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Abstract
Alternating direction method of multipliers
(ADMM) is a popular optimization tool for the
composite and constrained problems in machine
learning. However, in many machine learning
problems such as black-box attacks and bandit
feedback, ADMM could fail because the explicit
gradients of these problems are difficult or infeasi-
ble to obtain. Zeroth-order (gradient-free) methods
can effectively solve these problems due to that
the objective function values are only required in
the optimization. Recently, though there exist a
few zeroth-order ADMM methods, they build on
the convexity of objective function. Clearly, these
existing zeroth-order methods are limited in many
applications. In the paper, thus, we propose a class
of fast zeroth-order stochastic ADMM methods
(i.e., ZO-SVRG-ADMM and ZO-SAGA-ADMM)
for solving nonconvex problems with multiple
nonsmooth penalties, based on the coordinate
smoothing gradient estimator. Moreover, we prove
that both the ZO-SVRG-ADMM and ZO-SAGA-
ADMM have convergence rate of O(1/T ), where
T denotes the number of iterations. In particular,
our methods not only reach the best convergence
rate O(1/T ) for the nonconvex optimization, but
also are able to effectively solve many complex
machine learning problems with multiple regular-
ized penalties and constraints. Finally, we conduct
the experiments of black-box binary classification
and structured adversarial attack on black-box
deep neural network to validate the efficiency of
our algorithms.

1 Introduction
Alternating direction method of multipliers (ADMM [Gabay
and Mercier, 1976; Boyd et al., 2011]) is a popular optimiza-
tion tool for solving the composite and constrained problems
in machine learning. In particular, ADMM can efficiently op-
timize some problems with complicated structure regulariza-
tion such as the graph-guided fused lasso [Kim et al., 2009],
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which are too complicated for the other popular optimiza-
tion methods such as proximal gradient methods [Beck and
Teboulle, 2009]. Thus, ADMM has been widely studied in
recent years [Boyd et al., 2011]. For the large-scale optimiza-
tion, the stochastic ADMM method [Ouyang et al., 2013] has
been proposed. Due to variances of the stochastic gradient,
however, these methods suffer from a slow convergence rate.
To speedup the convergence, recently, some faster stochas-
tic ADMM methods [Suzuki, 2014; Zheng and Kwok, 2016]
have been proposed by using the variance reduced (VR) tech-
niques such as the SVRG [Johnson and Zhang, 2013]. In
fact, ADMM is also highly successful in solving various non-
convex problems such as tensor decomposition [Jiang et al.,
2019] and learning neural networks [Taylor et al., 2016].
Thus, some fast nonconvex stochastic ADMM methods have
been developed in [Huang et al., 2016].

Currently, most of the ADMM methods need to compute
gradients of the loss functions over each iteration. However,
in many machine learning problems, the explicit expression
of gradient for objective function is difficult or infeasible to
obtain. For example, in black-box situations, only prediction
results (i.e., function values) are provided [Chen et al., 2017;
Liu et al., 2018b]. In bandit settings [Agarwal et al., 2010],
the player only receives partial feedback in terms of loss
function values, so it is impossible to obtain expressive gra-
dient of the loss function. Clearly, the classic optimiza-
tion methods, based on the first-order gradient or second-
order information, are not competent to these problems.
Thus, zeroth-order optimization methods [Duchi et al., 2015;
Nesterov and Spokoiny, 2017] are developed by only using
the function values in the optimization.

In the paper, we focus on using the zeroth-order methods
to solve the following nonconvex nonsmooth problem:

min
x,{yj}kj=1

F (x, y[k]) =:
1

n

n∑
i=1

fi(x) +
k∑
j=1

ψj(yj) (1)

s.t. Ax+
k∑
j=1

Bjyj = c,

where A ∈ Rp×d, Bj ∈ Rp×q for all j ∈ [k], k ≥ 1,
f(x) = 1

n

∑n
i=1 fi(x) : Rd → R is a nonconvex and smooth

function, and each ψj(yj) : Rq → R is a convex and non-
smooth function. In machine learning, function f(x) can be



Table 1: Convergence properties comparison of the zeroth-order ADMM algorithms and other ones. C, NC, S, NS and mNS are the abbre-
viations of convex, non-convex, smooth, non-smooth and the sum of multiple non-smooth functions, respectively. T is the whole iteration
number. Gaussian Smoothing Gradient Estimator (GauSGE), Uniform Smoothing Gradient Estimator (UniSGE) and Coordinate Smoothing
Gradient Estimator (CooSGE).

Algorithm Reference Gradient Estimator Problem Convergence Rate
ZOO-ADMM [Liu et al., 2018a] GauSGE C(S) + C(NS) O(

√
1/T )

ZO-GADM [Gao et al., 2018] UniSGE C(S) + C(NS) O(
√

1/T )

RSPGF [Ghadimi et al., 2016] GauSGE NC(S) + C(NS) O(
√

1/T )
ZO-ProxSVRG [Huang et al., 2019] CooSGE NC(S) + C(NS) O(1/T )ZO-ProxSAGA

ZO-SVRG-ADMM Ours CooSGE NC(S) + C(mNS) O(1/T )ZO-SAGA-ADMM

used for the empirical loss,
∑k
j=1 ψj(yj) for multiple struc-

ture penalties (e.g., sparse + group sparse), and the constraint
for encoding the structure pattern of model parameters such
as graph structure. Due to the flexibility in splitting the objec-
tive function into loss f(x) and each penalty ψj(yj), ADMM
is an efficient method to solve the above constricted problem.
However, in the problem (1), we only access the objective
values rather than the explicit function F (x, y[k]), thus the
classic ADMM methods are unsuitable for this problem.

Recently, [Gao et al., 2018; Liu et al., 2018a] proposed
the zeroth-order stochastic ADMM methods, which only use
the objective values to optimize. However, these zeroth-order
ADMM-based methods build on the convexity of objective
function. Clearly, these methods are limited in many applica-
tions such as adversarial attack on black-box deep neural net-
work (DNN). Due to that the problem (1) includes multiple
nonsmooth regularization functions and constraint, the ex-
isting nonconvex zeroth-order algorithms [Liu et al., 2018b;
Ghadimi et al., 2016; Huang et al., 2019] are not suitable for
this problem.

In the paper, thus, we propose a class of fast zeroth-order
stochastic ADMM methods (i.e., ZO-SVRG-ADMM and
ZO-SAGA-ADMM) to solve the problem (1) based on the
coordinate smoothing gradient estimator [Liu et al., 2018b].
In particular, the ZO-SVRG-ADMM and ZO-SAGA-ADMM
methods build on the SVRG [Johnson and Zhang, 2013] and
SAGA [Defazio et al., 2014], respectively. Moreover, we
study the convergence properties of the proposed methods.
Table 1 shows the convergence properties of the proposed
methods and other related ones.

1.1 Challenges and Contributions
Although both SVRG and SAGA show good performances
in the first-order and second-order methods, applying these
techniques to the nonconvex zeroth-order ADMM method is
not trivial. There exists at least two main challenges:

• Due to failure of the Fejér monotonicity of iteration, the
convergence analysis of the nonconvex ADMM is gen-
erally quite difficult [Wang et al., 2015]. With using the
inexact zeroth-order estimated gradient, this difficulty
becomes greater in the nonconvex zeroth-order ADMM
methods.

• To guarantee convergence of our zeroth-order ADMM
methods, we need to design a new effective Lyapunov
function, which can not follow the existing nonconvex

(stochastic) ADMM methods [Jiang et al., 2019; Huang
et al., 2016].

Thus, we carefully establish the Lyapunov functions in the
following theoretical analysis to ensure convergence of the
proposed methods. In summary, our major contributions are
given below:

1) We propose a class of fast zeroth-order stochastic
ADMM methods (i.e., ZO-SVRG-ADMM and ZO-
SAGA-ADMM) to solve the problem (1).

2) We prove that both the ZO-SVRG-ADMM and ZO-
SAGA-ADMM have convergence rate of O( 1

T ) for non-
convex nonsmooth optimization. In particular, our meth-
ods not only reach the existing best convergence rate
O( 1

T ) for the nonconvex optimization, but also are able
to effectively solve many machine learning problems
with multiple complex regularized penalties.

3) Extensive experiments conducted on black-box classi-
fication and structured adversarial attack on black-box
DNNs validate efficiency of the proposed algorithms.

2 Related Works
Zeroth-order (gradient-free) optimization is a powerful op-
timization tool for solving many machine learning prob-
lems, where the gradient of objective function is not avail-
able or computationally prohibitive. Recently, the zeroth-
order optimization methods are widely applied and stud-
ied. For example, zeroth-order optimization methods have
been applied to bandit feedback analysis [Agarwal et al.,
2010] and black-box attacks on DNNs [Chen et al., 2017;
Liu et al., 2018b]. [Nesterov and Spokoiny, 2017] have pro-
posed several random zeroth-order methods by using Gaus-
sian smoothing gradient estimator. To deal with the nons-
mooth regularization, [Gao et al., 2018; Liu et al., 2018a]
have proposed the zeroth-order online/stochastic ADMM-
based methods.

So far, the above algorithms mainly build on the con-
vexity of problems. In fact, the zeroth-order methods are
also highly successful in solving various nonconvex prob-
lems such as adversarial attack to black-box DNNs [Liu et
al., 2018b]. Thus, [Ghadimi and Lan, 2013; Liu et al., 2018b;
Gu et al., 2018] have begun to study the zeroth-order stochas-
tic methods for the nonconvex optimization. To deal with the
nonsmooth regularization, [Ghadimi et al., 2016; Huang et
al., 2019] have proposed some non-convex zeroth-order prox-
imal stochastic gradient methods. However, these methods



still are not well competent to some complex machine learn-
ing problems such as a task of structured adversarial attack
to the black-box DNNs, which is described in the following
experiment.
2.1 Notations
Let y[k] = {y1, · · · , yk} and y[j:k] = {yj , · · · , yk} for
j ∈ [k]. Given a positive definite matrix G, ‖x‖2G = xTGx;
σmax(G) and σmin(G) denote the largest and smallest eigen-
values of G, respectively, and κG = σmax(G)

σmin(G) . σAmax and σAmin

denote the largest and smallest eigenvalues of matrix ATA.

3 Preliminaries
In the section, we begin with restating a standard ε-
approximate stationary point of the problem (1), as in [Jiang
et al., 2019].
Definition 1. Given ε > 0, the point (x∗, y∗[k], λ

∗) is said to
be an ε-approximate stationary point of the problems (1), if it
holds that

E
[
dist(0, ∂L(x∗, y∗[k], λ

∗))2
]
≤ ε, (2)

where L(x, y[k], λ) = f(x) +
∑k
j=1 ψj(yj) − 〈λ,Ax +∑k

j=1Bjyj − c〉,

∂L(x, y[k], λ) =


∇xL(x, y[k], λ)
∂y1L(x, y[k], λ)

· · ·
∂ykL(x, y[k], λ)

−Ax−
∑k
j=1Bjyj + c

 ,
dist(0, ∂L) = infL′∈∂L ‖0− L′‖.

Next, we make some mild assumptions regarding problem
(1) as follows:
Assumption 1. Each function fi(x) is L-smooth for ∀i ∈
{1, 2, · · · , n} such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd,

which is equivalent to

fi(x) ≤ fi(y) +∇fi(y)T (x− y) +
L

2
‖x− y‖2.

Assumption 2. Gradient of each function fi(x) is bounded,
i.e., there exists a constant δ > 0 such that for all x, it follows
that ‖∇fi(x)‖2 ≤ δ2.
Assumption 3. f(x) and ψj(yj) for all j ∈ [k] are all lower
bounded, and denote f∗ = infx f(x) and ψ∗j = infy ψj(y)
for j ∈ [k].
Assumption 4. A is a full row or column rank matrix.

Assumption 1 has been commonly used in the convergence
analysis of nonconvex algorithms [Ghadimi et al., 2016]. As-
sumption 2 is widely used for stochastic gradient-based and
ADMM-type methods [Boyd et al., 2011]. Assumptions 3
and 4 are usually used in the convergence analysis of ADMM
methods [Jiang et al., 2019; Huang et al., 2016]. Without loss
of generality, we will use the full column rank of matrix A in
the rest of this paper.

4 Fast Zeroth-Order Stochastic ADMMs
In this section, we propose a class of zeroth-order stochastic
ADMM methods to solve the problem (1). First, we define
an augmented Lagrangian function of the problem (1) as fol-
lows:

Lρ(x, y[k], λ) = f(x) +
k∑
j=1

ψj(yj)− 〈λ,Ax+
k∑
j=1

Bjyj − c〉

+
ρ

2
‖Ax+

k∑
j=1

Bjyj − c‖2, (3)

where λ ∈ Rp and ρ > 0 denotes the dual variable and
penalty parameter, respectively.

In the problem (1), the explicit expression of objective
function fi(x) is not available, and only the function value
of fi(x) is available. To avoid computing explicit gradient,
thus, we use the coordinate smoothing gradient estimator [Liu
et al., 2018b] to estimate gradients: for i ∈ [n],

∇̂fi(x) =

d∑
j=1

1

2µj

(
fi(x+ µjej)− fi(x− µjej)

)
ej , (4)

where µj is a coordinate-wise smoothing parameter, and ej
is a standard basis vector with 1 at its j-th coordinate, and 0
otherwise.

Algorithm 1 Nonconvex ZO-SVRG-ADMM Algorithm

1: Input: b, m, T , S = [T/m], η > 0 and ρ > 0;
2: Initialize: x10, y0,1j for j ∈ [k] and λ10;
3: for s = 1, 2, · · · , S do
4: x̃s+1 = xs+1

0 , ∇̂f(x̃s) = 1
n

∑n
i=1 ∇̂fi(x̃s);

5: for t = 0, 1, · · · ,m− 1 do
6: Uniformly randomly pick a mini-batch It (with re-

placement) from {1, 2, · · · , n}, and |It| = b ;
7: Using (4) to estimate stochastic gradient ĝst =

∇̂fIt(xst )− ∇̂fIt(x̃s) + ∇̂f(x̃s);
8: ys,t+1

j = arg minyj
{
Lρ(xst , y

s,t+1
[j−1] , yj , y

s,t
[j+1:k], λ

s
t )+

1
2‖yj − y

s,t
j ‖2Hj

}
, for all j ∈ [k];

9: xst+1 = arg minx L̂ρ
(
x, ys,t+1

[k] , λst , ĝ
s
t

)
;

10: λst+1 = λst − ρ(Axst+1 +
∑k
j=1Bjy

s,t+1
j − c);

11: end for
12: xs+1

0 = xsm, ys+1,0
j = ys,mj for j ∈ [k], λs+1

0 = λsm;
13: end for
14: Output: Chosen uniformly from {(xst , y

s,t
[k] , λ

s
t )
m
t=1}Ss=1.

Based on the above estimated gradients, we propose a
zeroth-order ADMM (ZO-ADMM) method to solve the prob-
lem (1) by executing the following iterations, for t=1, 2, · · ·

yt+1
j = arg min

yj

{
Lρ(xt, yt+1

[j−1], yj , y
t
[j+1:k], λt)

+
1

2
‖yj − ytj‖2Hj

}
, ∀j ∈ [k]

xt+1 = arg min
x
L̂ρ(x, yt+1, λt, ∇̂f(x))

λt+1 = λt − ρ(Axt+1 +Byt+1 − c),

(5)



where the term 1
2‖yj − y

t
j‖2Hj

with Hj � 0 to linearize the

term ‖Ax+
∑k
j=1Bjyj−c‖2. Here, due to using the inexact

zeroth-order gradient to update x, we define an approximate
function over xt as follows:

L̂ρ
(
x, yt+1

[k] , λt, ∇̂f(x)
)

=f(xt)+∇̂f(x)T (x− xt)

+
1

2η
‖x−xt‖2G+

k∑
j=1

ψj(y
t+1
j )−λTt (Ax+

k∑
j=1

Bjy
t+1
j −c)

+
ρ

2
‖Ax+

k∑
j=1

Bjy
t+1
j −c‖2, (6)

where G � 0, ∇̂f(x) is the zeroth-order gradient and η > 0
is a step size. Considering the matrix ATA is large, set G =
rI − ρηATA � I with r > ρησmax(ATA) + 1 to linearize
the term ‖Ax+

∑k
j=1Bjy

t+1
j − c‖2.

Algorithm 2 Nonconvex ZO-SAGA-ADMM Algorithm

1: Input: b, T , η > 0 and ρ > 0;
2: Initialize: z0i = x0 for i ∈ {1, 2, · · · , n}, φ̂0 =

1
n

∑n
i=1∇fi(z0i ), y0j for j ∈ [k] and λ0;

3: for t = 0, 1, · · · , T − 1 do
4: Uniformly randomly pick a mini-batch It (with re-

placement) from {1, 2, · · · , n}, and |It| = b ;
5: Using (4) to estimate stochastic gradient ĝt =

1
b

∑
it∈It

(
∇fit(xt) − ∇fit(ztit)

)
+ φ̂t with φ̂t =

1
n

∑n
i=1∇fi(zti);

6: yt+1
j = arg minyj

{
Lρ(xt, yt+1

[j−1], yj , y
t
[j+1:k], λt) +

1
2‖yj − y

t
j‖2Hj

}
, for all j ∈ [k];

7: xt+1 = arg minx L̂ρ
(
x, yt+1

[k] , λt, ĝt
)
;

8: λt+1 = λt − ρ(Axt+1 +
∑k
j=1Bjy

t+1
j − c);

9: zt+1
it

= xt for i ∈ It and zt+1
i = zti for i 6∈ It;

10: φ̂t+1 = φ̂t − 1
n

∑
it∈It

(
∇fit(ztit)−∇fit(z

t+1
it

)
)
;

11: end for
12: Output: Chosen uniformly from {xt, yt[k], λt}

T
t=1.

In the problem (1), not only the noisy gradient of fi(x) is
not available, but also the sample size n is very large. Thus,
we propose fast ZO-SVRG-ADMM and ZO-SAGA-ADMM
to solve the problem (1), based on the SVRG and SAGA,
respectively.

Algorithm 1 shows the algorithmic framework of ZO-
SVRG-ADMM. In Algorithm 1, we use the estimated
stochastic gradient ĝst = ∇̂fIt(xst ) − ∇̂fIt(x̃s) + ∇̂f(x̃s)

with ∇̂fIt(xst ) = 1
b

∑
it∈It ∇̂fit(x

s
t ). We have EIt [ĝst ] =

∇̂f(xst ) 6= ∇f(xst ), i.e., this stochastic gradient is a biased
estimate of the true full gradient. Although the SVRG has
shown a great promise, it relies upon the assumption that the
stochastic gradient is an unbiased estimate of true full gra-
dient. Thus, adapting the similar ideas of SVRG to zeroth-
order ADMM optimization is not a trivial task. To handle
this challenge, we choose the appropriate step size η, penalty

parameter ρ and smoothing parameter µ to guarantee the con-
vergence of our algorithms, which will be discussed in the
following convergence analysis.

Algorithm 2 shows the algorithmic framework of ZO-
SAGA-ADMM. In Algorithm 2, we use the estimated
stochastic gradient ĝt = 1

b

∑
it∈It

(
∇̂fit(xt)−∇fit(ztit)

)
+

φ̂t with φ̂t = 1
n

∑n
i=1 ∇̂fi(zti). Similarly, we have EIt [ĝt] =

∇̂f(xt) 6= ∇f(xt).

5 Convergence Analysis
In this section, we will study the convergence properties
of the proposed algorithms (ZO-SVRG-ADMM and ZO-
SAGA-ADMM). For notational simplicity, let

ν1 =
L

4
+

9L2

σAmin

, ν2 =k
(
ρ2σBmaxσ

A
max+ρ2(σBmax)2+σ2

max(H)
)
,

ν3 =6L2+
3σ2

max(G)

η2
, ν4 =

18L2

σAminρ
2

+
3σ2

max(G)

σAminη
2ρ2

.

5.1 Convergence Analysis of ZO-SVRG-ADMM
In this subsection, we analyze convergence properties of the
ZO-SVRG-ADMM.

Given the sequence {(xst , y
s,t
[k] , λ

s
t )
m
t=1}Ss=1 is generated

from Algorithm 1, we define a Lyapunov function:

Rst = E
[
Lρ(xst , y

s,t
[k] , λ

s
t ) + (

3σ2
max(G)

σA
minη

2ρ
+ 9L2

σA
minρ

)‖xst − xst−1‖2

+
18L2d

σAminρb
‖xst−1 − x̃s‖2 + ct‖xst − x̃s‖2

]
,

where the positive sequence {ct} satisfies

ct =


36L2d

σAminρb
+

2Ld

b
+ (1 + β)ct+1, 1 ≤ t ≤ m,

0, t ≥ m+ 1.

In addition, we definite a useful variable θst = E
[
‖xst+1 −

xst‖2 + ‖xst − xst−1‖2 + d
b (‖xst − x̃s‖2 + ‖xst−1 − x̃s‖2) +∑k

j=1 ‖y
s,t
j − y

s,t+1
j ‖2

]
.

Theorem 1. Suppose the sequence {(xst , y
s,t
[k] , λ

s
t )
m
t=1}Ss=1

is generated from Algorithm 1. Let m = [n
1
3 ], b =

[d1−ln
2
3 ], l ∈ {0, 12 , 1}, η = ασmin(G)

9dlL
(0 < α ≤ 1) and

ρ = 6
√
71κGd

lL
σA
minα

, then we have

min
s,t

E
[
dist(0, ∂L(xst , y

s,t
[k] , λ

s
t ))

2
]
≤ O(

d2l

T
) +O(d2+2lµ2),

where γ = min(σHmin, χt, L) with χt ≥ 3
√
71κGd

lL
2α , νmax =

max(ν2, ν3, ν4) and R∗ is a lower bound of function Rst .
It follows that suppose the smoothing parameter µ and the
whole iteration number T = mS satisfy

1

µ2
≥ 2d2+2l

ε
max

{
ν1ν2 +

3L2

2
, ν1ν3 +

9L2

σAminρ
2
, ν1ν4

}
,

T =
4νmax(R1

0 −R∗)
εγ

,

then (xs
∗

t∗ , y
s∗,t∗

[k] , λs
∗

t∗ ) is an ε-approximate stationary point of
the problems (1), where (t∗, s∗) = arg mint,s θ

s
t .



Remark 1. Theorem 1 shows that given m = n
1
3 , b =

d1−ln
2
3 , l ∈ {0, 12 , 1}, η = ασmin(G)

9dlL
(0 < α ≤ 1),

ρ = 6
√
71κGd

lL
σA
minα

and µ = O( 1
d
√
T

), the ZO-SVRG-ADMM has

convergence rate of O(d
2l

T ). Specifically, when 1 ≤ d < n
1
3 ,

given l = 0, the ZO-SVRG-ADMM has convergence rate of
O( 1

T ); when n
1
3 ≤ d < n

2
3 , given l = 1

2 , it has conver-

gence rate of O(
√
d
T ); when n

2
3 ≤ d, given l = 1, it has

convergence rate of O( dT ). Thus, the ZO-SVRG-ADMM has
the optimal function query complexity of O(dn + d2n

2
3 ε−1)

for finding an ε-approximate local solution.

5.2 Convergence Analysis of ZO-SAGA-ADMM
In this subsection, we provide the convergence analysis of the
ZO-SAGA-ADMM.

Given the sequence {xt, yt[k], λt}
T
t=1 is generated from Al-

gorithm 2, we define a Lyapunov function

Ωt = E
[
Lρ(xt, yt[k], λt) + (

3σ2
max(G)

σA
minρη

2 + 9L2

σA
minρ

)‖xt − xt−1‖2

+
18L2d

σAminρb

1

n

n∑
i=1

‖xt−1 − zt−1i ‖2 + ct
1

n

n∑
i=1

‖xt − zti‖2
]
,

where the positive sequence {ct} satisfies

ct =


36L2d

σAminρb
+

2Ld

b
+ (1− p)(1 + β)ct+1, 0 ≤ t ≤ T − 1,

0, t ≥ T.

In addition, we definite a useful variable θt = E
[
‖xt+1−

xt‖2+‖xt−xt−1‖2+ d
bn

∑n
i=1(‖xt−zti‖2+‖xt−1−z

t−1
i ‖2)+∑k

j=1 ‖ytj−y
t+1
j ‖2.

Theorem 2. Suppose the sequence {xt, yt[k], λt}
T
t=1 is gen-

erated from Algorithm 2. Let b = n
2
3 d

1−l
3 , l ∈ {0, 12 , 1},

η = ασmin(G)
33dlL

(0 < α ≤ 1) and ρ = 6
√
791κGd

lL
σA
minα

then we
have

min
1≤t≤T

E
[
dist(0, ∂L(xt, y

t
[k], λt))

2
]
≤ O(

d2l

T
) +O(d2+2lµ2),

where γ = min(σHmin, χt, L) with χt ≥ 3
√
791κGd

lL
2α , νmax =

max(ν2, ν3, ν4) and Ω∗ is a lower bound of function Ωt. It
follows that suppose the parameters µ and T satisfy

1

µ2
≥ 2d2+2l

ε
max

{
ν1ν2 +

3L2

2
, ν1ν3 +

9L2

σAminρ
2
, ν1ν4

}
,

T =
4κmax

εγ
(Ω0 − Ω∗),

then (xt∗ , y
t∗

[k], λt∗) is an ε-approximate stationary point of
the problems (1), where t∗ = arg min1≤t≤T θt.

Remark 2. Theorem 2 shows that b = n
2
3 d

1−l
3 , l ∈

{0, 12 , 1}, η = ασmin(G)
33dlL

(0 < α ≤ 1), ρ = 6
√
791κGd

lL
σA
minα

and µ = O( 1
d
√
T

), the ZO-SAGA-ADMM has the O(d
2l

T ) of

convergence rate. Specifically, when 1 ≤ d < n, given l = 0,
the ZO-SAGA-ADMM has convergence rate of O( 1

T ); when
n ≤ d < n2, given l = 1

2 , it has convergence rate of O( dT );
when n2 ≤ d, given l = 1, it has convergence rate of O(d

2

T ).
Thus, the ZO-SAGA-ADMM has the optimal function query
complexity ofO(dn+d

4
3n

2
3 ε−1) for finding an ε-approximate

local solution.

6 Experiments
In this section, we compare our algorithms (ZO-SVRG-
ADMM, ZO-SAGA-ADMM) with the ZO-ProxSVRG, ZO-
ProxSAGA [Huang et al., 2019], the deterministic zeroth-
order ADMM (ZO-ADMM), and zeroth-order stochastic
ADMM (ZO-SGD-ADMM) without variance reduction on
two applications: 1) robust black-box binary classification,
and 2) structured adversarial attacks on black-box DNNs.

Table 2: Real Datasets for Black-Box Binary Classification
datasets #samples #features #classes
20news 16,242 100 2

a9a 32,561 123 2
w8a 64,700 300 2

covtype.binary 581,012 54 2

6.1 Robust Black-Box Binary Classification
In this subsection, we focus on a robust black-box binary
classification task with graph-guided fused lasso. Given a
set of training samples (ai, li)

n
i=1, where ai ∈ Rd and li ∈

{−1,+1}, we find the optimal parameter x ∈ Rd by solving
the problem:

min
x∈Rd

1

n

n∑
i=1

fi(x) + τ1‖x‖1 + τ2‖Ĝx‖1, (7)

where fi(x) is the black-box loss function, that only re-
turns the function value given an input. Here, we specify
the loss function fi(x) = σ2

2

(
1 − exp(− (li−aTi x)

2

σ2 )
)
, which

is the nonconvex robust correntropy induced loss [He et al.,
2011]. Matrix Ĝ decodes the sparsity pattern of graph ob-
tained by sparse inverse covariance selection, as in [Ouyang
et al., 2013]. In the experiment, we give mini-batch size
b = 20, smoothing parameter µ = 1

d
√
t

and penalty parame-
ters τ1 = τ2 = 10−5.

In the experiment, we use some public real datasets1,
which are summarized in Table 2. For each dataset, we use
half of the samples as training data and the rest as testing
data. Figure 1 shows that the objective values of our algo-
rithms faster decrease than the other algorithms, as the CPU
time increases. In particular, our algorithms show better per-
formances than the zeroth-order proximal algorithms. It is
relatively difficult that these zeroth-order proximal methods
deal with the nonsmooth penalties in the problem (7). Thus,
we have to use some iterative methods (such as the classic
ADMM method) to solve the proximal operator in these prox-
imal methods.

120news is from https://cs.nyu.edu/∼roweis/data.html; others are
from www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

https://cs.nyu.edu/~roweis/data.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Objective value gaps versus CPU time on benchmark datasets.
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Figure 2: Group-sparsity perturbations are learned from MNIST and CIFAR-10 datasets. Blue and red labels denote the initial label, and the
label after attack, respectively.

6.2 Structured Attacks on Black-Box DNNs
In this subsection, we use our algorithms to generate adver-
sarial examples to attack the pre-trained DNN models, whose
parameters are hidden from us and only its outputs are acces-
sible. Moreover, we consider an interesting problem: “What
possible structures could adversarial perturbations have to
fool black-box DNNs ?” Thus, we use the zeroth-order algo-
rithms to find an universal structured adversarial perturbation
x ∈ Rd that could fool the samples {ai ∈ Rd, li ∈ N}ni=1,
which can be regarded as the following problem:

min
x∈Rd

1

n

n∑
i=1

max
{
Fli(ai + x)−max

j 6=li
Fj(ai + x), 0

}
+ τ1

P∑
p=1

Q∑
q=1

‖xGp,q‖2 + τ2‖x‖22 + τ3h(x), (8)

where F (a) represents the final layer output before softmax
of neural network, and h(x) ensures the validness of created
adversarial examples. Specifically, h(x) = 0 if ai + x ∈
[0, 1]d for all i ∈ [n] and ‖x‖∞ ≤ ε, otherwise h(x) = ∞.
Following [Xu et al., 2018], we use the overlapping lasso to
obtain structured perturbations. Here, the overlapping groups
{Gp,q}, p = 1, · · · , P, q = 1, · · · , Q generate from dividing
an image into sub-groups of pixels.

In the experiment, we use the pre-trained DNN models on
MNIST and CIFAR-10 as the target black-box models, which
can attain 99.4% and 80.8% test accuracy, respectively. For
MNIST, we select 20 samples from a target class and set batch
size b = 4; For CIFAR-10, we select 30 samples and set
b = 5. In the experiment, we set µ = 1

d
√
t
, where d = 28×28

and d = 3×32×32 for MNIST and CIFAR-10, respectively.
At the same time, we set the parameters ε = 0.4, τ1 = 1,
τ2 = 2 and τ3 = 1. For both datasets, the kernel size for
overlapping group lasso is set to 3× 3 and the stride is one.

Figure 3 shows that attack losses (i.e. the first term of the
problem (8)) of our methods faster decrease than the other
methods, as the number of iteration increases. Figure 2 shows
that our algorithms can learn some structure perturbations,
and can successfully attack the corresponding DNNs.
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Figure 3: Attack loss on adversarial attacks black-box DNNs.

7 Conclusions
In the paper, we proposed fast ZO-SVRG-ADMM and ZO-
SAGA-ADMM methods based on the coordinate smoothing
gradient estimator, which only uses the objective function
values to optimize. Moreover, we prove that the proposed
methods have a convergence rate of O( 1

T ). In particular, our
methods not only reach the existing best convergence rate
O( 1

T ) for the nonconvex optimization, but also are able to
effectively solve many machine learning problems with the
complex nonsmooth regularizations.
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