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Abstract. This paper introduces a novel method that unifies structural
connectivity and functional time series to form a signed coupling inter-
action network or “signed resting state structural connectome” (signed
rs-SC) to describe neural excitation and inhibition. We employ an energy
representation of neural activity based on the Ising model from statis-
tical mechanics, hereby bypassing traditional BOLD correlations. The
spin model is a function of a coupling interaction (traditionally positive
or negative) and spin-states of paired brain regions. Observed functional
time series represent brain states over time. A maximum pseudolike-
lihood with a constraint is used to estimate the coupling interaction.
The constraint is introduced as a penalty function such that the learned
interactions are scaled relative to structural connectivity; the sign of the
interactions may infer inhibition or excitation over an underlying struc-
ture. We evaluate our method by comparing a group of otherwise healthy
APOE-e4 carriers with a control group of non APOE-e4 subjects. Our
results identify a global shift in the excitation-inhibition balance of the
APOE e4 signed rs-SC compared to the control group, providing the first
connectomics-based support for hyperexcitation related to APOE e4.

Keywords: Ising model · Maximum Likelihood · Brain dynamics ·
Functional connectivity · Structure connectome · MRI

1 Introduction

The relationship between structure and function is an open question that some
researchers have investigated using the Ising model from statistical mechanics
[7,11,16,17]. Communication between neurons involves the release of certain
neurotransmitters that drive an excitatory or inhibitory response. At a macro-
scopic level, this can be interpreted as a pair of brain regions having an activating
c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11768, pp. 503–511, 2019.
https://doi.org/10.1007/978-3-030-32254-0_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32254-0_56&domain=pdf
https://doi.org/10.1007/978-3-030-32254-0_56


504 I. Fortel et al.

or inhibiting influence on each other. It is hypothesized that a core abnormality of
early AD is “hyperexcitability” in neuronal circuits, supported by recent whole-
cell recordings in animal AD models demonstrating that β-Amyloid (Aβ) induces
synaptic hyperexcitation and perturbs the excitation-inhibition (E-I) balance
in regions such as the entorhinal cortex and anterior cingulate via depressing
inhibitory transmission [14,15]. Our main contribution is a novel approach to
evaluate this hypothesis, by computationally infering the nature (excitatory vs
inhibitory) of structural connectivity using statistical mechanics to yield a signed
interaction network or “signed resting state structural connectome” (signed rs-
SC).

2 Ising Model

A functional connectome can be represented mathematically as an undirected
graph where vertices (V) correspond to regions of interest (ROIs), and edges (E)
describe some measure of connectivity between pairs of vertices. In conventional
descriptions of functional connectivity (FC), each edge ei,j ∈ E is associated
with a weight, computed using a pairwise BOLD correlation. In this work we
use the Ising model, a special case of a Markov random field model in which each
ROI can exhibit two possible states s = ±1. Previous studies have shown this
to accurately model neuronal activity under the assumption that connectivity
between neurons can either be active (+1) or inactive (–1) [16,18].

First, we formulate the system energy as given by the Hamiltonian H(s) =
−∑

i<j Ji,jsisj ∀ i, j ∈ {1, 2, . . . , N} where the spin configuration s is defined
as the column vector s = [s1, s2, .., sN ]T , N is the number of regions, si and sj are
the spin states of region i and region j, and Ji,j represents a pairwise interaction
between those regions. This formulation is under the assumption that there is
no external influence (i.e resting-state). Unless otherwise stated, summations in
this paper are for i < j to avoid double counting and exclude self-connections.
The probability of observing a specific configuration is given by the Boltzmann
distribution: Pr(s) = 1

Z exp (−βH(s)), where β is the inverse temperature and Z
is the partition function defined as Z =

∑
s exp(−βH(s)). Here, the summation

is over all possible configurations of states. Ising model simulation is described
in algorithm 1 to find an equilibrium time evolution of states for each ROI [4].
Ising model dynamics have been previously used in multiple studies to estimate
functional connectivity [6,11,17].

Our method aims to solve the “inverse problem”, using observed func-
tional time series to infer coupling interactions. Similar to previous work, we
use a gradient ascent scheme [17,18]. However, where previous methods esti-
mated network structure properties, we embed the structure into the estimation.
This is achieved by using a gradient ascent procedure on the log likelihood of
the observed data [1]. The computation of Maximum Likelihood, in this case,
requires calculations over all 2N possible spin configurations [12]. For large sam-
ple size, the pseudolikelihood (PL) approximation converges to the maximum
likelihood with lower computational cost [3]. Ezaki et al. demonstrated the via-
bility of a pseudolikelihood-based model to estimate features on functional time
series [6].
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Algorithm 1. Ising Model Simulations
1: Define: J , the maximum number of simulations σ, and a range of β values
2: procedure Monte Carlo Simulations for each temperature
3: Initialize: random configuration of spin states
4: for each simulation: randomly fix an element from the configuration, and com-

pute the Hamiltonian relative to that fixed element, denoted by H(si )

5: if H(si ) ≤ 0 or rand(0, 1) ≤ exp(H(si )
β

), flip the state. The command rand(0, 1)
generates a random value between 0 and 1. Complete for all states in configuration

6: The final configuration is used as the input to for next simulation
7: Concatenate all simulations into an N − by −σ matrix and compute correlation

by multiplying this matrix by its transpose and dividing by σ

8: Do this for each temperature in the range

3 Constrained Pseudolikelihood Estimation

We begin with the observed functional time series, which are binarized to be
±1. A threshold of 0 is used for each sample due to the data being preprocessed
with global signal regression (GSR) [9], resulting in a zero-mean time series; we
binarize around the mean to avoid a bias towards either state. The resulting
binary sequences represent the observed spin configurations, which we define as
a function of the time samples: Sobserved = [s(1), s(2), . . . , s(tmax)]. We estimate
a parameter J, a set containing all Ji,j , via the maximization of the pseudolike-
lihood function, defined as:

max
J

L(J , β), where L(J , β) =
tmax∏

t=1

N∏

i=1

Pr (si(t)|J , β, s−i(t)) (1)

Unlike traditional Maximum Likelihood, the probability is not over all spin
states, but of observing one si(t) with all the others s−i(t) fixed. To ensure
the magnitude of the coupling interactions are scaled relative to the structural
connectome, our constraint is formulated as |Ji,j | = μWi,j , where μ is the nor-
malization constant and Wi,j is the structural connectivity between ROI pairs.
With appropriate scaling, we assume that μ = 1. We therefore pose a penalty-
based optimization approach to maximize the log-pseudolikelihood function as
follows:

�(J , β) =
1

tmax
ln L(J , β) − 1

2
λ

∑

i<j

(Ji,j − sgn (Ji,j) Wi,j)
2 (2)

We first evaluate the pseudolikelikelihood component 1
tmax

ln L(J , β), which

expands to: 1
tmax

∑tmax
t=1

∑N
i=1 ln

(
exp(β

∑N
k=1 Ji,ksi(t)sk(t))

exp(β
∑N

k=1 Ji,ksk(t))+exp(−β
∑N

k=1 Ji,ksk(t))

)

.

The probability distribution here stems from the Boltzmann distribution under
the pseudolikelihood conditions such that the numerator of the log is the energy
of the system, while the denominator is the sum of all possible energies. Thus,
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only two terms are present in the denominator; one is positive and one is nega-
tive as si(t) can only be +1 or −1. We can now simplify the likelihood function
further by letting Ci(t) = β

∑N
k=1 Ji,ksk(t), which results in a formulation as

follows:

�(J , β) =
1

tmax

tmax∑

t=1

N∑

i=1

Ci(t)si(t) − ln (exp (Ci(t)) + exp (−Ci(t))) (3)

−1
2
λ

∑

i<j

(Ji,j − sgn (Ji,j)Wi,j)
2

The gradient ascent procedure can be constructed with respect to Ji,j by com-
puting the partial derivative of the constructed log-pseudolikelihood.

∂�

∂Ji,j
=

1
tmax

tmax∑

t=1

β {si(t)sj(t) − sj(t) tanh (Ci(t))} − λ (Ji,j − sgn (Ji,j) Wi,j)

(4)
where the updating scheme follows: Jn+1

i,j = Jn
i,j + ε ∂�

∂Ji,j

∣
∣
∣
n

Here, n is the iter-
ation number and ε is the learning rate. The partial derivative of the penalty
holds under the assumption that Ji,j �= 0 as the sgn function is continuous and
constant everywhere except 0. In practice however, if there exists a Ji,j = 0,
then sgn(0) = 0 by convention. The penalty function ensures that the inferred
pairwise interaction is scaled relative to the estimated structure of the brain. To
account for the β temperature constant we employ an alternating optimization
strategy whereby we first assume β = 1 and compute the first step of the gradient
ascent. Using the resulting coupling interaction, we can then optimize β by simu-
lating the Ising model to find the temperature that yields the highest correlated
result with the observed functional connectome. Using this new temperature we
take the next step along the gradient and continue alternating between optimiz-
ing β and Ji,j until the algorithm converges. Through simulations, we find that
the optimal β is in the neighborhood of 1 for all subjects.

4 Results and Validation

Structural and functional connectivity for 38 cognitively normal Apoe-e4 carriers
aged 40–60 (μ = 50.8) are compared with 38 age (μ = 50.9) and sex-matched
(16M/22F) non-carriers (control). Imaging included T1-weighted MRI, resting
state fMRI and diffusion weighted MRI. Freesurfer cortical parcellation and sub-
cortical segmentation was performed to derive 80 ROIs. The mean time-course
was extracted from the pre-processed rs-fMRI data. Probabilistic tractography
was used to create the structural connectome matrices, and normalized by the
way-total of the corresponding seed ROIs. More detailed information on the
imaging and processing steps can be found in Korthauer et al. [9].

We first optimize λ in our constraint by estimating the coupling interactions
Ji,j for each subject using our method for a range of λ values. The estimated Ji,j
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for each λ is then used to generate a correlation function fc(β) by simulating
the Ising Model and computing the Pearson correlation between observed and
simulated functional connectomes ∀β. The function f1(λ) contains the max(fc)
achieved. To evaluate the impact of λ on our constraint, a second function f2(λ)
computes the Pearson correlation between |Ji,j | and Wi,j ∀ i, j.

Fig. 1. Right: f1(λ) and f2(λ) curves are averaged over all 38 subjects in each group for
λ = (0, 0.05, ..., 1.00), where λ = 0 corresponds to the unconstrained case. Both groups
are consistent, with optimal λ approximately 0.1. Left: fc curve averaged over all 38
subjects in each group for β = (0.05, 0.1, . . . , 4.0) using 3 estimates for Ji,j , namely the
constrained pseudolikelihood (CPL) with λ = 0.1, the unconstrained pseudolikelihood
(PL), as well as simply using the structural connectome (SC) for Ji,j . Middle: fc curve
of the CPL case with standard error (SE) ribbon describing inter-subject variation

Group-averaged f1(λ) and f2(λ) are shown in Fig. 1. To determine an optimal
λ, a min-max optimization is used: Dr = arg min

λ
(fr(λ), r = (1, 2)) and λ∗ =

arg max
Dr

(min
λ

(fr(λ), r = (1, 2)), corresponding to the intersection point between

monotonically increasing and monotonically decreasing functions. We note that
f1(λ) is not strictly monotonic due to the data point at λ = 0; however, the con-
dition holds with that exception. We generate an fc curve for each subject using
3 methods of determining the coupling interactions Ji.j : (1) our constrained
pseudolikelihood estimation (CPL); (2) unconstrained pseudolikelihood estima-
tion (PL); and (3) using the structural connectome as the coupling interaction
(unsigned interactions). Shown in Fig. 1, fc averaged over all subjects using the
constrained model peaks at β ≈ 1 and results in r > 0.8 at the maximum for both
groups, while the other two are much lower. The improvement demonstrated by
our method over the unconstrained estimate warrants further investigation into
the effect coupling scale and time-series sample size may have on the result. For
the control group, we show the similarity between group-averaged observed and
simulated functional connectomes, and the coupling interaction and structural
connectomes in Fig. 2, with correlation r > 0.9 for both comparisons.
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Fig. 2. Control group-averaged plots: Structural connectome in the top left, and cou-
pling interaction network in the bottom left with Pearson correlation r(|J |, SC) =
0.9493, the observed functional connectome in the top right and the simulated func-
tional connectome using our method (for optimal β, λ) in the bottom right with Pearson
correlation r = 0.9626

One previous study using this data set computed standard graph theoretic
metrics on the structural and functional networks. They found that carrier and
control groups did not differ in measures of efficiency (global/local) or nodal cen-
trality when analyzing the DTI or fMRI-derived networks separately [9]. There-
fore, to investigate the significance of our estimated networks, we first compute
the percent of positive and negative edges for each ROI in the signed rs-SC for
each subject (control group), defined as p+c and p−

c for each ROI. For example, if
an ROI has 45 positive edges and 34 negative edges, then p+c = 45

79 and p−
c = 34

79
ROIs with the 10 highest group-mean p+c and p−

c are shown in Fig. 3, the lat-
ter of which includes the anterior and rostral cingulate gyrus, caudate nucleus as
well as the left thalamus. These are known regions with strong neural inhibitory
influences on other ROIs. In particular, prefrontal cortical regions are strongly
associated with cognitive control and response inhibition [2,8,10]. Sub-cortical
structures including the caudate nuclei and thalamus also provide inhibitory
control over motor functions through the cortico-basal ganglia-thalamo-cortical
loop [13]. The correspondence between known inhibitory hubs and ROIs with
higher incidence of negative interactions provides support for the insight our
novel structure-function modeling may yield into the E-I balance.

We then define p+e4 similar to the control group and examine group differences
between p+e4 and p+c using a 2-sample T-test at the ROI-level, followed by FDR
for multiple comparison correction (q = 0.1). This yielded 5 ROIs (shown in
Fig. 3) with significant group differences. The left rostral anterior cingulate, left
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Fig. 3. Anatomical Nodes: Left: 10 largest group-mean p+
c (orange) and p−

c (green).
Right: ROIs with significantly higher p+

e4 as compared to p+
c are the rostral anterior

cingulate (p = 2.598e−3), parahippocampal (p = 7.215e−4), and pars triangularis
(p = 1.833e−3) regions in the left hemisphere, as well as the caudal anterior cingulate
(p = 9.16e−4) and middle temporal (p = 5.359e−4) regions in the right hemisphere.
(Color figure online)

Fig. 4. Line Plots: Group-mean p+
e4 and p+

c for each ROI, with ribbons for standard
error (SE). Bar Plot: Difference between p+

e4 and p+
c . Green and Orange squares repre-

sent the 10 ROIs with the largest group-mean p+
c and p−

c . Blue squares represent ROIs
with significant group difference between p+

e4 and p+
c . Most ROIs in the APOE-e4 group

have increased positive interactions as compared to the control group. Also, 3
5

of the
significant ROIs have higher p−

c (rostral anterior cingulate, and the parahippocampal
region in the left hemisphere and caudal anterior cingulate in the right hemisphere).
(Color figure online)
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parahippocampal, and right caudal anterior cingulate regions–are also among top
p−

c . Regions exhibiting the largest [p+e4−p+c ] as shown in Fig. 4 tend to have fewer
positive interactions in total, suggesting the presence of a shift from negative
to positive interactions. Significant group differences were identified in regions
of the anterior cingulate gyrus, middle temporal gyrus, inferior frontal gyrus
and parahippocampal region. Moreover, white matter volume changes linked to
APOE e4 [5] could also imply an increased risk for hyperexcitation, specifically
in ROIs we identified after FDR correction (e.g. anterior cingulate).

5 Conclusion

We have presented here a method for estimating the positive and negative inter-
actions between brain regions by creating a new connectome, the signed rs-SC,
that embeds functional data onto a given structure. The resulting networks were
validated on a sample of APOE-e4 carriers and non-carriers. When comparing
the networks of the two groups, our approach identified a global shift in the E-I
balance of the APOE e4 signed rs-SC as compared to the control group, thus
providing the first connectomics-based support for the hyperexcitation hypothe-
sis of AD. Future work would involve a deeper investigation into the E-I balance,
including subjects with MCI and mild AD Dementia.
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