
Quadruply Stochastic Gradients for Large Scale Nonlinear
Semi-Supervised AUC Optimization

Wanli Shi? , Bin Gu?� , Xiang Li‡ , Xiang Geng? and Heng Huang†� ∗
?School of Computer & Software, Nanjing University of Information Science & Technology, P.R.China

†Department of Electrical & Computer Engineering, University of Pittsburgh, USA
�JD Finance America Corporation

‡Computer Science Department, University of Western Ontario, Canada
wanlishi@nuist.edu.cn, jsgubin@gmail.com, lxiang2@uwo.ca, gengxiang@nuist.edu.cn,

heng.huang@pitt.edu

Abstract
Semi-supervised learning is pervasive in real-world
applications, where only a few labeled data are
available and large amounts of instances remain
unlabeled. Since AUC is an important model e-
valuation metric in classification, directly optimiz-
ing AUC in semi-supervised learning scenario has
drawn much attention in the machine learning com-
munity. Recently, it has been shown that one could
find an unbiased solution for the semi-supervised
AUC maximization problem without knowing the
class prior distribution. However, this method is
hardly scalable for nonlinear classification prob-
lems with kernels. To address this problem, in
this paper, we propose a novel scalable quadru-
ply stochastic gradient algorithm (QSG-S2AUC)
for nonlinear semi-supervised AUC optimization.
In each iteration of the stochastic optimization pro-
cess, our method randomly samples a positive in-
stance, a negative instance, an unlabeled instance
and their random features to compute the gradient
and then update the model by using this quadru-
ply stochastic gradient to approach the optimal so-
lution. More importantly, we prove that QSG-
S2AUC can converge to the optimal solution in
O(1/t), where t is the iteration number. Exten-
sive experimental results on a variety of benchmark
datasets show that QSG-S2AUC is far more effi-
cient than the existing state-of-the-art algorithms
for semi-supervised AUC maximization, while re-
taining the similar generalization performance.

1 Introduction
Semi-supervised learning addresses the problems where the
available data is composed of a small size of labeled sam-
ples and a huge size of unlabeled samples. It is of immense
practical interest in a wide range of applications, such as
image retrieval [Wang et al., 2010], natural language pro-
cessing [Liang, 2005] and speech analysis [Sholokhov et al.,
2018]. Since semi-supervised learning requires less human

∗To whom all correspondence should be addressed.

effort and can achieve a better generalization performance, it
has attracted a great deal of attention in the machine learning
communities, i.e., [?; ?; Sakai et al., 2018].

The area under the ROC curve (AUC) [Hanley and McNeil,
1982] measures the probability of a randomly drawn positive
instance being ranked higher than a randomly drawn nega-
tive instance. Thus, AUC is a more effective performance
measure than the accuracy in data imbalance binary classifi-
cation. Many studies [Gao et al., 2013; Gao and Zhou, 2015]
have also pointed out that optimizing AUC can achieve a bet-
ter generalization performance than directly optimizing ac-
curacy. Due to the superiority of AUC as mentioned above, a
large amount of attention has been attracted to introduce AUC
to semi-supervised learning.

Recently, several algorithms have been proposed to ad-
dress the semi-supervised AUC optimization problem. For
instance, to train a classifier, SSRankBoost [Amini et al.,
2008] and OptAG [Fujino and Ueda, 2016] exploited the as-
sumption that two samples share the same label if their dis-
tance in a metric space is samll. However, this restrictive
assumption may not always hold in real-world applications,
and could lead to biased solutions. Sakai et al., [2018] pointed
out that both unlabeled instances and labeled instances follow
the same joint probability distribution and the restrictive as-
sumption is not necessary. However, their method PNU-AUC
requires to estimate the class prior which is difficult to be ob-
tained when labeled instances are extremely small. Recently,
Xie and Li, [2018] proposed that neither the class priors nor
any other distributional assumption about the unlabeled data
are necessary to find the unbiased solution. We summarize
these algorithms in Table 1.

Nonlinear data structures widely exist in many real-world
problems, and kernel method is a typical way to solve such
problems. However, the approaches as discussed above can
hardly scale to large datasets. Specifically, the kernel ma-
trix needs O(n2d) operations to be calculated and O(n2) to
be stored, where n denotes the number of instances and d
denotes the dimensionality of the data [Gu and Huo, 2018].
Even worse, the bottlenecks of the computational complex-
ities become more severe for PNU-AUC and SAMULT [X-
ie and Li, 2018], since they need O(n3) operations to com-
pute the matrix inverse. Thus, scaling up non-linear semi-
supervised AUC maximization is a challenging problem.

Algorithm Reference Function model Computational complexity Space complexity
SSRankBoost [Amini et al., 2008] Nonlinear model — O(n2)
OptAG [Fujino and Ueda, 2016] Linear model — O(n2)
PNU-AUC [Sakai et al., 2018] Nonlinear model O(n3) O(n2)
SAMULT [Xie and Li, 2018] Nonlinear model O(n3) O(n2)
QSG-S2AUC Ours Nonlinear model O(Dt2) O(t)

Table 1: Several representative semi-supervised AUC optimization algorithms. (D denotes the number of random features, n denotes the
number of training samples and t denotes number of iterations.)

To scale up kernel-based algorithms, a large amount of
methods has been proposed, i.e., asynchronous parallel al-
gorithms [Gu et al., 2018a; Gu and Huo, 2018; Gu et
al., 2016], kernel approximation [Rahimi and Recht, 2008;
Smola and Schölkopf, 2000]. To our best of konwledge, dou-
bly stochastic gradient (DSG) [Dai et al., 2014] is the most
effective method to scale up kernel lerning. Specifically, DSG
samples a random instance and the random features to com-
pute the doubly stochastic gradient which is used to update
the model. However, different from the standard DSG, semi-
supervised learning has three sources of data, i.e., positive
instances, negative instances and unlabeled datasets. In addi-
tion, optimizing AUC is a pairwise learning problem which is
more complicated than the pointwise learning problem con-
sidered in the standard DSG algorithm. Therefore, the exist-
ing algorithms and theoretical analysis for DSG cannot be di-
rectly applied to non-linear semi-supervised AUC maximiza-
tion.

To address this challenging problem, we introduce multi-
ple sources of randomness. Specifically, we randomly sam-
ple a positive, a negative and an unlabeled instance in each
iteration to compose a triplet of data points. Then we use
the random features w.r.t these data triplets to compute the s-
tochastic gradient. Since the stochastic gradient would then
contain four sources of randomness, we denote our algorithm
as quadruply stochastic semi-supervised AUC maximization
(QSG-S2AUC). Theoretically, we prove that QSG-S2AUC
can converge to the optimal solution at the rate of O(1/t),
where t is the number of gradient iterations. Extensive exper-
imental results on a variety of benchmark datasets show that
QSG-S2AUC is far more efficient than the existing state-of-
the-art algorithms for semi-supervised AUC maximization,
while retaining the similar generalization performance.

Contributions. The main contributions of this paper are sum-
marized as follows.

1. We propose an efficient nonlinear semi-supervised AUC
optimization algorithm based on the DSG framework.
Since semi-supervised learning contains three sources of
data, we employ triplets of data points in each iteration
and extend the standard DSG framework.

2. We prove that QSG-S2AUC has the convergence rate of
O(1/t) which is same to the one of standard SGD even
though our QSG-S2AUC has four sources of random-
ness.

2 Related Works

In this section, we give a brief review of kernel approximation
and large scale AUC maximization methods respectively.

2.1 Kernel Approximation

Kernel approximation has attracted great amounts of atten-
tion to scale up kernel-based learning algorithms. The data-
dependent methods, such as greedy basis selection techniques
[Smola and Schölkopf, 2000], incomplete Cholesky de-
composition [Fine and Scheinberg, 2001], Nyström method
[Drineas and Mahoney, 2005], utilize the given training set
to compute a low-rank approximation of the kernel matrix.
However, they need a large amount of training instances to
achieve a better generalization. To handle this challenge, ran-
dom Fourier feature (RFF) [Rahimi and Recht, 2008] directly
approximates the kernel function unbiasedly with some basis
functions. However, large amounts of memory are required s-
ince the number random features D need to be larger than the
original features to achieve low approximation error. To fur-
ther improve RFF, Dai et al., [2014] proposed DSG algorith-
m. It uses pseudo-random number generators to calculate the
random features on-the-fly, which highly reduces the memo-
ry requirement. These methods have been widely applyed to
scale up kernel-based learning algorithms, such as [Li et al.,
2017; Gu et al., 2018b].

2.2 Large Scale AUC Optimization

Recently, several efforts have been devoted to scale up the
AUC optimization. For example, Ying et al., [2016] formu-
lated the AUC optimization as a convex-concave saddle point
problem and proposed a stochastic online method (SOLAM)
which has the time and space complexities of one datum. F-
SAUC [Liu et al., 2018] developed a multi-stage scheme for
running primal-dual stochastic gradient method with adap-
tively changing parameters. FSAUC has the convergence rate
of O(1/n), where n is the number of random samples. How-
ever, both SOLAM and FSAUC focus on scaling up the linear
AUC optimization and are incapable of maximizing AUC in
the nonlinear setting. Recently, FOAM and NOAM [Ding et
al., 2017] used RFF and Nyström method, respectively, to s-
cale up the kernel based AUC optimization problem. Howev-
er, as mentioned above, both methods require large amounts
of memory to achieve a better generalization performance and
not trivial to scale up the nonlinear semi-supervised AUC op-
timization problems based.

3 Preliminaries
3.1 Supervised AUC Optimization
In supervised learning, let x ∈ Rd be a d-dimensional pattern
and y ∈ {+1,−1} be a class label. Let p(x, y) be the un-
derlying joint density of (x, y). The AUC optimization is to
train a classifier f that maximizes the following function.

AUC = 1− Exp∼p+(x)

[
Exn∼p−(x)[l01(f(x

p), f(xn))]
]
,

where p+(x) = p(x|y = +1), p−(x) = p(x|y = −1) and
l01(u, v) = (1 − sign(u − v))/2. Obviously, maximizing
AUC is equivalent to minimizing the following PN AUC risk.

RPN = Exp∼p+(x)

[
Exn∼p−(x)[l01(f(x

p), f(xn))]
]
. (1)

Given the positive and negative datasets as Dp =
{xi}pi=1 ∼ p+(x) and Dn = {xj}nj=1 ∼ p−(x) respectively.
Thus, the PN AUC risk can be rewritten as follows.

RPN = Exp∈Dp [Exn∈Dn [l(f(x
p), f(xn))]] . (2)

where Exp∈Dp and Exn∈Dn denote the means of Dp and Dn,
respectively.

3.2 Semi-Supervised AUC Optimization
Since large amounts of instances remain unlabeled in semi-
supervised learning, we assume that the labeled dataset is lim-
ited while the unlabeled data can be infinite and has the under-
lying distribution density of p(x), where p(x) = πp+(x) +
(1− π)p−(x) and π denotes the positive class prior. Recent-
ly, Xie and Li, [2018] have shown that it is unnecessary to
estimate distributional assumptions or class prior to achieve
an unbiased solution for semi-supervised AUC optimization.
Specifically, PU AUC risk RPU and NU AUC risk RNU are
equivalent to the supervised PN AUC risk RPN risk with a
linear transformation, where PU AUC risk RPU is estimated
by positive and unlabeled data treated as negative data, and
NU AUC risk RNU is estimated by negative and unlabeled
data treated as positive data. We define RPU and RNU as
follows,

RPU = Exp∈Dp

[
Exu∼p(x)[l(f(x

p), f(xu))]
]
, (3)

RNU = Exu∼p(x) [Exn∈Dn
[l(f(xu), f(xn))]] , (4)

where Exu∼p(x) denotes the expectation over the density
p(x). PU AUC risk can be written as follows.

RPU =Exp∈Dp
[Exu∼p(x)[l(f(x

p), f(xu))]]

=Exp∈Dp
[πEx′p∼p+(x)[l(f(x

p, x′p))]

+ (1− π)Ex′n∼p−(x)[l(f(xp, x′n))]]

=
1

2
π + (1− π)RPN, (5)

where x′p and x′n denotes the positive and negative instances
in unlabeled dataset. Similarly, NU AUC risk RNU can be
rewritten as

RNU =
1

2
(1− π) + πRPN. (6)

Then PN AUC risk RPN can be formulated as follows.

RPU +RNU −
1

2
= RPN. (7)

Thus, the semi-supervised AUC optimization can be formu-
lated as follows.

RPNU = (1− γ)
(
RPU +RNU −

1

2

)
+ γRPN. (8)

where γ ∈ [0, 1] is the trade-off parameter. To reduce the risk
of overfitting, we add a l2-regularizer into (8) and have the
following objective for semi-supervised AUC optimization.

L = RPNU(f) +
λ

2
‖f‖2H, (9)

where λ is the regularized parameter and ‖ · ‖H denotes the
norm in a reproducing kernel Hilbert space (RKHS)H.

3.3 Random Fourier Feature
In this section, we give a brief review of RFF. Assume that we
have a continuous, real-valued, symmetric and shift-invariant
kernel function k(x, x′). According to Bochner Theorem
[Rudin, 2017], this kernel function is positive definite and
has a nonnegative Fourier transform function as k(x, x′) =∫
Rd p(ω)e

jωT (x−x′)dω, where p(w) is a density function as-
sociated with k(x, x′). The integrand ejω

T (x−x′) can be
replaced with cosωT (x − x′) [Rahimi and Recht, 2008].
Then we can obtain a real-valued feature map φωi(x) =
[cos(ωTi x), sin(ω

T
i x)]

T , where ωi is randomly sampled ac-
cording to the density function p(ω). We can obtain the fea-
ture map for m random features of a real-valued kernel as
follows.

φω(x) =
√
1/D[cos(ωT1 x), · · · , cos(ωTmx),

sin(ωT1 x), · · · , sin(ωTmx)]T . (10)

Obviously, φTω (x)φω(x
′) is an unbiased estimate of k(x−x′).

4 Quadruply Stochastic Semi-Supervised
AUC Maximization

4.1 Quadruply Stochastic Gradients
Based on the definition of the function f ∈ H, we easily
obtain ∇f(x) = ∇〈f, k(x, ·)〉, and ∇‖f‖2H = ∇〈f, f〉H =
2f . Thus, the gradient of the objective (9) can be written as:

∇L =λf + γExp∈Dp [Exn∈Dn [l
′
1k(x

p, ·) + l′2k(x
n, ·)]]

+ (1− γ)(Exp∈Dp
[Exu∼p(x)[l

′
3k(x

p, ·) + l′4k(x
u, ·)]]

+ Exu∼p(x)[Exn∈Dn
[l′5k(x

u, ·) + l′6k(x
n, ·)]]), (11)

where l′1k(x
p, ·) denotes the derivative of l(f(xp), f(xn))

w.r.t. f(xp), l′2k(x
n, ·) denotes the derivative of

l(f(xp), f(xn)) w.r.t. f(xn), l′3k(x
p, ·) denotes the deriva-

tive of l(f(xp), f(xu)) w.r.t. f(xp), l′4k(x
u, ·) denotes the

derivative of l(f(xp), f(xu)) w.r.t. f(xu), l′5k(x
u, ·) denotes

the derivative of l(f(xu), f(xn)) w.r.t. f(xu) and l′6k(x
n, ·)

denotes the derivative of l(f(xu), f(xn)) w.r.t. f(xn).
Stochastic functional Gradients: In order to update the
classifier f in a stochastic manner,we randomly sample a pos-
itive data point xp and a negative data point xn from Dp and
Dn, respectively. In addition, we randomly sample an unla-
beled data point xu according to the unlabeled data distribu-
tion density p(x). In each iteration, we use a triplet of these

data points to compute the stochastic functional gradient of
(8) as follows.

ξ(·) =γ(l′1k(xp, ·) + l′2k(x
n, ·)) + (1− γ)(l′3k(xp, ·)

+ l′4k(x
u, ·) + l′5k(x

u, ·) + l′6k(x
n, ·)). (12)

Random Feature Approximate: We can apply the random
Fourier feature method to further approximate the stochastic
functional gradient ξ(·) as follows.

ζ(·) =γ(l′1φω(xp)φω(·) + l′2φω(x
n)φω(·))

+ (1− γ)(l′3φω(xp)φω(·) + l′4φω(x
u)φω(·)

+ l′5φω(x
u)φω(·) + l′6φω(x

n)φω(·)). (13)

Obviously, we have that ξ(·) = Eω[ζ(·)]. Thus, we can
achieve the unbiased estimate of the gradient (11) by using
either ξ(·) or ζ(·) as follows.

∇L = Exp,xn,xu [ξ(·)] + λf,∇L = Exp,xn,xu [Eω[ζ(·)]] + λf.

Because four randomness (i.e. xp, xn, xu and ω) are involved
in ζ(·), we call the functional gradient ζ(·) as quadruply s-
tochastic functional gradient.
Update Rules: We first give the update rule with the stochas-
tic gradient ξ(·) as follows.

ht+1(·) = ht(·)− ηt (ξt(·) + λht(·)) =
t∑
i=1

aitξt(·), ∀t > 1,

where ait = −ηt
∏t
j=i+1(1 − ηjλ), ηt denotes the step size

and ht+1(x) denotes the function value if we use gradient
ξ(·). Since ζ(·) is an unbiased estimate of ξ(·), the update
rule using ζ(·) after t iterations can be written as follows.

ft+1(·) = ft(·)− ηt (ζt(·) + λft(·)) =
t∑
i=1

aitζi(·), ∀t > 1,

where f1(·) = 0, and ft+1(x) denotes the function value for
the input x if we use the functional gradient ζ(·).

In order to implement the update process in computer pro-
gram, we rewrite the update rule as the following iterative
update rules with constantly-changing coefficients {αi}ti=1,

ft =
t∑
i=1

αiφω(x), (14)

αi = −ηi(γ(l′1φω(xp) + l′2φω(x
n))

+(1− γ)(l′3φω(xp) + l′4φω(x
u)

+l′5φω(x
u) + l′6φω(x

n))), (15)

αj = (1− ηjλ)αj , for j = 1, ..., i− 1. (16)

4.2 QSG-S2AUC Algorithms
In our implementation, we use pseudo-random number gen-
erators with seed i to sample random features. In each itera-
tion, we only need to keep the seed i aligned between predic-
tion and training. Then the prediction function f(x) can be
restored much more easily. Besides, the QSG-S2AUC main-
tains a sequence of {αi}ti=1 which has low memory require-
ment. Specifically, each iteration of the training algorithm
executes the following steps.

Algorithm 1 {αi}ti=1 = QSG-S2AUC(Dp, Dn, p(x))

Input: p(ω), φω(x), l(u, v), λ.
Output: {αi}ti=1

1: for i = 1, ..., t do
2: Sample xp from Dp.
3: Sample xn from Dn.
4: Sample xu ∼ p(x).
5: Sample ωi ∼ p(ω) with seed i.
6: f(xi) = Predict(xi, {αi}i−1j=1).
7: αi = −ηi(γ(l′1φω(xp) + l′2φω(x

n)) + (1 −
γ)(l′3φω(x

p) + l′4φω(x
u) + l′5φω(x

u) + l′6φω(x
n)))

8: αj = (1− ηjλ)αj for j = 1, ..., i− 1.
9: end for

Algorithm 2 f(x) =Predict(x, {αi}ti=1)

Input: p(ω), φω(x)
Output: f(x)

1: Set f(x) = 0.
2: for i = 1, ..., t do
3: Sample ωi ∼ p(ω) with seed i.
4: f(x) = f(x) + αiφω(x)
5: end for

1. Select Random Data Triplets: Randomly sample a pos-
itive instance, a negative instance and an unlabeled in-
stance to compose a data triplet. In addition, we use
mini-batch of these data points to achieve a better effi-
ciency.

2. Approximate the Kernel Function: Sample ωi ∼ p(ω)
with random seed i. We keep this seed aligned between
prediction and training to speed up computing f(xi) =∑t
i=1 αiφω(x).

3. Update Coefficients: We compute the current coeffi-
cient αi in i-th loop and then update the former coef-
ficients αj for j = 1, · · · , i− 1 according to the update
rule (15) and (16), respectively.

We summarize the algorithms for training and prediction in
Algorithm 1 and 2 respectively.

5 Convergence Analysis
In this section, we prove that QSG-S2AUC converges to the
optimal solution at the rate of O(1/t). We first give several
assumptions which are standard in DSG [Dai et al., 2014].

Assumption 1 (Bound of kernel function). The kernel func-
tion is bounded, i.e., k(x, x′) ≤ κ, where κ > 0.

Assumption 2 (Bound of random feature norm). The ran-
dom feature norms are bounded, i.e., |φω(x)φω(x′)| ≤ φ.

Assumption 3 (Lipschitz continuous). The first order
derivation of l(f(xp), f(xn)) is L1-Lipschitz continuous in
terms of f(xp) and L2-Lipschitz continuous in terms of
f(xn). Similarly, the first order derivation of l(f(xp), f(xu))
is L3-Lipschitz continuous in terms of f(xp) and L4-
Lipschitz continuous in terms of f(xu) and the first order

Dataset Features Samples Source
Codrna 8 59,535 LIBSVM
Ijcnn1 22 49,990 LIBSVM
Susy 18 5,000,000 LIBSVM

Covtype 54 581,012 LIBSVM
Higgs 28 1,100,000 LIBSVM
Skin 3 245,057 LIBSVM

Dota2 116 92650 UCI
Unclonable 129 6,000,000 UCI

Table 2: Datasets used in the experiments.

derivation of l(f(xu), f(xn)) is L5-Lipschitz continuous in
terms of f(xu) and L6-Lipschitz continuous in terms of
f(xn).

Assumption 4 (Bound of derivation). There exists M1 > 0,
M2 > 0, M3 > 0, M4 > 0, M5 > 0 and M6 > 0, such that
|l′1| ≤ M1, |l′2| ≤ M2, |l′3| ≤ M3, |l′4| ≤ M4, |l′5| ≤ M5,
|l′6| ≤M6,

We use the framework of [Dai et al., 2014] to prove that
ft+1 can converge to the optimal solution f∗. Specifically,
we use the aforementioned ht+1 as an intermediate value to
decompose the difference between ft+1 and f∗ as follows.

|ft+1(x)− f∗(x)|2

≤ 2 |ft+1(x)− ht+1(x)|2︸ ︷︷ ︸
error due to random features

+2κ ‖ht+1 − f∗‖H︸ ︷︷ ︸
error due to random data

.(17)

In other words, the total approximation error includes the er-
ror caused by approximating the kernel with random features,
and the error caused by sampling random data. Finally, the
boundary of the original error can be obtained by summing
up the boundary of these two parts.

We first give the convergence of error due to random fea-
tures and random data in Lemmas 1 and 3 respectively. All
the detailed proofs are provided in our Appendix1.

Lemma 1 (Error due to random features) Let χ denotes
the whole training set in semi-supervised learning problem.
For any x ∈ χ, we have

Exp
t ,x

n
t ,x

u
t ,ω

[|ft+1(x)− ht+1(x)|2] ≤ B2
1,t+1, (18)

where B2
1,t+1 := M2(κ + φ)2

∑t
i=1 |ait|2, B1,1 = 0 and

M = γ(M1 +M2) + (1− γ)(M3 +M4 +M5 +M6).

Obviously, the upper bound B2
1,t+1 depends on the conver-

gence of |ait|, which is given in Lemma 2.

Lemma 2 Suppose ηi =
θ

i
(1 ≤ i ≤ t) and θλ ∈ (1, 2)∪Z+.

We have |ait| ≤
θ

t
and

∑t
i=1 |ait|2 ≤

θ2

t
.

Remark 1 According to Lemmas 1 and 2, the error caused
by random features has the convergence rate of O(1/t) with
proper learning rate and θλ ∈ (1, 2).

1Appendix is available at https://drive.google.com/open?id=
16qVZGYeL7xhB4BATIMdcGkxLEyw7LIYg.

Codrna Covtype Dota2 Higgs Ijcnn1 Skin Susy Unclone
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

PNU-AUC

SAMULT

QSG-S2AUC

Figure 1: The boxplot of testing AUC results for PNU-AUC, SA-
MULT and our QSG-S2AUC.

Lemma 3 (Error due to random data) Set ηt =
θ

t
, θ > 0,

such that θλ ∈ (1, 2) ∪ Z+, we have

Exp
t ,x

n
t ,x

u
t ,ωt

[
‖ht+1 − f∗‖2H

]
≤ Q2

1

t
, (19)

whereQ1 = max

{
‖f∗‖H,

Q0+
√
Q2

0+(2θλ−1)(1+θλ)2θ2κM2

2θλ−1

}
,

Q0 =
√
2κ1/2(κ + φ)LMθ2 and L = γ(L1 + L2) + (1 −

γ)(L3 + L4 + L5 + L6).

According to Lemmas 1 and 3, we can obtain the convergence
rate of QSG-S2AUC in Theorem 1.
Theorem 1 (Convergence in expectation) Let χ denote the
whole training set in semi-supervised learning problem. Set

ηt =
θ

t
, θ > 0, such that θλ ∈ (1, 2) ∪ Z+. ∀x ∈ χ, we have

Exp
t ,x

n
t ,x

u
t ,ωt

[
|ft+1(x)− f∗(x)|2

]
≤ 2C2 + 2κQ2

1

t
,

where C2 = (κ+ φ)2M2θ2.

Remark 2 Theorem 1 shows that for any given x, the eval-
uated value of ft+1 at x will converge to that of f∗ in terms
of the Euclidean distance at the rate of O(1/t). This rate is
the same as that of standard DSG even though our problem is
much more complicated and has four sources of randomness.

6 Experiments
In this section, we present the experimental results on sever-
al datasets to demonstrate the effectiveness and efficiency of
QSG-S2AUC.

6.1 Experimental Setup
Design of Experiments: We compare the AUC results and
running time of QSG-S2AUC with the state-of-the-art semi-
supervised AUC maximization algorithms as summarized as
follows.

1. PNU-AUC: Unbiased semi-supervised AUC optimiza-
tion method proposed in [Sakai et al., 2018] based on
positive and unlabeled learning.

2. SAMULT: The method proposed in [Xie and Li, 2018]
which does not require the class prior distribution to
achieve the unbiased solution.

Implementation: All the experiments were ran on a PC with
56 2.2GHz cores and 80GB RAM. We implemented QSG-
S2AUC and SAMULT algorithms in MATLAB. We used the

https://drive.google.com/open?id=16qVZGYeL7xhB4BATIMdcGkxLEyw7LIYg
https://drive.google.com/open?id=16qVZGYeL7xhB4BATIMdcGkxLEyw7LIYg

1 2 3 4 5

Size of Unlabeled Samples 10
4

0

50

100

150

200

250

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(a) CodRNA

1 2 3 4 5 7.5 10

Size of Unlabeled Samples 10
4

0

200

400

600

800

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(b) Covtype

1 2 3 4 5 7.5

Size of Unlabeled Samples 10
4

0

100

200

300

400

500

600

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(c) Dota2

1 2 3 4 5 7.5 10

Size of Unlabeled Samples 10
4

0

100

200

300

400

500

600

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(d) Higgs

1 2 3 4

Size of Unlabeled Samples 10
4

0

50

100

150

200

250

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(e) IJCNN1

1 2 3 4 5 7.5 10

Size of Unlabeled Samples 10
4

0

100

200

300

400

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(f) Skin

1 2 3 4 5 7.5 10

Size of Unlabeled Samples 10
4

0

100

200

300

400

500

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(g) SUSY

1 2 3 4 5 7.5 10

Size of Unlabeled Samples 10
4

0

200

400

600

800

1000

1200

R
u

n
ti

m
e(

se
c)

QSG-S2AUC

SAMULT

PNU-AUC

(h) Unclonable

Figure 2: The training time of QSG-S2AUC, SAMULT and PNU-AUC against different sizes of unlabeled samples, where the sizes of labeled
samples are fixed at 200. (The lines of SAMULT and PNU-AUC are incomplete because their implementations crash on larger training sets.)

MATLAB code from https://github.com/t-sakai-kure/PNU as
the implementation of PNU-AUC. For all algorithms, we use
the square pairwise loss l(u, v) = (1− u+ v)2 and Gaussian
kernel k(x, x′) = exp(−σ‖x− x′‖2). The hyper-parameters
(λ, σ and γ) are chosen via 5-fold cross-validation. λ and σ
were searched in the region {(λ, σ)|2−3 ≤ λ ≤ 23, 2−3 ≤
σ ≤ 23}. The trade-off parameter γ in SAMULT and QSG-
S2AUC was searched from 0 to 1 at intervals of 0.1, and that
in PNU-AUC was searched from −1 to 1 at intervals of 0.1.
In addition, the class prior π in PNU-AUC is set to the class
proportion in the whole training set, which can be estimated
by [du Plessis et al., 2015]. All the results are the average of
10 trials.

6.2 Datasets
We carry out the experiments on eight large scale bench-
mark datasets collected from LIBSVM2 and UCI3 reposito-
ries. The size n of the dataset and the feature dimensionality
d are summarized in Table 2. To conduct the experiments for
semi-supervised learning, we randomly sample 200 labeled
instances and treat the rest of the data as unlabeled. All the
data features are normalized to [0, 1] in advance.

6.3 Results and Discussion
Figure 1 shows the training time of QSG-S2AUC, SAMULT
and PNU-AUC against different sizes of unlabeled samples
on the eight benchmark datasets, where the sizes of labeled
samples are fixed at 200. We can find that QSG-S2AUC
is always faster than SAMULT and PNU-AUC. This is be-
cause the SAMULT and PNU-AUC need O(n3) operations
to compute the inverse matrixes with kernel. Nevertheless,
QSG-S2AUC uses RFF to approximate the kernel function,
and each time it only needs O(D) operations to calculate the
random features. In addition, the low memory requirement of

2LIBSVM is available at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/binary/.

3UCI is available at http://archive.ics.uci.edu/ml/datasets.html.

QSG-S2AUC allows it to do an efficient training for large s-
cale datasets while PNU-AUC and SAMULT are out of mem-
ory. Figure 2 presents the testing AUC results of these algo-
rithms on the eight benchmark datasets. The results show that
QSG-S2AUC has the similar AUC results with other methods
on the most datasets, and has the highest AUC on the datasets
of Covtype and Ijcnn1. Based on these results, we conclude
that QSG-S2AUC is superior to other state-of-the-art algo-
rithms in terms of efficiency and scalability, while retaining
the similar generalization performance.

7 Conclusion
In this paper, we propose a novel scalable semi-supervised
AUC optimization algorithm, QSG-S2AUC. Considering that
semi-supervised learning contains three data sources, DSG-
S2AUC is designed to randomly sample one instance from
each data source in each iteration. Then, their random fea-
tures are generated and used to calculate a quadruply stochas-
tic functional gradient for model update. Even though this op-
timization process contains multiple layers of stochastic sam-
pling, theoretically, we prove that QSG-S2AUC has a con-
vergence rate of O(1/t). The experimental results on vari-
ous datasets also demonstrate the superiority of the proposed
QSG-S2AUC.

Acknowledgments
H.H. was partially supported by U.S. NSF IIS 1836945, I-
IS 1836938, DBI 1836866, IIS 1845666, IIS 1852606, I-
IS 1838627, IIS 1837956. B.G. was partially support-
ed by the National Natural Science Foundation of China
(No: 61573191), and the Natural Science Foundation (No.
BK20161534), Six talent peaks project (No. XYDXX-042)
in Jiangsu Province.

https://github.com/t-sakai-kure/PNU
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/
http://archive.ics.uci.edu/ml/datasets.html

References
[Amini et al., 2008] Massih Reza Amini, Tuong Vinh

Truong, and Cyril Goutte. A boosting algorithm for learn-
ing bipartite ranking functions with partially labeled data.
In Proceedings of the 31st annual international ACM SI-
GIR conference on Research and development in informa-
tion retrieval, pages 99–106. ACM, 2008.

[Dai et al., 2014] Bo Dai, Bo Xie, Niao He, Yingyu Liang,
Anant Raj, Maria-Florina F Balcan, and Le Song. Scalable
kernel methods via doubly stochastic gradients. In Ad-
vances in Neural Information Processing Systems, pages
3041–3049, 2014.

[Ding et al., 2017] Yi Ding, Chenghao Liu, Peilin Zhao, and
Steven CH Hoi. Large scale kernel methods for online auc
maximization. In 2017 IEEE International Conference on
Data Mining (ICDM), pages 91–100. IEEE, 2017.

[Drineas and Mahoney, 2005] Petros Drineas and
Michael W Mahoney. On the nyström method for
approximating a gram matrix for improved kernel-
based learning. journal of machine learning research,
6(Dec):2153–2175, 2005.

[du Plessis et al., 2015] Marthinus Christoffel du Plessis,
Gang Niu, and Masashi Sugiyama. Class-prior estimation
for learning from positive and unlabeled data. In ACML,
pages 221–236, 2015.

[Fine and Scheinberg, 2001] Shai Fine and Katya Schein-
berg. Efficient svm training using low-rank kernel rep-
resentations. Journal of Machine Learning Research,
2(Dec):243–264, 2001.

[Fujino and Ueda, 2016] Akinori Fujino and Naonori Ueda.
A semi-supervised auc optimization method with gener-
ative models. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pages 883–888. IEEE, 2016.

[Gao and Zhou, 2015] Wei Gao and Zhi-Hua Zhou. On the
consistency of auc pairwise optimization. In IJCAI, pages
939–945, 2015.

[Gao et al., 2013] Wei Gao, Rong Jin, Shenghuo Zhu, and
Zhi-Hua Zhou. One-pass auc optimization. In Interna-
tional Conference on Machine Learning, pages 906–914,
2013.

[Gu and Huo, 2018] Bin Gu and Zhouyuan Huo. Asyn-
chronous doubly stochastic group regularized learning. In
International Conference on Artificial Intelligence and S-
tatistics (AISTATS 2018), 2018.

[Gu et al., 2016] Bin Gu, Zhouyuan Huo, and Heng Huang.
Asynchronous stochastic block coordinate descent with
variance reduction. arXiv preprint arXiv:1610.09447,
2016.

[Gu et al., 2018a] Bin Gu, Yingying Shan, Xiang Geng, and
Guansheng Zheng. Accelerated asynchronous greedy co-
ordinate descent algorithm for svms. In IJCAI, pages
2170–2176, 2018.

[Gu et al., 2018b] Bin Gu, Miao Xin, Zhouyuan Huo, and
Heng Huang. Asynchronous doubly stochastic sparse ker-

nel learning. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence, 2018.

[Hanley and McNeil, 1982] James A Hanley and Barbara J
McNeil. The meaning and use of the area under a re-
ceiver operating characteristic (roc) curve. Radiology,
143(1):29–36, 1982.

[Li et al., 2017] Xiang Li, Bin Gu, Shuang Ao, Huaimin
Wang, and Charles X Ling. Triply stochastic gradients
on multiple kernel learning. UAI, 2017.

[Liang, 2005] Percy Liang. Semi-supervised learning for
natural language. PhD thesis, Massachusetts Institute of
Technology, 2005.

[Liu et al., 2018] Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen,
Xiaoyu Wang, and Tianbao Yang. Fast stochastic auc max-
imization with o (1/n)-convergence rate. In Internation-
al Conference on Machine Learning, pages 3195–3203,
2018.

[Munkhoeva et al., 2018] Marina Munkhoeva, Yermek Ka-
pushev, Evgeny Burnaev, and Ivan Oseledets. Quadrature-
based features for kernel approximation. arXiv preprint
arXiv:1802.03832, 2018.

[Rahimi and Recht, 2008] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines. In Ad-
vances in neural information processing systems, pages
1177–1184, 2008.

[Rudin, 2017] Walter Rudin. Fourier analysis on groups.
Courier Dover Publications, 2017.

[Sakai et al., 2018] Tomoya Sakai, Gang Niu, and Masashi
Sugiyama. Semi-supervised auc optimization based
on positive-unlabeled learning. Machine Learning,
107(4):767–794, 2018.

[Sholokhov et al., 2018] Alexey Sholokhov, Md Sahidullah,
and Tomi Kinnunen. Semi-supervised speech activity de-
tection with an application to automatic speaker verifica-
tion. Computer Speech & Language, 47:132–156, 2018.

[Smola and Schölkopf, 2000] Alex J Smola and Bernhard
Schölkopf. Sparse greedy matrix approximation for ma-
chine learning. 2000.

[Wang et al., 2010] Jun Wang, Sanjiv Kumar, and Shih-Fu
Chang. Semi-supervised hashing for scalable image re-
trieval. 2010.

[Xie and Li, 2018] Zheng Xie and Ming Li. Semi-supervised
auc optimization without guessing labels of unlabeled da-
ta. 2018.

[Ying et al., 2016] Yiming Ying, Longyin Wen, and Siwei
Lyu. Stochastic online auc maximization. In Advances
in neural information processing systems, pages 451–459,
2016.

[Yu et al., 2016] Felix Xinnan X Yu, Ananda Theertha
Suresh, Krzysztof M Choromanski, Daniel N Holtmann-
Rice, and Sanjiv Kumar. Orthogonal random features.
In Advances in Neural Information Processing Systems,
pages 1975–1983, 2016.

	Introduction
	Related Works
	Kernel Approximation
	Large Scale AUC Optimization

	Preliminaries
	Supervised AUC Optimization
	Semi-Supervised AUC Optimization
	Random Fourier Feature

	Quadruply Stochastic Semi-Supervised AUC Maximization
	Quadruply Stochastic Gradients
	QSG-S2AUC Algorithms

	Convergence Analysis
	Experiments
	Experimental Setup
	Datasets
	Results and Discussion

	Conclusion

