2)

here Al is the graph matrix from layer l, and f(A, x) are defined to coincide in
the naive regression objective, and ‖ · ‖F is Frobenius norm. The first term can
be derived by preserving the graph convolution consistency for pooled nodes,

UPH
l
p ≈ UP lH l, (3)

here UP and U are the Fourier basis of after and before pooling, respectively.
Naturally, it can be interpreted as the eccentricity of the reduced graph to the
graph at hand, and the second term considers the data fidelity. In principle, this
pooling structure is defined using P l and Al, learned from both graph and data.

Now we delve into the details and discuss how the aforementioned concerns
are resolved through some further consideration. We decompose the pooling
matrix,

P l = AlpA
l−1, (4)

here Alp ∈ Rn
l×nl−1

is a sparse assigning matrix, and each row of Alp represents
a cluster in the reduced graph. Each cluster aggregates the vicinity of assigned
nodes; meanwhile, the co-occurrence of assigned (perhaps distant) nodes repre-
sent a high-level relation beyond neighboring. Therefore, locality is attained by
sparsity regularization related to Alp. Loyalty is also maintained via compelling

Al to satisfy (2). Combining the above arguments boils down to the objective,

L = ‖x− x̂‖F + λ1
∑
l

‖Al−1 − P lAlP lT ‖F + λ2
∑
l

‖AlP ‖1, (5)

here the first term is the tedious regression loss, λ1 and λ2 are tunable param-
eters. This formulation only exerts slight computation burden to naive graph
convolutional layer in the inference stage; the training is also an end-to-end
routine on an integral structure and avoids some potential redundancy [18].
Jointly, these indicate the likely of the adaptive scheme in both training and
computation. Finally, each modality is dealt with using individual GCN, with
modal-specified graph and pooling setup, which leads to an intuitive explanation
for the effectiveness of the proposed method, that heterogeneity is contained in
the first stage, modal-fusion in the second.

3 Experiments

3.1 Data Description

We analyzed the data from PPMI (http://www.ppmi-info.org), which includes
145 healthy controls (HC) (mean age = 66.70±10.95, 96 males) and 474 subjects
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with PD (mean age=67.33±9.33, 318 males). No significant differences was iden-
tified in age between HC and PD (P=0.5). We utilized the diffusion-weighted
MRI-derived structure connectome to predict several PD clinical scores, includ-
ing the Montreal Cognitive Assessment (MoCA) Test, the Tremor Dominant
(TD) scores and the Postural Instability and Gait Difficulty (PIGD) scores, REM
Sleep Behavior Disorder (RBD) scores, the Geriatric Depression Scale (GDS),
and the University of Pennsylvania Smell Identification Test (UPSIT).

For each subject’s T1-weighted MRI, we applied ROBEX, a robust auto-
mated brain extraction program trained on manually “skull-stripped” MRI data
[9], to remove the extra-cerebral tissue. These skull-stripped volumes were care-
fully examined and manually edited if needed. Anatomical scans were then
underwent the standard FreeSurfer (V6.0, http://surfer.nmr.mgh.harvard.edu/)
parcellation, based on which 84 cortical and subcortical ROIs are defined.

For each subject’s diffusion-weighted MRI, firstly bet and eddy correct func-
tions in FSL (http://www.fmrib.ox.ac.uk/fsl) were applied to remove the non-
brain tissue and correct for the possible distortions, and then the gradient table
was adjusted correspondingly for each subject. In order to avoid the distortions
at tissue-fluid interfaces, echo-planar induced susceptibility artifacts were cor-
rected by elastically aligning skull-stripped b0 images to each subject’s T1 MRI
using Advanced Normalization Tools (ANTs, http://stnava.github.io/ANTs/)
with SyN algorithm. The resulted 3D deformation was then applied to the re-
maining diffusion-weighted volumes to generate the full preprocessed diffusion-
weighted MRI data. Finally, based on the 84 ROIs derived from the T1 data, we
reconstructed three brain structural graphs using three whole brain probabilis-
tic tractography algorithms, including Orientation Distribution Function-based
Hough voting [1] and PICo [14] as well as ball-and-sticks-based Probtrackx [2].
(please refer to [19] for more details). Each brain network was normalized by
dividing the maximum values in the matrix to reduce the potential computa-
tion biases from the differences in scale and range from different tractography
algorithms.

3.2 Experiment Settings

Throughout the experiments, ROIs are defined as vertices, the corresponding
rows in each human brain networks are defined as features, and the graph is
defined as the average of all brain networks. We compare the proposed method
with several related methods: multivariate Ridge Regression(RR), Least Abso-
lute Shrinkage and Selection Operator(LASSO), combined l1 and l2 norm (Elas-
ticNet), Neural Networks (NN), and Convolutional Neural Network (CNN). For
RR, LASSO and ElasticNet, we search the coefficient of the regularization term
ranging from 0.001 to 100 and report the best results. For neural network, we
use a two layer structure with 100 hidden units and Relu activation function.
For the proposed method, we use two layer GCN for each modality. The feature
length for each layer is [16, 32] respectively, and the graph size after pooling is
[32, 8]. An one-layer perceptron is used for regression. Both λ1 and λ2 are set to
0.001 in the objective. We use Adam optimizer [10] with a learning rate 0.001,
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Table 1. The comparison of the proposed method with baselines. For both metrics,
smaller values indicate better results. The values are displayed as mean(µ) ± standard
deviation (σ) from five tests. Bold font indicates the best performance.

Method RMSE MAE

RR 0.2382 ± 0.0069 0.1699 ± 0.0038
LASSO 0.2293 ± 0.0041 0.1613 ± 0.0033

ElasticNet 0.1969 ± 0.0011 0.1546 ± 0.0015
NN 0.1965 ± 0.0102 0.1544 ± 0.0057

CNN 0.1965 ± 0.0081 0.1545 ± 0.0049

Our method 0.1922± 0.0128 0.1455± 0.0064

and a batch size of 128. All clinical measures are normalized to [0, 1] by different
tests. We reported the root mean square error (RMSE) and mean absolute value
(MAE) on 5-fold cross validation as the evaluation metrics.

3.3 Results

We first present the comparison of the performance of the proposed method with
multiple baselines, and the results are summarized in Table 1. On both metrics,
we observe that the proposed method outperforms baselines consistently. For
linear methods, sparse methods achieve better prediction accuracy compared to
non-sparse methods, RR. Non-linear models, including NN, CNN, and the pro-
posed model, also improve the prediction performances against linear models in
general. The baseline deep methods, NN and CNN, have similar results. Par-
ticularly, the proposed method outperforms NN with much less parameters and
has better performance with similar parameter size compared to CNN.

In Table 2 we also include the prediction performance of different combination
of generated graphs. Obviously, the network using single modal brain network
yields much worse prediction, compared to multi-modal networks. The results
also imply some interesting observations: particular subsets of involved modals
may attain decent results, though the optimal combination require brutal search;
the prediction yielded by the network integrating all modals, generally, is the best
or at least comparable with the best. To this end it is fair to claim that multi-
modality helps the prediction of PD clinical measures, and that more modals
are always preferred. Besides, the brain graphs generated by Hough show worth-
noting prediction ability, which indicates potential direction for future study.

4 Conclusion

In this paper, we propose a graph convolutional network to predict the PD
clinical measures, using multi-modal brain networks. Particularly, we propose
an adaptive pooling scheme driven by both graph structure and brain data,
which is efficient in computing and end-to-end training. The experiment results
demonstrate that the proposed method attains state-of-the-art results compared



8 Y. Zhang, L. Zhan, W. Cai, P. Thompson, H. Huang

Table 2. Predictions with different combination of modals. Values follow the instruc-
tion in Table. 1. Bold font indicates the best performance.

Modality RMSE MAE

Hough+Probtrackx+PICo 0.1922 ± 0.0128 0.1455± 0.0064

Hough+Probtrackx 0.1909± 0.0111 0.1458 ± 0.0060
Probtrackx+PICo 0.1948 ± 0.0123 0.1472 ± 0.0067

Hough+PICo 0.1927 ± 0.0126 0.1458 ± 0.0061

Hough 0.1941 ± 0.0124 0.1470 ± 0.0071
Probtrackx 0.1958 ± 0.0135 0.1488 ± 0.0070

PICo 0.1970 ± 0.0127 0.1501 ± 0.0068

to related baselines, and integrating multi-modal brain network is highly effective
in the prediction task.
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