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ABSTRACT KEYWORDS

Semi-Supervised Support Vector Machine (S*VM) is one of the most
popular methods for semi-supervised learning. To avoid the trivial
solution of classifying all the unlabeled examples to a same class,
balancing constraint is often used with S*VM (denoted as BCS>*VM).
Recently, a novel incremental learning algorithm (IL-S*VM) based
on the path following technique was proposed to significantly scale
up S*VM. However, the dynamic relationship of balancing con-
straint with previous labeled and unlabeled samples impede their
incremental method for handling BCS*VM. To fill this gap, in this
paper, we propose a new incremental S*VM algorithm (IL-BCS3VM)
based on IL-S3VM which can effectively handle the balancing con-
straint and directly update the solution of BCS*VM. Specifically,
to handle the dynamic relationship of balancing constraint with
previous labeled and unlabeled samples, we design two unique
procedures which can respectively eliminate and add the balanc-
ing constraint into S*VM. More importantly, we provide the finite
convergence analysis for our IL-BCS3VM algorithm. Experimental
results on a variety of benchmark datasets not only confirm the
finite convergence of IL-BCS*VM, but also show a huge reduction
of computational time compared with existing batch and incremen-
tal learning algorithms, while retaining the similar generalization
performance.
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1 INTRODUCTION

In many real-world emerging applications, such as image retrieval
[20], gene profiling [19] and cancer classification [23], it is usually
quite difficult to obtain labeled samples, as the labelling processes
are tedious and expensive. Thus labeled samples only account for a
small percentage in most datasets, which make it difficult for super-
vised learning methods to achieve satisfied performance. Therefore
semi-supervised support vector machine (S*VM) [13] was proposed
as a powerful model to improve the generalization accuracy of
SVMs using plentiful unlabeled data. Given the training dataset
consisted with a labeled dataset L = {(x1,y1),- -, (x7,y;)} and an
unlabeled set U = {xj,1,- -, X4y}, where x; € R", y; € {+1,-1},
i=1,---,1 1is the number of labeled data and u is the number
of unlabeled data. Considering the decision function of SVMs is
f(x) = (w, p(x)) + bl, S*VM aims to learn a maximum margin over
labeled and unlabeled samples as follows.

1 I+u
min 2 (w,) +C ) i) + € Y hlfG) (1)
’ i=1 i=l+1

where h;(-) = max(0, ¢ — -) is the hinge loss, h;(|]) is the symmetric
hinge loss, C and C* are predefined parameters®. S*VM is one of
the most popular methods for semi-supervised learning.

The real-world tasks of SVM often lie in high dimensions with
few labeled samples [1]. It is highly possible to generate an imbal-
anced prediction (i.e., the number of samples classified to one class
is significantly higher than those classified to another class) which
can greatly bring down the generalization performance of S*VM.

1w and b are the parameters of model function, and ¢(-) is a transformation function
from an input space to a high-dimensional reproducing kernel Hilbert space.

2If C* = 0, the Eq. (1) degenerates to the standard SVM optimization problem. For
C* > 0, we use the symmetric hinge loss to penalize the unlabeled data inside the
margin.
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To avoid the trivial solution as discussed above, multiple methods
have been proposed to cure the imbalanced classification problem,
such as resampling technique and the use of balancing constraint.
Specifically, Mitra et al. [15], Chen et al. [16], Valentini [17] and Li
et al. [18] tried to deal with the issue of imbalanced classification by
either adopting under-sampling to select a subset of negative train-
ing examples, over-sampling to generate more positive examples, or
a combination of these two methods. Joachims [10], Chapelle and
Zien [9], Sindhwani and Keerthi [11], Tian et al. [12] and Chapelle
et al. [13] used various balancing constraints, which is a more pop-
ular method for handling the issue of imbalanced classification
compared with other techniques. Specifically, to make the S*VM
models more suitable for imbalanced datasets, Chapelle and Zien [9]
modified these models by introducing a slightly relaxed balancing
constraint (denoted as BCS3VM), i.e. % Zgzll‘ﬂ f(xi) = % 25:1 i,
which aims to ensure that the fraction of positive and negatives
assigned to the unlabeled data should be the same fraction as found
in the labeled data. This paper focuses on the BCS*VM because of
its effectiveness and popularity.

Although BCS?*VM algorithm is an improved version of S*VM
which can effectively avoid the trivial solution of classifying all
the unlabeled examples into a same class, its objective formulation
is still a non-convex optimization problem like S*VM. Fung and
Mangasarian [2], Collobert et al. [1], and Wang et al. [3] applied the
concave-convex procedure (CCCP) to solve the non-convex problem
of S3VM, which also can be an effective method to solve BCS>VM.
However, those methods usually have rather high computational
cost which can hinder the application of S*VM models in large scale
datasets. As pointed by Chapelle and Zien [9], scaling up BCS?VM
is still an open question.

Incremental learning is an important method for processing
large amounts of data using comparatively smaller computing re-
sources [22]. Several incremental learning algorithms have been
proposed for SVMs, such as [4-6]. Specifically, these incremental
algorithms used the path following technique [24, 25] to update the
solutions by maintaing the KKT conditions [26]. Compared with
other techniques for incremental learning, path following technique
is more often adopted due to its efficiency and convergence guaran-
tee. Recently, targeted at the non-convex problem of S3VM, a novel
incremental learning algorithm (IL-S*VM) based on the path follow-
ing technique in the framework of CCCP [7] was proposed, which
can not only solve the non-convex problem but also significantly
reduce the computational complexity of S*VM. Thus inspired by
IL-S3VM, incremental learning also could be an effective method to
scale up BCS*VM. However, the dynamic relationship of balancing
constraint with previous labeled and unlabeled samples impede
their incremental method for handling BCS3VM.

To fill this gap, in this paper, we propose a new incremental
S3VM algorithm with balancing constraints (IL-BCS*VM) based
on IL-S3VM, which can effectively handle the balancing constraint
and directly update the solution of BCS3VM. Specifically, in order
to handle the dynamic relationship of balancing constraint with
previous labeled and unlabeled samples, we design two unique
procedures in our IL-BCS*VM algorithm, which can respectively
eliminate and add the balancing constraint into S3VM, so that the
efficient incremental learning for BCS3*VM can be achieved. What's

more, we provide the finite convergence analysis for IL-BCS>*VM.
Experimental results on a variety of benchmark datasets not only
confirm the finite convergence of IL-BCS3VM, but also show a
huge reduction of computational time compared with existing batch
and incremental learning algorithms, while retaining the similar
generalization performance.

Contributions. The main contributions of this paper are summa-
rized as follows.

(1) We propose a new incremental S>VM learning algorithm with
balancing constraint (IL-BCS*VM) targeted at more realistic
classification problems that often arise in S*VM. To the best
of our knowledge, IL-BCS3VM is the first path following algo-
rithm by overcoming the challenge of the dynamic relationship
of balancing constraint with previous labeled and unlabeled
samples.

(2) Though our IL-BCS*VM can handle a more complicated prob-
lem compared with the one of IL-S*VM, we prove that it con-
verges to a local minimal, and the computational complexity
is still in the same scale with IL-S>VM which is significantly
cheaper than the ones of most existing BCS*VM algorithms.

2 REVISIT OF IL-S°VM

In this section, we briefly revisit the CCCP formulation of IL-S*VM.
After that we introduce the main idea of IL-S*VM algorithm.

2.1 CCCP Formulation of IL-S*VM

According to the theory of CCCP [14], to solve the objective func-
tion (1), we need to reformulate the objective into a summation of
a convex function Jyex(0) and a concave function Jeq.(0), where
0 is the parameters of the model. Because every unlabeled sample
has the possibility of being positive or negative label, the unlabeled
dataset U should be doubled and a new artificial labeled dataset
U = {Cerr1s+1), s Ocppys +1), (g =1, - (X400, — 1D} s
created. Thus, the original formulation Eq. (1) can be transformed
as follows:

1 1+2u
min - (ww) 4 C 3 b fG) + €Y ha(wifx)
’ i=1 i=l+1

ij(9)

1+2u

=C* ) ho(yif(xi)

i=l+1

jcav(e)

During the process of solving Eq. (2), we use y; which is defined
in Eq. (3) to simplify the calculation procedure of the CCCP.
 0Jeav() Cc* if yif(x)<0,i>l+1
Hi =0 Af(x;) o otherwise

Then we can obtain the primal convex inner loop (denoted as CIL)
problem for Eq. (2) based on the CCCP which is skipped here. We



directly show the corresponding dual CIL problem as follows [1]:

. ~
min EaTHa - yTa

o

[+2u (4)
s.t. Z @=0 C,<&<Cii=1--,l+2u

i=1

where H is a positive semidefinite matrix with H;; = K(x;,x;j) =
<¢(x,~), ¢(xj)> forall1 < i,j < I4+2u, K(x;, xj) is the kernel function.
a; = yi(a; — i), C; and C; are defined as follows:

—Ui if y;=+1
C. = pi—C if yi=-1,1<i<]I (5)
pi—C* if y=-1,i>1+1

C—pi if yj=+4+1,1<i<1
if yi=+1i>1+1 6)
Hi if y;=-1

2.2 IL-S°VM

According to the convex optimization theory [8], by introducing
Lagrangian multiplier b’ corresponding to the constraint in Eq. (4),
the dual CIL problem (i.e., Eq. (4)) can be transformed as follows.

1 1+2u
W = min_max ~aTHa - yT§+ b’ Z a; (7
cy<Cc b 2 P

The first-order partial derivative of W leads to the following KKT
conditions.

1+2u
= 2@ =0 ®
1+2u
gidgfz—g:;c?jHij+b’—yi, Vi>1
>0 then a; =C; 0] 9)
=0 then QiS~iSEi M
<0 then @ =C; E

Correspondingly, the extended training dataset L U U can be par-
titioned into three categories as S = {M, E, O}, which is shown in
Eq. (9). B _

We define the additions in L and U as L and Uy respectively.
When a new sample from Ly U Uy joins the original set L U U,
the change of y; could lead to the result that the corresponding
samples violate the KKT-conditions. To handle this situation, Gu et
al. [7] defined a KKT-violating set A>. The fundamental principle
of IL-S3VM is to constantly detect new samples violating the KKT
conditions and add these samples into the KKT-violating set A,
while pushing the samples in A to satisfy the KKT conditions (see
Figure 1 Step 2: IL-S*VM algorithm).

Specifically, to achieve this goal, two main issues need to be
addressed for designing IL-S*VM algorithm [7]:

3The KKT-violating set A is defined as a subset of an union of U and an added sample
(x¢, Ye), such that all the samples violating the KKT conditions are included in A.

(1) Compute the direction of Aa: Set Ay as the changes of the
weights of set A, and set the direction to A4 as dg = Cu —a,
where C~', =G, if y; = +1, otherwise C~’, = C;. Thus we have
Aag = n-dg, where 1 is a parameter with 0 < < 1 to control
the adjustment qualities of a4, and the direction of Aoy with
respect to 1 can be obtained by solving the following linear

system:
1M Hmwm| |dm

where dp,, and dy; refer to the directions of the Ab’ and Aay,
respectively. Furthermore, with the the conclusion as stated
above, the linear relationship between Ag; (Vi € EU O U A)
and 7 can be obtained as follows:

T
1A

d 10
Hapa| %4 (10)

dgl. = ZHijdj+ ZHijdj+db' (ll)
jeA jeM
(2) Compute the maximum adjustment quantity n™®*: The

maximum adjustment quantity n™* of 5 can be calculated by

solving a series of linear inequalities based on three conditions
4 as marked by different arrow lines in Step 2 of IL-S*VM algo-
rithm in Figure 1 (the blue arrow lines show the adjustments
of the sample corresponding to the change of the value of y; in
Eq. (3)).
Based on the two issues discussed above, IL-S*VM algorithm can
be summarized in Algorithm 1.

Algorithm 1IL-S>VM

Input: «,b’,M,E, O,E,g and Ly U ﬁN.
Output: «a,b’,C, C,M,E, and O.

1: while Ly U Uy # 0 do

2. Read a new sample (x¢, y.) from Ly U UN.
3 Remove (xc,yc) from Ly U UN.
4 Initialize @ = 0 and comput C,, C . and gc.
5. Add (x¢, yc) into M, O or A according to gc.
6
7
8
9

while A # 0 do
Compute d, dpr,dg and dg.
Compute the maximal quantity n™%*.
Update @4, @, b’, g, C, C,A M,E,O.
0: end while
11: end while

—_

3 NEW INCREMENTAL $*VM LEARNING
ALGORITHM WITH BALANCING
CONSTRAINT

In this section, we first introduce the principle of our IL-BCS*VM
algorithm, then present the IL-BCS*VM algorithm in detail.

“The three conditions are 1) a sample migrate among the sets M, E, O; 2) the KKT
conditions for one sample in A will be satisfied; 3) the sample in O U E violate the
KKT conditions, i.e. we need to update the values of y; in Eq. (3).
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Figure 1: IL-BCS*VM algorithm. Three steps (i.e,, decremental learning, IL-S*VM and incremental learning respectively) are

involved in IL-BCS3VM.

3.1 Principle of our IL-BCS*VM Algorithm

As discussed before, BCS?VM can effectively avoid imbalanced clas-
sification problems, but it has a high computational complexity
same as S*VM. Thus it is highly desired to design an efficient incre-
mental algorithm for the BCS*VM problem which can reduce the
computational complexity significantly. Inspired by the IL-S*VM
algorithm which is an effective method to scale up S3VM, we also
introduce an incremental learning method to BCS3VM. By overcom-
ing the challenge of dynamic relationships of balancing constraint
with previous labeled and unlabeled samples during incremental
learning process, we propose a new incremental learning algorithm
based on the path following technique for S’VM with balancing
constraint (denoted as IL-BCS3*VM), which can not only effectively
handle the balancing constraint but also significantly improve the
algorithmic efficiency of standard BCS>VM.

To apply the balancing constraint to IL-S3VM, we introduce
a new Lagrangian multiplier a9 corresponding to the balancing
constraint to the original optimization problem of IL-S*VM (i.e., Eq.
(4)). After a series of Lagrangian transformations, we can obtain
the dual CIL problem for IL-BCS*VM as follows [1].

| ~
min EaTHa—yTa

o

1+2u (12)
s.t. Z&,-:o; C, <& <Cii=1,,l+2u

i=0

Note that different from the dual CIL problem for IL-S*VM (i.e., Eq.
(4)), the value of parameter i in Eq. (12) starts from 0, and sample
(x0, yo) is generated from the balancing constraint. The parameters
of virtual sample (xg, yo) are set as follows [1]:

I I+u
R DI CORE I CH NN
i=1 i=l+1

If the Lagrangian multiplier ap for balancing constraint constantly
equals to 0, the dual CIL problem for IL-BCS*VM degenerates to
the CIL problem for IL-S3VM.

According to the convex optimization theory [8], by introducing
the Lagrangian multiplier b’ to Eq. (12), we can obtain the CIL

problem for IL-BCS3VM as follows:

1 1+2u
W= min max-a Ha-y a+b’ (Z 5,~) (14)
cg<c b2 i=0
We can find the first-order partial derivative of W which leads to
the following KKT conditions in Eqs. (15)-(17), similar to Egs. (8)-(9).
Note that the virtual sample (x, yo) needs a special consideration

due to its unique features.

1+2u
ow —~
W = Z aj = 0 (15)
i=0
1+2u
ow —
- = - D @GHy+b —yi, Viz1 o (16)
i -
Jj=0

- ; : iop s, 1gil4u N —
When i = 0, according to the balancing constraint, i.e. ;; 3,7 | f(xi) =

% 25:1 yi, we can have the relationship for go as follows.

1+2u
ow
0= 7= = &V'H()'+b/— 0
9= 30 ;0 ' Hoj Y a7
=-b+b

According to the value of g; in Eq. (16) and Eq. (17), we also partition
the extended dataset L U U in three categories as S = {M, E, O} as
follows:

M:{iELUﬁ:gi:O, Qi s&isa}

E:{iGLUﬁ:gi<0,ai=Ei} (18)
o={ieLuﬁ:gi>o, 5i=g,-}

In order to explain our IL-BCS*VM algorithm more clearly, we
first define the entire new data set which will be added into the
original set as S;. S; consists of labeled data set L; and unlabeled
data set ﬁt, ie,S; =Ly U [7;. I; and u; are the number of elements
in the sets L; and set U; respectively. Every time a batch of data S;
is added into the original set, the balancing constraint need to be
adjusted once to ensure data balance in the entire dataset including
the new added one. After the new dataset S; and the original dataset
LUU are merged, the original labeled set L becomes Lpeqy, the



original unlabeled set U becomes ﬁnew. Parameters [ and u are
updated to [ + I; and u + u; respectively. Thus, how to handle the
dynamic relationships between balancing constraint with previous
labeled and unlabeled samples is the main challenge for designing
the incremental learning algorithm of BCS*VM.

From Eq. (13), we can find that the balancing sample (xo, yo)
represents, in a way, the mean value of the rest of the samples in
the new dataset Lyeq U ﬁnew, and the balancing constraint has
turned into the form of sample (x, yo). Thus the problem of how
to apply balancing constraint to the optimization problem can be
transformed into how to deal with sample (xo, yo). To simplify the
process of our algorithm, we define a virtual balancing dataset V'
and classify sample (xo, yo) into set V separately. Balancing dataset
V is formally defined as follows:

V= {(x0, y0)} (19)

Thus the virtual balancing dataset V and the new input dataset S;
are two independent sets which should be considered carefully by
the incremental learning algorithm.

However, before adding the two datasets (i.e., V and S;) into the
original dataset L U U, we need to find out whether an original
balancing constraint is already applied to L U U, so as to avoid the
conflict between the original and the new balancing constraint. If
so, the original balancing constraint need to be eliminated first by
using decremental learning methods. After the above operation is
completed, we can add the two datasets into the original dataset
LU U by using incremental learning methods. Note that the virtual
balancing dataset V should be added after the new input dataset S,
because balancing constraint is applied once after a bach of data S;
have all been added into the original set L U U.

When a sample is added into or removed from the original set LU
U, our fundamental principle is to ensure all the samples meet KKT
conditions simultaneously by constantly detecting KKT-violating
samples to add into set A (defined in section 2.2) and pushing these
samples satisfying KKT-conditions same to [7].

3.2 IL-BCS’VM Algorithm

Our IL-BCS3*VM Algorithm consists of three steps (see Figure 1).
First of all, in Step 1 (Section 3.2.1), we need to find out whether
an original balancing constraint is already applied to the original
dataset L U U, i.e. check whether the Lagrangian multiplier ap
for balancing constraint equals 0. If not, we need to eliminate the
original balancing constraint using decremental learning methods.
Then in Step 2, we add the new input dataset S; into the original
set LUU using IL-S3VM algorithms (please see Section 2.2). After
set S; becomes an empty set and the original dataset becomes
Lpew U Unew, in Step 3 (Section 3.2.2), we can apply balancing
constraint to set Lyeqw U ﬁnew by adding balancing dataset V into
Lpew VU ﬁnew using incremental learning methods. When the above
three steps are completed, we can expand the local balance on the
original dataset LUU to the global balance on the entire new dataset
Lpew YU Unew-

3.2.1 Step 1: Eliminate the Balancing Constraint in S> VM. In or-
der to eliminate the original balancing constraint imposed on the
original dataset L U U, we apply decremental learning method in

this step to decrease the Lagrangian multiplier ag of the balancing
constraint to 0, so that we can remove the original balancing sample
(%0, yo) out of set LU U (see Step 1: Decremental Learning in Figure
1).

Similar to the incremental learning process in IL-S’VM algo-
rithm, during the decremental learning process, the migrations of
samples among sets also could lead to the changes of the weights of
sets and corresponding parameters. The update of the parameters
(i.e. updating ag «— aa +dan™*, ap — ap + dyn™*, b’ —
b’ +dpyn™X, g < g+dgn™*) and the migration of samples among
the sets M, E, O, A in decremental learning is the same as incremen-
tal learning as discussed in Section 2.2. Note that the direction of
the changes of the parameters in decremental learning is contrary
to incremental learning method. Thus when (x;,y;) € A, we set
Ci = C;,if y; = +1, otherwise Ci =C;. Especially, the update of
the parameters for the balancing sample (xo, yo) can be simplified
due to its special features. When we update go((xo,y0) € EUOUA),
instead of solving Eq. (11), we can directly obtain dg, = dj from Eq.
(17). So that when i = 0, g; and b’ can be updated simultaneously.

In the complete decremental learning process, first of all, we
suppose (xp,yo) is a KKT-violating sample, and remove it from
M, E or O to add into A. Then we compute the directions of the
parameters, i.e. dp, dpfp, dg, d 4, and find the maximum adjustment
quantity n™%* of . After that, we can update a,b’,C, C,A,M,E
and O correspondingly. Repeating the above procedures until the
Lagrangian multiplier o is reduced to 0 and the set A becomes
an empty set. At this point, the original balancing constraint is
eliminated and all the samples in L U U satisfy KKT conditions
simultaneously. The decremental learning process is summarized
in Algorithm 2.

Algorithm 2 Decremental Learning for ag

Input: &,b",C,C,M,E,O
Output: «a,b’,C, C,M,E,O
1: while @y # 0 do
2. Remove (xg, yo) from M, E or O.
3 Add (x0,yo) into A.
4 while A# 0do
5 Compute dp, dpg, da and dg.
6: Compute the maximal quantity n™%*.
7
8
9

Update a4, a, b’, g,C, C,A,M,E,O.
end while
: end while

3.2.2 Step 3: Add the Balancing Constraint in > VM. In Step 3, to ap-
ply the balancing constraint to S*VM, we add the balancing dataset
Vinto Lyew U ﬁnew using the incremental learning method (see
Step 3: Incremental Learning in Figure 1). The update of the param-
eters and the migration of samples among the sets M, E, O, A in this
step also remain the same as the incremental learning process as
discussed in Section 2.2. Especially, for the update of the parameters
of the balancing sample (xo, yo), please refer to Step 1.

In the complete incremental learning process, we first remove
(%0, yo) from set V and add it into Lpew U Upew. Then we compute
dp,dp,ds and dg and find the maximum adjustment quantity



74X of . After that, we can update the a¢,a,b’,C, C,A,M,E and
O correspondingly. Repeating the above procedures, until set A is
empty. This procedure is summarized in Algorithm 3.

Algorithm 3 Incremental Learning for ap

Input: &,b",C,C,M,E,O
Output: «,b’,C, C,M,E,O
1 Initialize @ = 0 and compute C, C, go.
2: Add (xg, yo) into M, E, O or A according to go.
3: while A # 0 do
4 Compute dp,dp,da and dg.
5. Compute the maximal quantity n™4*.
6
7

Update @4, @, b’,g,C,C, A, M,E,O.
: end while

4 ANALYSIS AND DISCUSSION

In this section, we first prove the finite convergence of IL-BCS3VM,
then provide the time complexity analysis of IL-BCS3VM.

4.1 Finite Convergence Analysis for
IL-BCS*VM Algorithm

In this section, we prove that IL-BCS*VM can converge to a local
minimal in a finite number of iterations (Theorem 3).

Our IL-BCS*VM algorithm consists of three steps, i.e. decre-
mental learning (i.e., Step 1), IL-S*VM algorithm (i.e., Step 2) and
incremental learning (i.e., Step 3) as discussed in Section 3.2. The
finite convergence of IL-S*VM was already proven in [7]. Thus
we only need to prove the finite convergence of the decremental
learning (i.e., Step 1) and the incremental learning (i.e., Step 3). We
first prove Theorem 1 as follows.

THEOREM 1. During the process of decremental learning (i.e., Step
1) and incremental learning (i.e., Step 3), any sample from LUU UV
cannot migrate back and forth in successive adjustment steps among
the sets M, E, O and A.

Sketch of Proof As discussed in Section 3.2, the migration of
the samples during incremental and decremental learning process
is the same. Thus similar to the proof of Theorem 2 in [7], for
sample (x;, y;) where t > 0, it is easy to verify the following four
sub-conclusions: 1) if a sample (x;,y;) is added into the set M,
then (x;, y;) will not be removed from M in the immediate next
adjustment. 2) If (x;, y;) is removed from the set M, then (x;,y;)
will not be added into M in the immediate next adjustment. 3) If
(x¢, yr) is removed from the set E or O and added into the set A,
then (x;,y;) will not be removed from A in the immediate next
adjustment. 4) If (x¢, y;) is removed from the set A and added into
the set E, M or O, then (x;, y;) will not be removed from E, M or O
in the immediate next adjustment. O

According to Theorem 1, we can have Corollary 1 as follows.

COROLLARY 1. For each adjustment of IL-BCS® VM, the maximum
adjustment n™* is greater than zero.

Similar to the proof of Corollary 1 in [7] and Lemma 4 in [28],
Corollary 1 can be easily proven. Based on this corollary, we can
prove that the objective function W (see Eq. (14)) is strictly mono-
tonically decreasing and increasing under different conditions in
Theorem 2 as follows:

THEOREM 2. During the process of decremental learning and incre-
mental learning, the objective function W has the following properties.
(1) If A only includes the new added balancing sample (xo, o), i.e.,

A = (x0,yo), W is strictly monotonically decreasing.
(2) If A does not include the new added balancing sample (xo, yo)
and A # 0, W is strictly monotonically increasing.

Sketch of Proof Suppose that the previous adjustment is in-
dexed by k, the immediate next is indexed by k + 1, and let ag = 0,
ap=0,S=MUEUOUA,V = {(x0,y0)} as we explained before.
Then similar to the proof of Theorem 3 in [7], we can have the con-
clusion that Wlk+1l — wlkl = ymax 5. | d,-(gl[k] + 2dg, (k1,ymax)
and }je 4 djdg; > 0. Consequently, if A = (xo, yo), doggk]
be easily verified. Thus we have wlk+1l _ wlkl < 0. 1f A does not
include (xg,y0) and A # 0, Y;cn d,—g[k

< 0 can

; '~ 0 canbe easily verified.
Thus we have WIK+11 — ikl > o, O

Based on Theorem 2, we can prove the convergence of our IL-
BCS3VM in Theorem 3.

THEOREM 3. IL-BCS?VM can converge to a local minimal in a
finite number of iterations.

Sketch of Proof  Similar to the proof of Theorem 4 in [7], the
finite convergence of the process of decremental learning (Step 1)
and incremental learning (Step 3) can be easily proven. Therefore,
all three steps of IL-BCS3*VM converge to a local minimal, and the
finite convergence of our IL-BCS*VM can be proven. m]

4.2 Time Complexity Analysis

We will analyse the computational complexity according to the
three steps (stated in section 3.2) of our IL-BCS*VM respectively.
The time complexity of IL-S*VM is O(|M|(I + 2u)? + |M|?(I + 2u))
[7]. The update of the parameters and sets in incremental learning
is the same as decremental learning except for the directions, so
the computational complexity of the two learning process is the
same. Similar to IL-S3VM [7], the time complexity of each iteration
during incremental learning and decemental learning process is
O(IM|(1 + 2u) + |M|?). Our IL-BCS?*VM can converge to a local min-
imal in a finite number of iterations which is proven in Theorem
3. Besides, the number of iteration steps is rather a small number
compared with [ + 2u, which can be verified by the experiments. We
define the number of iterations as ¢, where ¢ < [+ 2u, then the time
complexity of both incremental learning process and decremental
learning process is O(c(|M|(I + 2u) + |M|?)). Therefore, the compu-
tational complexity of IL-BCS3VM is O(|M|(I + 2u)? + |M|?(1 + 2u)),
which still scales the same as IL-S*VM. That is to say, our IL-
BCS3VM can improve the algorithmic efficiency and reduce the
computational complexity significantly compared with existing
BCS3*VM algorithms.



5 EXPERIMENTS

In this section, we first provide the experimental setup, and then
provide the experimental results and discussions.

5.1 Experimental Setup

Design of experiments: In the experiments, we first show the
effectiveness of our IL-BCS?*VM, and then demonstrate the advan-
tage of our IL-BCS*VM in terms of computational efficiency and
classification accuracy.

To verify the effectiveness of our IL-BCS3VM, we investigate
the convergence of IL-BCS*VM by counting the numbers of itera-
tions during the adjustments whenever a sample is added into the
datasets, over 20 trails.

In order to demonstrate the great algorithmic efficiency and
classification accuracy of our IL-BCS*VM over other batch and
incremental S*VM algorithms, we compare the running time and
unlabeled accuracy of our IL-BCS*VM with other algorithms. Specif-
ically, the compared algorithms are summarized as follows:

(1) BL-S3VM (also called UniverSVM [27]): the state-of-the art
batch S*VM algorithm based on the CCCP algorithm and SMO
algorithm.

(2) BCS*VM (also called CCCP-TSVM [1]): a S*VM algorithm with
balancing constraint based on the CCCP algorithm.

(3) IL-BCS®*VM: our proposed incremental S*VM learning algo-
rithm with balancing constraint.

Implementation: We implement our IL-BCS*VM in MATLAB.
BL-S*VM based on CCCP algorithm proposed by Sinz and Roffilli
was implemented in C/C++. To compare the run-time in the same
platform, we implement BL-S*VM in MATLAB. Besides, BCS3VM
is also implemented in MATLAB. For kernels, the linear kernel,
polynomial kernel K(xy,x2) = (x1 - x2 + l)d with d = 2, and
Gaussian kernel K(x1, x2) = exp(=k||x; — x2||?) with k = 0.1 are
used in all the experiments. The parameters C and C* are fixed at
10 and 5 respectively.

For the experiments of showing the effectiveness of our IL-
BCS3VM, we add a labeled or unlabeled sample into the original
training dataset at a time and count the average number of itera-
tions on different datasets. For the experiments which compare the
running time and classification accuracy, we add 20 labeled or unla-
beled samples into the training dataset. Our IL-BCS3VM can update
the current solution to merge the 20 new (labeled or unlabeled)
samples and the original dataset, while the two other algorithms
need to recompute a solution from scratch. Besides, compared with
BL-S3VM, BCS*VM and our IL-BCS*VM can handle the imbalanced
classification problem of the new emerged dataset and improve the
accuracy by using the balancing constraint.

Datasets: Table 1 shows the nine benchmark datasets used in
our experiments, which are derived from LIBSVM 5 and Olivier ©
sources. Originally, the Usps dataset has ten classes from 0 to 9. We
created a binary version of Usps dataset by classifying digits 0 to
4 versus 5 to 9. Originally, these datasets are used for supervised
learning. To conduct the experiments of semi-supervised learn-
ing, we transfer these fully labeled datasets to the partially labeled
datasets, by randomly dropping the labels of a part of samples

Shttps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html.
Shttp://olivier.chapelle.cc/lds/.

out. The numbers of unlabeled samples are listed in the column
“Unlabeled” of Table 1.

Table 1: The real-world dasetsets used in the experiments.

Dataset Dimensionality Samples Unlabeled Source
Wé6a 300 17188 17000 LIBSVM
Text 7511 1946 1800 Olivier

CodRNA 8 59535 59035 LIBSVM
Usps 256 2007 1800 LIBSVM
Madelon 500 2000 1800 LIBSVM

IJCNN1 22 49990 49790 LIBSVM

A9a 123 32561 32200 LIBSVM
Mushrooms 112 8124 7900 LIBSVM
Phishing 68 11055 10800 LIBSVM

5.2 Results and Discussions

Table 2 shows the average and standard deviation of the numbers of
iterations during the running time of our IL-BCS3*VM by adding a
labeled or unlabeled sample over 20 trails. The experiments results
verified that the number of the iteration steps is limited for both
labeled and unlabeled samples, which means that by effectively
handling the balancing sample, our IL-BCS*VM can guarantee to
converge to a local minimal in a finite number of iterations.

Figure 2 shows the average running time (in seconds) of BCS*VM,
BL-S3VM and IL-BCS*VM. In the notation(-), the abbreviations L, P
and G stand for the linear, polynomial and Gaussian kernels respec-
tively. The results of the experiments are an excellent proof that
our IL-BCS®VM is much faster than BCS*VM and BL-S*VM. That
is because, BCS>VM and BL-S*VM need to rebuild the solution of
S3VM from scratch. However, by introducing the incremental learn-
ing method based on path following technique, our IL-BCS3VM
can directly update the solution of BCS>VM to converge to a local
minimal and effectively handle the balancing constraint.

Figure 3 presents the unlabeled accuracy of BCS3VM, BL-S*VM
and IL-BCS?*VM over 10 trails with notched box plot, when 20
labeled and unlabeled samples are added into the original dataset
using the Gaussian kernel. The results show that our IL-BCS*VM
has much higher accuracy than BL-S*VM and almost achieve the
same accuracy as BCS3VM on most unlabeled dataset. These results
demonstrate that by using incremental learning methods to handle
balancing constraint, our IL-BCS3*VM is much faster than most
existing batch and incremental learning algorithms while retaining
the same high classification accuracy as BCS3VM.

6 CONCLUSION

Although existing BCS*VM algorithms can effectively avoid the
trivial solution of classifying all the unlabeled examples to a same
class, they still have rather high computational complexity which
impedes the applications of BCS*VM in large-scale problems. In
this paper, we propose a new incremental algorithm for BCS*VM
(IL-BCS®*VM) based on IL-S*VM. Our new IL-BCS*VM algorithm
can effectively handle the balancing constraint and incorporate
new samples to update the solution of BCS*VM by overcoming
the challenge of the dynamic relationships of balancing constraint



Table 2: Average results with the standard deviation of IL-BCS>VM (adding a labeled sample and adding an unlabeled sample)
over 20 trials, where linear, polynomial and Gaussian kernels were used.

. Iterations (labeled) Iterations (unlabeled)
Dataset Size - A 5 - - -
Linear Polynomial Gaussian Linear Polynomial Gaussian
4000 22.0+15.1 27.6+14.4 20.3+11.1 28.3+20.5 25.449.3 19.1£11.3
Wea 8000 61.8+43.5 51.6+28.9 24.7+13.2 57.7+£30.1 32.9+14.8 28.4+£15.5
12000 65.4+39.9 72.2+40.0 37.4+23.0 52.7£37.5 42.8+23.1 42.0+26.1
16000 120.7+£82.7 64.9+53.7 61.8+44.4 88.9+72.5 64.8+39.7 41.9+32.3
400 15.1+1.1 8.2+25.7 2.5+1.7 11.4+2.2 3.7+£1.3 2.2+1.3
Text 800 60.7+£6.5 8.9+4.4 2.8+1.6 31.8+12.0 10.9+6.6 3.6+0.8
1200 83.1+14.4 39.4+15.5 2.9+1.9 64.0+24.2 31.6+£16.0 2.5+0.9
1600 151.0+£37.1 69.7+34.2 2.1£1.3 110.2+33.1 79.5+31.5 2.5+1.3
4000 18.0+11.5 3.6+2.3 16.5+£2.0 31.1+5.4 26.6+7.0 17.6+4.6
CodRNA 8000 22.1+17.1 11.1+7.7 21.9+2.9 23.7+12.1 32.1+12.1 22.9+6.7
12000 22.2+14.8 14.1+8.0 26.2+£6.9 59.4+23.4 60.0+42.8 27.7£13.8
16000 39.1+13.2 21.9+13.8 32.8+7.9 74.5+40.4 59.7+37.1 30.2+14.5
400 14.7£29.9 2.7£1.8 2.8+1.7 9.4+4.7 6.5+8.9 2.8+1.1
Usps 800 21.5+27.2 2.8+1.6 3.2+6.3 14.1+10.9 3.8+8.8 3.1+14
1200 25.4+27.6 13.1+14.6 17.4+£21.0 28.6+12.7 1.2+3.8 2.9+1.2
1600 17.4+26.9 12.3+16.0 2.4+1.3 39.0+17.5 2.6+4.7 3.5+2.1
400 34.0+60.2 1.1+1.1 1.2+1.6 15.2+22.5 1.3+£0.7 1.5+1.8
800 27.0+£38.5 1.6+1.2 1.9+2.2 16.7+£47.1 1.3+£0.6 1.6+1.7
Madelon
1200 40.0+£65.0 1.2+1.2 1.1£1.6 5.2+9.4 2.5+3.4 1.0£1.5
1600 35.4+67.4 2.0+3.0 0.8+1.2 3.6+8.0 10.4+26.5 0.4+0.7
4000 103.4+44.2 94.8+38.0 45.7+14.6 85.6+69.9 92.5+£62.7 50.8+28.0
fjenn1 8000 129.0+46.3 107.0£33.5 53.4+21.4 194.4+100.2 114.4+60.8 58.6+44.0
12000 242.8+89.1 100.1+£58.0 55.2+24.1 228.8+144.2 107.0+99.1 50.6+42.1
16000 317.8+£176.0 114.6+36.2 40.0+26.8 210.6+£202.1 111.4+67.8 42.7+49.0
3000 62.8+37.1 22.9+16.6 10.7+4.6 61.1+36.6 26.4+19.1 23.4+16.3
A9 6000 58.3+46.4 43.7+29.7 21.7+15.6 63.9+30.3 35.9+27.8 47.3+27.4
9000 76.8+55.8 54.9+39.2 39.0+27.8 101.8+70.2 92.1+46.0 39.1+26.1
12000 95.0+55.9 90.4+53.0 67.6+40.1 103.2+56.9 90.2+75.6 58.1+32.6
1500 6.4+3.9 4.5+0.7 3.8+1.3 11.4+5.6 1.4+1.0 4.3+2.2
Mushrooms 3000 3.1+£2.0 2.0+1.2 6.5+3.1 16.6+8.1 1.4+1.1 7.0+4.7
4500 7.3+4.4 2.4+1.4 6.3+2.1 8.1+5.4 5.1+2.1 6.5+4.9
6000 8.0+5.1 4.3+2.8 3.6+2.2 27.8+10.2 10.2+5.5 4.2+£3.9
1500 4.5+14.2 13.2+29.4 7.8+5.8 2.6+8.2 5.5+7.2 8.0+7.8
Phishing 3000 25.4+42.3 29.7+£89.1 4.7+7.2 62.8+122.3 15.3+£30.8 2.3+5.6
4500 58.5+82.7 26.4+65.7 3.6+9.0 69.3+132.7 11.8+30.9 9.2+14.4
6000 97.6+152.5 96.8+122.4 15.0+16.4 109.1+182.7 15.0+47.4 7.7£11.2

with previous labeled and unlabeled samples. IL-BCS*VM improves
the efficiency of BCS®*VM algorithms significantly while retaining
almost the same high classification accuracy as BCS*VM. What’s
more, we provide the finite convergence analysis for IL-BCS3VM.
Experimental results on a variety of benchmark datasets not only
verify the finite convergence of our IL-BCS3*VM, but also show a
huge reduction of computational time compared with existing batch
and incremental learning algorithms, while retaining the similar
generalization performance.
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Figure 2: Average running time (in seconds) of BCS*VM, BL-$>VM and IL-BCS?>VM over 20 trails
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