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Abstract
Semi-supervised learning (SSL) plays an increas-
ingly important role in the big data era because a
large number of unlabeled samples can be used ef-
fectively to improve the performance of the clas-
sifier. Semi-supervised support vector machine
(S3VM) is one of the most appealing methods for
SSL, but scaling up S3VM for kernel learning is
still an open problem. Recently, a doubly stochas-
tic gradient (DSG) algorithm has been proposed
to achieve efficient and scalable training for ker-
nel methods. However, the algorithm and theoret-
ical analysis of DSG are developed based on the
convexity assumption which makes them incompe-
tent for non-convex problems such as S3VM. To
address this problem, in this paper, we propose
a triply stochastic gradient algorithm for S3VM,
called TSGS3VM. Specifically, to handle two type-
s of data instances involved in S3VM, TSGS3VM
samples a labeled instance and an unlabeled in-
stance as well with the random features in each it-
eration to compute a triply stochastic gradient. We
use the approximated gradient to update the solu-
tion. More importantly, we establish new theoret-
ic analysis for TSGS3VM which guarantees that
TSGS3VM can converge to a stationary point. Ex-
tensive experimental results on a variety of datasets
demonstrate that TSGS3VM is much more efficient
and scalable than existing S3VM algorithms.

1 Introduction
Semi-supervised learning (SSL) plays an increasingly impor-
tant role in the big data era because a large number of unla-
beled samples can be used effectively to improve the perfor-
mance of the classifier. Semi-supervised support vector ma-
chine (S3VM) [Bennett and Demiriz, 1999] is one of the most
appealing methods for SSL. Specifically, S3VM enforces the
classification boundary to go across the less-dense regions in
the reproducing kernel Hilbert space (RKHS), while keeping
the labeled data correctly classified. Unfortunately, this will
lead to a non-convex optimization problem. It is well known
∗To whom all correspondence should be addressed.

that solving a non-convex optimization problem is normal-
ly difficult than solving a convex one like standard support
vector machine. Under this arduous challenge, a wide spec-
trum of methods for S3VM have been proposed in the last two
decades. Generally speaking, these methods can be rough-
ly divided into three groups, i.e., methods with self-labeling
heuristics, concave-convex procedure (CCCP) methods and
gradient-based methods. We give a brief review of these rep-
resentative S3VM methods in Section 2 and Table 1.

Unfortunately, these traditional S3VM methods are ineffi-
cient due to increased complexity introduced by the cost of
kernel computation as well as non-convexity. Specifically,
the kernel matrix needs O(n2d) operations to be calculated
and O(n2) memory to be stored, where n denotes the size of
training samples and d denotes dimension of the data [Gu et
al., 2018b]. Essentially, gradient-based S3VM methods have
O(n3) complexity due mainly to the operations on the kernel
matrix. Even though a convex kernel problem can be solved
by a state-of-the-art solver (e.g. LIBSVM), O(nκ) computa-
tion is still needed where 1 < κ < 2.3 [Chang and Lin, 2011].
While to handle the non-convexity of S3VM, the methods us-
ing self-labeling heuristics and CCCP-based algorithms need
to solve multiple convex sub-problems to guarantee that they
finally converge [Yuille and Rangarajan, 2002]. As a result,
these methods scale as O(tnκ), where t denotes the number
of solving sub-problems. We summarize the computational
complexities and memory requirements of the representative
S3VM methods in Table 1. As pointed in [Gu et al., 2018d],
scaling up S3VM is still an open problem.

Recently, a novel doubly stochastic gradient (DSG) method
[Dai et al., 2014] was proposed to achieve efficient and scal-
able training for kernel methods. Specifically, in each itera-
tion, DSG computes a doubly stochastic gradient by sampling
a random data sample and the corresponding random features
to update the solution. Thus, DSG avoids computing and s-
toring a kernel matrix, while enjoying nice computational and
space complexities. Xie et al. [2015] used DSG to scale up
nonlinear component analysis. To the best of our knowledge,
[Xie et al., 2015] is the only work based on DSG to solve a
non-convex problem.

However, existing algorithms and theoretical analysis of
DSG cannot be applied to S3VM due to the following two
reasons. 1) Multiple data distributions: S3VM minimizes
the training errors coming from two different sources. One



Algorithm Reference Method Computational Complexity Space Complexity

S3VMlight [Joachims, 1999] Self-labeling heuristics O(tnκ) O(n2)
NTS3VM [Chapelle, 2007] Gradient-based O(n3) O(n2)
BGS3VM [Le et al., 2016] Gradient-based O(n3) O(n2)
BLS3VM [Sinz, 2012] CCCP-based O(tnκ) O(n2)
ILS3VM [Gu et al., 2018d] CCCP-based ≈ O(Tn2) O(n2)

TSGS3VM Our TSG O(mT 2) O(T )

Table 1: Comparisons of computational complexities and memory requirements of representative S3VM algorithms. (n is the training size,
T is the total number of iteration, t denotes the number of outer loops and 1 < κ < 2.3)

is the expected error on the unlabeled data, and the other one
is the mean error on the labeled data whose size is normally
significantly smaller than the one of unlabeled data. Howev-
er, DSG only considers the expected error on the labeled data.
2) Non-convexity analysis: The theoretical analysis in [Xie
et al., 2015] is based on a strong assumption (i.e., the initial-
ization needs to be close to the optimum). However, such an
assumption is rarely satisfied in practice. Besides, they focus
on the nonlinear component analysis instead of general non-
convex problems. Thus, it is infeasible to extend the analysis
of [Xie et al., 2015] to S3VM.

To address this challenging problem, we first propose a
new and practical formulation of S3VM. Then, we devel-
op a new triply stochastic gradient algorithm (TSGS3VM)
to solve the corresponding optimization problem. Specifical-
ly, to handle two types of data instances involved in S3VM,
TSGS3VM samples a labeled instance and an unlabeled in-
stance as well with their random features in each iteration to
compute a triply stochastic gradient (TSG). We then use the
TSGs to iteratively update the solution. A critical question is
whether and how fast this optimization process with multiple
randomness would converge. In addressing this concern, we
establish new theoretic analysis for TSGS3VM which guaran-
tees that TSGS3VM can converge to a stationary point with a
sublinear convergence rate for a general non-convex learning
problem under weak assumptions. Extensive experimental re-
sults demonstrate the superiority of TSGS3VM.
Novelties. We summary the main novelties of this paper as
follows.

• To scale up S3VM, we propose a practical formulation of
S3VM and develop a novel extension of DSG that could
solve optimization problems with multiple data sources.

• We have established the new theoretic analysis of
TSGS3VM algorithm for a general non-convex learning
problem which guarantees its convergence to a stationary
point. To the best of our knowledge, it is the first work of-
fering non-convex analysis for DSG-like algorithms with-
out initialization assumption.

2 Related Works
We give a brief review of kernel approximation methods as
well as the representative S3VM methods.
Kernel Approximation. There are many kernel approxima-
tion methods proposed to address the scalability issue of ker-

nel methods. For instance, low-rank factors are used to ap-
proximate the kernel matrix in [Drineas and Mahoney, 2005].
Rahimi & Recht [2008] provided another method that uses
random features to approximate the map function explicit-
ly. However, as analyzed in [Drineas and Mahoney, 2005;
Lopez-Paz et al., 2014], the rank for low-rank and the num-
ber of random features need to be O(n) to obtain a good
generalization ability. To further improve the random fea-
tures method, Dai et al. [2014] proposed DSG descent al-
gorithm. Carratino et al. [2018] prove that DSG only need
O(
√
n) random features to obtain a good generalization a-

bility. However, existing DSG methods [Li et al., 2017;
Gu et al., 2018c] can not be used for S3VM as discussed pre-
viously.
S3VM Methods. As mentioned above, traditional S3VM
methods can be roughly divided into three types, i.e., the
method of self-labeling heuristics, the concave-convex pro-
cedure (CCCP) method, and the gradient-based method. For
the method of self-labeling heuristics, Joachims [1999] pro-
posed a S3VMlight algorithm which uses self-labeling heuris-
tics for labeling the unlabeled data, then iteratively solve
this standard SVM until convergence. CCCP-based methods
were proposed to solve S3VM in [Chapelle and Zien, 2005;
Wang et al., 2007]. The basic principle of CCCP is to lin-
earize the concave part of S3VM’s objective function around
a solution obtained in the current iteration so that sub-
problem is convex. Then the CCCP framework solves a se-
quence of the convex sub-problem iteratively until decision
variable converges. Based on CCCP framework, Gu et al.
[Gu et al., 2018d] proposed an incremental learning method
for S3VM which is suitable for the online scenario. For
gradient-based methods, Chapelle and Zien [2005] approx-
imate the kernel matrix K using low-rank factors, then us-
ing gradient descent to solve S3VM on the low-rank matrix.
BGS3VM [Le et al., 2016] uses budgeted SGD to limit the
model size to two predefined budgets Bl and Bu.

3 Preliminaries
In this section, we first give a general non-convex learning
problem for S3VM, and then give a brief review of random
feature approximation.

3.1 S3VM Optimization Formulation
Given the training dataset X constituted with nl labeled ex-
amples L := {(xi, yi)}n

l

i=1 and nu unlabeled examples U :=



{xi}ni=nl+1, where n = nl +nu, xi ∈ Rd, and yi ∈ {1,−1}.
Traditional S3VM solves the following problem.

min
f∈H

1

2
||f ||2H +

C

nl

∑
(x,y)∈L

l(f(x), y) +
C∗

nu

∑
x∈U

u(f(x))

whereC andC∗ are regularization parameters, || · ||H denotes
the norm in RKHS, l(r, v) = max(0, 1−vr) is the hinge loss,
its subgradient l′(r, v) = 0, if rv ≥ 1, else l′(r, v) = −v,
u(r) is the non-convex loss function which enforce unlabeled
data away from the discrimination hyperplane. We summa-
rize the commonly used non-convex S3VM losses and its sub-
gradient u′(r) in Table 2.

For S3VM problems, however, the volumes of labeled and
unlabeled data are usually quite different. Because of the
labeling cost, the labeled dataset is often very small, while
a large amount of unlabeled data can be obtained relatively
easily. Taking this into consideration, we propose to solve a
novel S3VM formulation as follows.

min
f∈H

R(f) (1)

=
1

2
||f ||2H +

C

nl

∑
(x,y)∈L

l(f(x), y) + C∗Ex∼P (x)u(f(x))

where P (x) denotes the target data distribution. Notice that
we use the empirical mean error on the labeled dataset, while
using the expected error on the whole distribution for the un-
labeled data.

Name u(r) u′(r)

SHG max{0, 1− |r|}
{

0 if |r| ≥ 1
−1 if |r| < 1

SSHG 1
2
max{0, 1− |r|}2

{
0 if |r| ≥ 1

|r| − 1 if |r| < 1
Ramp H1(r)−Hs(r) H ′1(r)−H ′s(r)
DA exp(−5r2) −10r · exp(−5r2)

Table 2: Summary of the non-convex loss functions used in S3VM,
where Hs(·) = max{0, s − ·}, then H ′s(·) = 0, if · ≥ s else
H ′s(·) = −1. SHG, SSHG and DA denote symmetric hinge, square
SHG and a differentiable approximation to SSHG respectively.

3.2 Random Feature Approximation
Random feature is a powerful technique to make ker-
nel methods scalable. It uses the intriguing duality be-
tween kernels and stochastic processes. Specifically, ac-
cording to the Bochner theorem [Wendland, 2004], for
any positive definite PD kernel k(·, ·), there exists a set
Ω, a probability measure P and a random feature map
φω(x), such that k(x, x′) =

∫
Ω
φω(x)φω(x′)dP(ω). In

this way, the value of the kernel function can be approx-
imated by explicitly computing random features φω(x) =
[ 1√
m
φω1(x), 1√

m
φω2(x), · · · , 1√

m
φωm(x)], i.e.,

k(x, x′) ≈ 1

m

m∑
i=1

φωi
(x)φωi

(x′) (2)

where m is the number of random features. Using Gaussian
RBF kernel as a concrete example, it yields a Gaussian distri-
bution P(ω) over random feature maps of Fourier basis func-
tions φωi(x) =

√
2cos(ωTi x+ b) to compute its feature map-

ping, where ωi is drawn from P(ω) and b is drawn uniformly
form [0, 2π]. Moreover, many random feature construction
methods have been proposed for various kernels, such as dot-
product kernels and Laplacian kernels.

The theory of RKHS provides a rigorous mathematical
framework for studying optimization problems in the func-
tional space. Specifically, we know that every PD kernel
k(x, x′) has a corresponding RKHS H. An RKHS H has
the reproducing property, i.e., ∀x ∈ X ,∀f ∈ H, we always
have 〈f(·), k(x, ·)〉H = f(x). Besides, functional gradien-
t in RKHS H can be computed as ∇f(x) = k(x, ·) and
∇||f ||2H = 2f .

4 Triply Stochastic S3VM
The above section has introduced the basic theoretic tools for
triply stochastic functional gradient descent. Now we intro-
duce how to utilize these tools to solve the S3VM problem.

4.1 Triply Stochastic Gradient
From Eq. (1), it is not hard to notice that R(f) involves two
different data sources. Taking into consideration the distri-
bution of random features ω ∼ P(ω) would give us three
sources of possible randomness. Here we will show how
to explicitly compute the stochastic gradient with these three
sources of randomness.
Stochastic Functional Gradients Naturally, to iteratively
update f in a stochastic manner, we need to sample instances
from the labeled dataset as well as the whole distribution. D-
ifferent from DSG, we here randomly sample a pair of data
points, from the labeled and the unlabeled data distributions,
respectively. Then we can obtain stochastic functional gradi-
ents for R(f) with these two data points as follow,

g(·) = f(·) + ξ(·) (3)

where ξ(·) is the gradient contributed by the loss from both la-
beled and unlabeled data. It can be computed using the chain
rule

ξ(·) = Cl′(f(xl), yl)k(xl, ·) + C∗u′(f(xu))k(xu, ·) (4)

where xl, xu are sampled from the labeled dataset and unla-
beled distribution P (x) respectively. Next we will plugging
the random feature approximation technique described in the
previous section.
Random Feature Approximation According to Eq. (2),
when we use stochastically generated random feature ω, we
can further approximate ξ(·) as:

ξ(·) ≈ ζ(·) (5)

=Cl′(f(xl), yl)φω(xl)φω(·) + C∗u′(f(xu))φω(xu)φω(·)
note that ξ(·) = Eω[ζ(·)]. This leads to an unbiased esti-
mator of the original functional gradient with three layers of
stochasticity, i.e.,

∇R(f) = E(xl,yl)∈LExu∼P (x)Eω(ζ(·)) + f(·) (6)



Since three random events occur per iteration, i.e. xl, xu, ω,
we call our approximate functional gradient as triply stochas-
tic functional gradient.
Update Rules In the t-th iteration, the triply stochastic (func-
tional) gradient update rule for f is:

ft+1(·) = ft(·)− γt(ζt(·) + ft(·)) =
t∑
i=1

aitζi(·) (7)

where γ denotes the step size and the initial value f1(·) = 0.
It is straight forward to calculate that ait = −γi

∏t
k=i+1(1−

γk). Ideally, if we could somehow compute the stochastic
(functional) gradients ξj(·), the update rule becomes:

ht+1(·) = ht(·)− γt(ξt(·) + ht(·)) =
t∑
i=1

aitξi(·) (8)

where we have used ht+1 instead of ft+1 to distinguish from
the triply stochastic (functional) gradient update rule and
h1(·) = 0. However, to avoid the expense of kernel com-
putation, our algorithm will use the triply stochastic update
rule Eq. (7) instead of Eq. (8).

4.2 Algorithm
Based on the above triply stochastic gradient update rules (7),
we provide the TSGS3VM training and prediction procedures
in Algorithms 1 and 2 receptively. Notice that directly com-
puting all the random features still needs a large amount of
memory. Following the pseudo-random number generators
setting of [Dai et al., 2014], our random feature generator is
initialized by a predefined seed according to iteration. Thus,
TSGS3VM does not need to save the random feature matrix
which makes it more memory friendly. In the i-th iteration,
our method will execute the following steps.

1. Sample data pair (lines 2-3 in Algorithm 1): Stochasti-
cally sample a labeled sample (xli, y

l
i) and an unlabeled

sample xui from different distribution respectively.
2. Sample random features (line 4 in Algorithm 1): Stochas-

tically sample ωi ∼ P(ω) with seed i and generate ran-
dom features.

3. Update coefficients (lines 5-8 in Algorithm 1): Evaluate
function value and update f according to Eq. (7).

Remark 1 For each iteration, TSGS3VM needs O(mT ) op-
erations to evaluate function value, since evaluating the func-
tion value needs generatingm random features (O(m)) for T
times. Thus, the total computational complexity of TSGS3VM
is O(mT 2). Due to the use of random features and pseudo-
random method, TSGS3VM only requires O(T ) memory,
where T is the iteration number.

5 Theoretical Guarantees
We follow the common goal of non-convex analysis [Ghadi-
mi and Lan, 2013; Gu et al., 2018a; Huo et al., 2018] to bound
E||∇R(f)||2, which means that the objective function will
converge (in expectation) to a stationary point f∗. When we
use the hypothetical update rule (8), ht will always be inside

Algorithm 1 TSGS3VM Train
Input: L, P (x),P(ω), φω(x), u(f(x)), C, C∗

1: for i = 1, · · · , T do
2: Sample (xli, y

l
i) ∼ L

3: Sample xui ∼ P (x)
4: Sample ωi ∼ P(ω) with seed i
5: f(xli) = Predict(xli, {αj}

i−1
j=1)

6: f(xui ) = Predict(xui , {αj}
i−1
j=1)

7: αi = −γi(Cl′(f(xli), y
l
i)φωi(x

l
i) +

C∗u′(f(xui ))φωi(x
u
i ))

8: αj = (1− γi)αj , for j = 1, · · · , i− 1
9: end for

Output: {αi}Ti=1.

Algorithm 2 TSGS3VM Predict

Input: P(ω), φω(x), x, {αi}Ti=1
1: Set f(x) = 0
2: for i = 1, · · · , T do
3: Sample ωi ∼ P(ω) with seed i
4: f(x) = f(x) + αiφωi(x)
5: end for

Output: f(x)

Figure 1: Illustration of how TSGS3VM converge to a stationary
point, where e denotes for the error between ft and ht, the white
line denote the objective value R(h). In this toy model we assume
all horizontal points inH have the same objective value.

of H. However, because we could only use random features
to approximate ht with ft, we face the risk that functional ft
could be outside of H. As a consequence, E||∇R(f)||2H = 0
is not the stationary point of the objective function (1). From
Eq. (7) and Eq. (8), it is obvious that every update of ht
happens implicitly with an update of ft(x). According to this
relationship, we proposed to divide the analysis in two parts.
As illustrated in Fig. 1, for a general non-convex optimization
problem R(h), we prove that the ht+1 converges to a station-
ary point f∗ (i.e., E||∇R(ht+1)||2H < ε1) firstly. Then we
prove that ft+1(x) keeps close to its hypothetic twin ht+1(x)
for any x ∈ X (i.e., |ft+1(x)− ht+1(x)|2 < ε2).

Our analysis is built upon the following assumptions which
are standard for the analysis of non-convex optimization and
DSG [Dai et al., 2014].
Assumption 1 (Lipschitzian gradient) The gradient function
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Figure 2: Running time of different S3VM solvers v.s. training size on the eight benchmark data sets, where the lines of BLS3VM and
S3VMlight are incomplete on several datasets due to the corresponding implementations crash on the large-scale training set.
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Figure 3: The boxplot of test error for different methods on different datasets.

Dataset Dimensionality Samples Source
CodRNA 8 59,535

LIBSVM

W6a 300 49749
IJCNN1 22 49,990
SUSY 18 5,000,000
Skin 3 245,057

Higgs 28 1,100,000
Dota2 16 102,944 UCIHEPMASS 28 10,500,000

Table 3: Datasets used in the experiments.

∇R(f) is Lipschitzian, that is to say

||∇R(f)−∇R(g)||H ≤ L||f − g||H,∀f, g ∈ H (9)

Assumption 2 (Lipschitz continuity) l(r, v) is L′-Lipschitz
continuous in terms of its 1st argument. u(r, v) is U ′-
Lipschitz continuous in terms of its 1st argument. We further
denote M ′ = CL′ + C∗U ′.

Assumption 3 (Bound of derivative) The derivatives are
bounded: |l′| < M l and |u′| < Mu, where l′ and u′ is the
derivative of l(r, v) and u(r) w.r.t. the 1st argument respec-
tively. We further denote M = CM l + C∗Mu.

Assumption 4 (Bound of kernel and random features) We
have an upper bound for the kernel value, k(x, x′) ≤ κ.
There is an upper bound of random feature norm, i.e.,
|φω(x)φω(x′)| ≤ φ.
Suppose the total number of iterations is T , we introduce our
main theorems as below. All the detailed proofs are provided
in our Appendix1.
Theorem 1 For any x ∈ X , fix γ = θ

T 3/4 with 0 < θ ≤
T 3/4, we have

Exl,xu,ωt

[∣∣∣ft(x)− ht(x)
∣∣∣2] ≤ D

T 1/2
(10)

where D = θ2M2(
√
κ+
√
φ)2.

Remark 2 The error between ft+1 and ht+1 is mainly in-
duced by random features. Theorem 1 shows that this error
has the convergence rate of O(1/

√
T ) with proper step size.

Theorem 2 For fixed γ = θ
T 3/4 , 0 < θ ≤ T 3/4, we have that

Exl,xu,ωt
[||∇R(ht)||2H] ≤ E

T 1/4
+

F

T 3/4
(11)

1The Appendix is available at https://drive.google.com/open?id=
1iVE5hMJ-DbA87K9skuvL4c250OMBD4EG.

https://drive.google.com/open?id=1iVE5hMJ-DbA87K9skuvL4c250OMBD4EG
https://drive.google.com/open?id=1iVE5hMJ-DbA87K9skuvL4c250OMBD4EG


where E = 1
θ [R(h1) − R∗] + θM2M ′(

√
κ +
√
φ)κ, F =

2θM2Lκ, R∗ denotes the optimal value of (1).

Remark 3 Instead of using the convexity assumption in [Dai
et al., 2014], Theorem 2 uses Lipschitzian gradient assump-
tion to build the relationship between gradients and the up-
dating functions ht+1. Thus, we can bound each error term
of Exl,xu,ωt

[||∇R(ht)||2H] as shown in Appendix. Note that
compared to the strong assumption (i.e., the good initializa-
tion) used in [Xie et al., 2015], the assumptions used in our
proofs are weaker and more realistic.

6 Experiments and Analysis
In this section, we will evaluate the practical performance
of TSGS3VM when comparing against other state-of-the-art
solvers.

6.1 Experimental Setup
Design of experiments: To show the advantage our
TSGS3VM for large-scale S3VM learning, we conduct the
experiments on large scale datasets to compare TSGS3VM
with other state-of-the-art algorithms in terms of predictive
accuracy and time consumption. Specifically, the compared
algorithms in our experiments are summarized as follows2.
1. BLS3VM [Sinz, 2012]: The state-of-art S3VM algorithm

based on CCCP [Collobert et al., 2006] and SMO algo-
rithm [Cai and Cherkassky, 2012].

2. S3VMlight [Joachims, 1999]: The implementation in the
popular S3VMlight software. It is based on the local com-
binatorial search guided by a label switching procedure.

3. BGS3VM[Le et al., 2016]: Our implementation of
BGS3VM in MATLAB.

4. FRS3VM: Standard SGD with fixed random features.
5. TSGS3VM: Our proposed S3VM algorithm via triply s-

tochastic gradients.
Implementation: We implemented the proposed TSGS3VM
algorithm in MATLAB. For the sake of efficiency, our
TSGS3VM implementation also uses a mini-batch setting,
which is similar to DSG. We perform experiments on Intel
Xeon E5-2696 machine with 48GB RAM.

The Gaussian RBF kernel k(x, x′) = exp(−σ||x − x′||2)
and the loss function u = max{0, 1 − |r|} was used for al-
l algorithms. 5-fold cross-validation was used to determine
the optimal settings (test error) of the model parameters (the
regularization factor C and the Gaussian kernel parameter σ),
the parameters C∗ was set to C nl

nu . Specifically, the unla-
beled dataset was divided evenly to 5 subsets, where one of
the subsets and all the labeled data are used for training, while
the other 4 subsets are used for testing. Parameter search
was done on a 7×7 coarse grid linearly spaced in the region
{log10 C, log10 σ)| − 3 ≤ log10 C ≤ 3,−3 ≤ log10 σ ≤ 3}
for all methods. For TSGS3VM, the step size γ equals 1

η ,
where 0 ≤ log10 η ≤ 3 is searched after C and σ. Besides,
the number of random features is set to be d

√
ne and the batch

size is set to 256. The test error was obtained by using these

2BLS3VM and S3VMlight can be found in
http://pages.cs.wisc.edu/ jerryzhu/ssl/software.html

optimal model parameters for all the methods. To achieve a
comparable accuracy to our TSGS3VM, we set the minimum
budget sizes Bl and Bu as 100 and 0.2 ∗ nu respectively for
BGS3VM. We stop TSGS3VM and BGS3VM after one pass
over the entire dataset. We stop FRS3VM after 10 pass over
the entire dataset to achieve a comparable accuracy. All re-
sults are the average of 10 trials.
Datasets: Table 3 summarizes the 8 datasets used in our ex-
periments. They are from LIBSVM3 and UCI4 repositories.
Since all these datasets are originally labeled, we intentional-
ly randomly sample 200 labeled instances and treat the rest of
data as unlabeled to make a semi-supervised learning setting.

6.2 Experimental Results
Fig. 2 shows the test error v.s. the training size for different
algorithms. The results clearly show that TSGS3VM runs
much faster than other methods. Specifically, Figs. 2d and 2h
confirm the high efficiency of TSGS3VM even on the datasets
with one million samples. Besides, TSGS3VM requires low
memory benefiting from pseudo-randomness for generating
random features, while BLS3VM and S3VMlight would be
often out of memory on large scale datasets.

Fig. 3 shows the test error of different methods. The
results were obtained at the optimal hyper-parameters for
different algorithms. From the figure, it is clear that
TSGS3VM achieves similar generalization performance as
that of BLS3VM, S3VMlight, and BGS3VM methods which
confirm that TSGS3VM converge well in practice. Be-
sides, TSGS3VM achieves better generalization performance
than FRS3VM, because TSGS3VM has the advantage that it
would automatically use more and more random features (for
each data x) as the number of iterations increases.

Based on these results, we conclude that TSGS3VM is
much more efficient and scalable than these algorithms while
retaining the similar generalization performance.

7 Conclusion
In this paper, we provide a novel triply stochastic gradients
algorithm for kernel S3VM to make it scalable. We establish
new theoretic analysis for TSGS3VM which guarantees that
TSGS3VM can efficiently converge to a stationary point for
a general non-convex learning problem under weak assump-
tions. As far as we know, TSGS3VM is the first work that
offers non-convex analysis for DSG-like algorithm without a
strong initialization assumption. Extensive experimental re-
sults on a variety of benchmark datasets demonstrate the su-
periority of our proposed TSGS3VM.
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