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ABSTRACT
Semi-Supervised Support Vector Machine (S

3
VM) is one of the most

popular methods for semi-supervised learning. To avoid the trivial

solution of classifying all the unlabeled examples to a same class,

balancing constraint is often used with S
3
VM (denoted as BCS

3
VM).

Recently, a novel incremental learning algorithm (IL-S
3
VM) based

on the path following technique was proposed to significantly scale

up S
3
VM. However, the dynamic relationship of balancing con-

straint with previous labeled and unlabeled samples impede their

incremental method for handling BCS
3
VM. To fill this gap, in this

paper, we propose a new incremental S
3
VM algorithm (IL-BCS

3
VM)

based on IL-S
3
VM which can effectively handle the balancing con-

straint and directly update the solution of BCS
3
VM. Specifically,

to handle the dynamic relationship of balancing constraint with

previous labeled and unlabeled samples, we design two unique

procedures which can respectively eliminate and add the balanc-

ing constraint into S
3
VM. More importantly, we provide the finite

convergence analysis for our IL-BCS
3
VM algorithm. Experimental

results on a variety of benchmark datasets not only confirm the

finite convergence of IL-BCS
3
VM, but also show a huge reduction

of computational time compared with existing batch and incremen-

tal learning algorithms, while retaining the similar generalization

performance.
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1 INTRODUCTION
In many real-world emerging applications, such as image retrieval

[20], gene profiling [19] and cancer classification [23], it is usually

quite difficult to obtain labeled samples, as the labelling processes

are tedious and expensive. Thus labeled samples only account for a

small percentage in most datasets, which make it difficult for super-

vised learning methods to achieve satisfied performance. Therefore

semi-supervised support vector machine (S
3
VM) [13] was proposed

as a powerful model to improve the generalization accuracy of

SVMs using plentiful unlabeled data. Given the training dataset

consisted with a labeled dataset L = {(x1,y1), · · · , (xl ,yl )} and an

unlabeled set U = {xl+1, · · · ,xl+u }, where xi ∈ R
n
, yi ∈ {+1,−1},

i = 1, · · · , l , l is the number of labeled data and u is the number

of unlabeled data. Considering the decision function of SVMs is

f (x) = ⟨w,ϕ(x)⟩ +b1, S3VM aims to learn a maximum margin over

labeled and unlabeled samples as follows.

min

w,b

1

2

⟨w,w⟩ +C
l∑
i=1

h1(yi f (xi )) +C
∗

l+u∑
i=l+1

h1(| f (xi )|) (1)

where ht (·) = max(0, t − ·) is the hinge loss, ht (|·|) is the symmetric

hinge loss, C and C∗ are predefined parameters
2
. S

3
VM is one of

the most popular methods for semi-supervised learning.

The real-world tasks of S
3
VM often lie in high dimensions with

few labeled samples [1]. It is highly possible to generate an imbal-

anced prediction (i.e., the number of samples classified to one class

is significantly higher than those classified to another class) which

can greatly bring down the generalization performance of S
3
VM.

1w and b are the parameters of model function, and ϕ(·) is a transformation function

from an input space to a high-dimensional reproducing kernel Hilbert space.

2
If C∗ = 0, the Eq. (1) degenerates to the standard SVM optimization problem. For

C∗ > 0, we use the symmetric hinge loss to penalize the unlabeled data inside the

margin.
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To avoid the trivial solution as discussed above, multiple methods

have been proposed to cure the imbalanced classification problem,

such as resampling technique and the use of balancing constraint.

Specifically, Mitra et al. [15], Chen et al. [16], Valentini [17] and Li

et al. [18] tried to deal with the issue of imbalanced classification by

either adopting under-sampling to select a subset of negative train-

ing examples, over-sampling to generate more positive examples, or

a combination of these two methods. Joachims [10], Chapelle and

Zien [9], Sindhwani and Keerthi [11], Tian et al. [12] and Chapelle

et al. [13] used various balancing constraints, which is a more pop-

ular method for handling the issue of imbalanced classification

compared with other techniques. Specifically, to make the S3VM

models more suitable for imbalanced datasets, Chapelle and Zien [9]

modified these models by introducing a slightly relaxed balancing

constraint (denoted as BCS3VM), i.e. 1u
∑l+u
i=l+1 f (xi ) =

1
l
∑l
i=1 yi ,

which aims to ensure that the fraction of positive and negatives

assigned to the unlabeled data should be the same fraction as found

in the labeled data. This paper focuses on the BCS3VM because of

its effectiveness and popularity.

Although BCS3VM algorithm is an improved version of S3VM

which can effectively avoid the trivial solution of classifying all

the unlabeled examples into a same class, its objective formulation

is still a non-convex optimization problem like S3VM. Fung and

Mangasarian [2], Collobert et al. [1], and Wang et al. [3] applied the

concave-convex procedure (CCCP) to solve the non-convex problem

of S3VM, which also can be an effective method to solve BCS3VM.

However, those methods usually have rather high computational

cost which can hinder the application of S3VMmodels in large scale

datasets. As pointed by Chapelle and Zien [9], scaling up BCS3VM

is still an open question.

Incremental learning is an important method for processing

large amounts of data using comparatively smaller computing re-

sources [22]. Several incremental learning algorithms have been

proposed for SVMs, such as [4–6]. Specifically, these incremental

algorithms used the path following technique [24, 25] to update the

solutions by maintaing the KKT conditions [26]. Compared with

other techniques for incremental learning, path following technique

is more often adopted due to its efficiency and convergence guaran-

tee. Recently, targeted at the non-convex problem of S3VM, a novel

incremental learning algorithm (IL-S3VM) based on the path follow-

ing technique in the framework of CCCP [7] was proposed, which

can not only solve the non-convex problem but also significantly

reduce the computational complexity of S3VM. Thus inspired by

IL-S3VM, incremental learning also could be an effective method to

scale up BCS3VM. However, the dynamic relationship of balancing

constraint with previous labeled and unlabeled samples impede

their incremental method for handling BCS3VM.

To fill this gap, in this paper, we propose a new incremental

S3VM algorithm with balancing constraints (IL-BCS3VM) based

on IL-S3VM, which can effectively handle the balancing constraint

and directly update the solution of BCS3VM. Specifically, in order

to handle the dynamic relationship of balancing constraint with

previous labeled and unlabeled samples, we design two unique

procedures in our IL-BCS3VM algorithm, which can respectively

eliminate and add the balancing constraint into S3VM, so that the

efficient incremental learning for BCS3VM can be achieved. What’s

more, we provide the finite convergence analysis for IL-BCS3VM.

Experimental results on a variety of benchmark datasets not only

confirm the finite convergence of IL-BCS3VM, but also show a

huge reduction of computational time compared with existing batch

and incremental learning algorithms, while retaining the similar

generalization performance.

Contributions. The main contributions of this paper are summa-

rized as follows.

(1) We propose a new incremental S3VM learning algorithm with

balancing constraint (IL-BCS3VM) targeted at more realistic

classification problems that often arise in S3VM. To the best

of our knowledge, IL-BCS3VM is the first path following algo-

rithm by overcoming the challenge of the dynamic relationship

of balancing constraint with previous labeled and unlabeled

samples.

(2) Though our IL-BCS3VM can handle a more complicated prob-

lem compared with the one of IL-S3VM, we prove that it con-

verges to a local minimal, and the computational complexity

is still in the same scale with IL-S3VM which is significantly

cheaper than the ones of most existing BCS3VM algorithms.

2 REVISIT OF IL-S3VM

In this section, we briefly revisit the CCCP formulation of IL-S3VM.

After that we introduce the main idea of IL-S3VM algorithm.

2.1 CCCP Formulation of IL-S3VM

According to the theory of CCCP [14], to solve the objective func-

tion (1), we need to reformulate the objective into a summation of

a convex function Jvex (θ ) and a concave function Jcav (θ ), where
θ is the parameters of the model. Because every unlabeled sample
has the possibility of being positive or negative label, the unlabeled

dataset U should be doubled and a new artificial labeled dataset

Ũ = {(xl+1,+1), · · · , (xl+u ,+1), (xl+u+1,−1), · · · , (xl+2u ,−1)} is
created. Thus, the original formulation Eq. (1) can be transformed

as follows:

min
w,b

1

2
〈w,w〉 +C

l∑
i=1

h1(yi f (xi )) +C
∗
l+2u∑
i=l+1

h1(yi f (xi ))︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸
Jvex (θ )

−C∗
l+2u∑
i=l+1

h0(yi f (xi ))︸����������������������︷︷����������������������︸
Jcav (θ )

(2)

During the process of solving Eq. (2), we use μi which is defined
in Eq. (3) to simplify the calculation procedure of the CCCP.

μi = yi
∂Jcav (θ )

∂ f (xi )
=

{
C∗ if yi f (xi ) < 0, i ≥ l + 1

0 otherwise
(3)

Then we can obtain the primal convex inner loop (denoted as CIL)

problem for Eq. (2) based on the CCCP which is skipped here. We



directly show the corresponding dual CIL problem as follows [1]:

min

α̃

1

2

α̃THα̃ − yT α̃

s .t .
l+2u∑
i=1

α̃i = 0 Ci ≤ α̃i ≤ Ci , i = 1, · · · , l + 2u .

(4)

where H is a positive semidefinite matrix with Hi j = K(xi ,x j ) =〈
ϕ(xi ),ϕ(x j )

〉
for all 1 ≤ i, j ≤ l+2u,K(xi ,x j ) is the kernel function.

α̃i = yi (αi − µi ), Ci and Ci are defined as follows:

Ci =


−µi if yi = +1
µi −C if yi = −1, 1 ≤ i ≤ l
µi −C

∗
if yi = −1, i ≥ l + 1

(5)

Ci =


C − µi if yi = +1, 1 ≤ i ≤ l
−µi if yi = +1, i ≥ l + 1
µi if yi = −1

(6)

2.2 IL-S3VM
According to the convex optimization theory [8], by introducing

Lagrangian multiplier b ′ corresponding to the constraint in Eq. (4),

the dual CIL problem (i.e., Eq. (4)) can be transformed as follows.

W = min

C≤α̃ ≤C
max

b′
1

2

α̃THα̃ − yT α̃ + b ′

(l+2u∑
i=1

α̃i

)
(7)

The first-order partial derivative ofW leads to the following KKT

conditions.

∂W

∂b ′
=

l+2u∑
i=1

α̃i = 0 (8)

дi
def

=
∂W

∂α̃i
=

l+2u∑
j=1

α̃ jHi j + b
′ − yi , ∀i ≥ 1


> 0 then α̃i = Ci O

= 0 then Ci ≤ α̃i ≤ Ci M

< 0 then α̃i = Ci E

(9)

Correspondingly, the extended training dataset L ∪ Ũ can be par-

titioned into three categories as S = {M,E,O}, which is shown in

Eq. (9).

We define the additions in L and Ũ as LN and ŨN respectively.

When a new sample from LN ∪ ŨN joins the original set L ∪ Ũ ,

the change of µi could lead to the result that the corresponding

samples violate the KKT-conditions. To handle this situation, Gu et

al. [7] defined a KKT-violating set A3
. The fundamental principle

of IL-S
3
VM is to constantly detect new samples violating the KKT

conditions and add these samples into the KKT-violating set A,
while pushing the samples in A to satisfy the KKT conditions (see

Figure 1 Step 2: IL-S
3
VM algorithm).

Specifically, to achieve this goal, two main issues need to be

addressed for designing IL-S
3
VM algorithm [7]:

3
The KKT-violating set A is defined as a subset of an union of Ũ and an added sample

(xc , yc ), such that all the samples violating the KKT conditions are included in A.

(1) Compute the direction of ∆α̃ : Set ∆α̃A as the changes of the

weights of set A, and set the direction to ∆α̃A as dA = C̃A − α̃A,

where C̃i = Ci , if yi = +1, otherwise C̃i = Ci . Thus we have
∆α̃A = η · dA, where η is a parameter with 0 ≤ η ≤ 1 to control

the adjustment qualities of α̃A, and the direction of ∆α̃A with

respect to η can be obtained by solving the following linear

system: [
0 1

T
M

1M HMM

] [
db′
dM

]
= −

[
1
T
A

HMA

]
dA (10)

where db′ and dM refer to the directions of the ∆b ′ and ∆α̃M
respectively. Furthermore, with the the conclusion as stated

above, the linear relationship between ∆дi (∀i ∈ E ∪ O ∪ A)
and η can be obtained as follows:

dдi =
∑
j ∈A

Hi jdj +
∑
j ∈M

Hi jdj + db′ (11)

(2) Compute the maximum adjustment quantity ηmax: The

maximum adjustment quantity ηmax
of η can be calculated by

solving a series of linear inequalities based on three conditions

4
as marked by different arrow lines in Step 2 of IL-S

3
VM algo-

rithm in Figure 1 (the blue arrow lines show the adjustments

of the sample corresponding to the change of the value of µi in
Eq. (3)).

Based on the two issues discussed above, IL-S
3
VM algorithm can

be summarized in Algorithm 1.

Algorithm 1 IL-S
3
VM

Input: α̃ ,b ′,M,E,O,C,C and LN ∪ ŨN .

Output: α̃ ,b ′,C,C,M,E, and O .

1: while LN ∪ ŨN , ∅ do
2: Read a new sample (xc ,yc ) from LN ∪ ŨN .

3: Remove (xc ,yc ) from LN ∪ ŨN .

4: Initialize α̃c = 0 and comput Cc , Cc and дc .
5: Add (xc ,yc ) intoM , O or A according to дc .
6: while A , ∅ do
7: Compute db′ ,dM ,dA and dд .
8: Compute the maximal quantity ηmax

.

9: Update α̃A, α̃ , b
′
, д, C , C , A,M , E, O .

10: end while
11: end while

3 NEW INCREMENTAL S3VM LEARNING
ALGORITHMWITH BALANCING
CONSTRAINT

In this section, we first introduce the principle of our IL-BCS
3
VM

algorithm, then present the IL-BCS
3
VM algorithm in detail.

4
The three conditions are 1) a sample migrate among the sets M, E, O ; 2) the KKT

conditions for one sample in A will be satisfied; 3) the sample in O ∪ E violate the

KKT conditions, i.e. we need to update the values of µi in Eq. (3).



Figure 1: IL-BCS3VM algorithm. Three steps (i.e., decremental learning, IL-S3VM and incremental learning respectively) are
involved in IL-BCS3VM.

3.1 Principle of our IL-BCS3VM Algorithm
As discussed before, BCS

3
VM can effectively avoid imbalanced clas-

sification problems, but it has a high computational complexity

same as S
3
VM. Thus it is highly desired to design an efficient incre-

mental algorithm for the BCS
3
VM problem which can reduce the

computational complexity significantly. Inspired by the IL-S
3
VM

algorithm which is an effective method to scale up S
3
VM, we also

introduce an incremental learning method to BCS
3
VM. By overcom-

ing the challenge of dynamic relationships of balancing constraint

with previous labeled and unlabeled samples during incremental

learning process, we propose a new incremental learning algorithm

based on the path following technique for S
3
VM with balancing

constraint (denoted as IL-BCS
3
VM), which can not only effectively

handle the balancing constraint but also significantly improve the

algorithmic efficiency of standard BCS
3
VM.

To apply the balancing constraint to IL-S
3
VM, we introduce

a new Lagrangian multiplier α0 corresponding to the balancing

constraint to the original optimization problem of IL-S
3
VM (i.e., Eq.

(4)). After a series of Lagrangian transformations, we can obtain

the dual CIL problem for IL-BCS
3
VM as follows [1].

min

α̃

1

2

α̃THα̃ − yT α̃

s .t .
l+2u∑
i=0

α̃i = 0; Ci ≤ α̃i ≤ Ci , i = 1, · · · , l + 2u

(12)

Note that different from the dual CIL problem for IL-S
3
VM (i.e., Eq.

(4)), the value of parameter i in Eq. (12) starts from 0, and sample

(x0,y0) is generated from the balancing constraint. The parameters

of virtual sample (x0,y0) are set as follows [1]:

α̃0 = α0, y0 =
1

l

l∑
i=1

yi ϕ(x0) =
1

u

l+u∑
i=l+1

ϕ(xi ) (13)

If the Lagrangian multiplier α0 for balancing constraint constantly

equals to 0, the dual CIL problem for IL-BCS
3
VM degenerates to

the CIL problem for IL-S
3
VM.

According to the convex optimization theory [8], by introducing

the Lagrangian multiplier b ′ to Eq. (12), we can obtain the CIL

problem for IL-BCS
3
VM as follows:

W = min

C≤α̃ ≤C
max

b′
1

2

α̃THα̃ − yT α̃ + b ′

(l+2u∑
i=0

α̃i

)
(14)

We can find the first-order partial derivative ofW which leads to

the following KKT conditions in Eqs. (15)-(17), similar to Eqs. (8)-(9).

Note that the virtual sample (x0,y0) needs a special consideration
due to its unique features.

∂W

∂b ′
=

l+2u∑
i=0

α̃i = 0 (15)

дi
def

=
∂W

∂α̃i
=

l+2u∑
j=0

α̃ jHi j + b
′ − yi , ∀i ≥ 1 (16)

When i = 0, according to the balancing constraint, i.e. 1u
∑l+u
i=l+1 f (xi ) =

1

l
∑l
i=1 yi , we can have the relationship for д0 as follows.

д0 =
∂W

∂α̃0
=

l+2u∑
j=0

α̃ jH0j + b
′ − y0

= −b + b ′

(17)

According to the value ofдi in Eq. (16) and Eq. (17), we also partition

the extended dataset L ∪ Ũ in three categories as S = {M,E,O} as
follows:

M =
{
i ∈ L ∪ Ũ : дi = 0, Ci ≤ α̃i ≤ Ci

}
E =

{
i ∈ L ∪ Ũ : дi < 0, α̃i = Ci

}
O =

{
i ∈ L ∪ Ũ : дi > 0, α̃i = Ci

} (18)

In order to explain our IL-BCS
3
VM algorithm more clearly, we

first define the entire new data set which will be added into the

original set as St . St consists of labeled data set Lt and unlabeled

data set Ũt , i.e, St = Lt ∪ Ũt . lt and ut are the number of elements

in the sets Lt and setUt respectively. Every time a batch of data St
is added into the original set, the balancing constraint need to be

adjusted once to ensure data balance in the entire dataset including

the new added one. After the new dataset St and the original dataset

L ∪ Ũ are merged, the original labeled set L becomes Lnew , the



original unlabeled set Ũ becomes Ũnew . Parameters l and u are

updated to l + lt and u + ut respectively. Thus, how to handle the

dynamic relationships between balancing constraint with previous

labeled and unlabeled samples is the main challenge for designing

the incremental learning algorithm of BCS
3
VM.

From Eq. (13), we can find that the balancing sample (x0,y0)
represents, in a way, the mean value of the rest of the samples in

the new dataset Lnew ∪ Ũnew , and the balancing constraint has

turned into the form of sample (x0,y0). Thus the problem of how

to apply balancing constraint to the optimization problem can be

transformed into how to deal with sample (x0,y0). To simplify the

process of our algorithm, we define a virtual balancing dataset V
and classify sample (x0,y0) into setV separately. Balancing dataset

V is formally defined as follows:

V = {(x0,y0)} (19)

Thus the virtual balancing dataset V and the new input dataset St
are two independent sets which should be considered carefully by

the incremental learning algorithm.

However, before adding the two datasets (i.e., V and St ) into the

original dataset L ∪ Ũ , we need to find out whether an original

balancing constraint is already applied to L ∪ Ũ , so as to avoid the

conflict between the original and the new balancing constraint. If

so, the original balancing constraint need to be eliminated first by

using decremental learning methods. After the above operation is

completed, we can add the two datasets into the original dataset

L ∪ Ũ by using incremental learning methods. Note that the virtual

balancing datasetV should be added after the new input dataset St ,
because balancing constraint is applied once after a bach of data St
have all been added into the original set L ∪ Ũ .

When a sample is added into or removed from the original set L∪

Ũ , our fundamental principle is to ensure all the samples meet KKT

conditions simultaneously by constantly detecting KKT-violating

samples to add into set A (defined in section 2.2) and pushing these

samples satisfying KKT-conditions same to [7].

3.2 IL-BCS3VM Algorithm
Our IL-BCS

3
VM Algorithm consists of three steps (see Figure 1).

First of all, in Step 1 (Section 3.2.1), we need to find out whether

an original balancing constraint is already applied to the original

dataset L ∪ Ũ , i.e. check whether the Lagrangian multiplier α0
for balancing constraint equals 0. If not, we need to eliminate the

original balancing constraint using decremental learning methods.

Then in Step 2, we add the new input dataset St into the original

set L ∪ Ũ using IL-S
3
VM algorithms (please see Section 2.2). After

set St becomes an empty set and the original dataset becomes

Lnew ∪ Ũnew , in Step 3 (Section 3.2.2), we can apply balancing

constraint to set Lnew ∪ Ũnew by adding balancing dataset V into

Lnew ∪Ũnew using incremental learning methods. When the above

three steps are completed, we can expand the local balance on the

original dataset L∪Ũ to the global balance on the entire new dataset

Lnew ∪ Ũnew .

3.2.1 Step 1: Eliminate the Balancing Constraint in S3VM. In or-

der to eliminate the original balancing constraint imposed on the

original dataset L ∪ Ũ , we apply decremental learning method in

this step to decrease the Lagrangian multiplier α0 of the balancing
constraint to 0, so that we can remove the original balancing sample

(x0,y0) out of set L∪Ũ (see Step 1: Decremental Learning in Figure

1).

Similar to the incremental learning process in IL-S
3
VM algo-

rithm, during the decremental learning process, the migrations of

samples among sets also could lead to the changes of the weights of

sets and corresponding parameters. The update of the parameters

(i.e. updating α̃A ← α̃A + dAη
max ,αM ← αM + dMηmax ,b ′ ←

b ′+db′η
max ,д← д+dдη

max
) and the migration of samples among

the setsM,E,O,A in decremental learning is the same as incremen-

tal learning as discussed in Section 2.2. Note that the direction of

the changes of the parameters in decremental learning is contrary

to incremental learning method. Thus when (xi ,yi ) ∈ A, we set

C̃i = Ci , if yi = +1, otherwise C̃i = Ci . Especially, the update of
the parameters for the balancing sample (x0,y0) can be simplified

due to its special features. When we update д0((x0,y0) ∈ E∪O ∪A),
instead of solving Eq. (11), we can directly obtain dд0 = db′ from Eq.

(17). So that when i = 0, дi and b
′
can be updated simultaneously.

In the complete decremental learning process, first of all, we

suppose (x0,y0) is a KKT-violating sample, and remove it from

M,E or O to add into A. Then we compute the directions of the

parameters, i.e. db′ ,dM ,dд ,dA, and find the maximum adjustment

quantity ηmax
of η. After that, we can update α ,b ′,C,C,A,M,E

and O correspondingly. Repeating the above procedures until the

Lagrangian multiplier α0 is reduced to 0 and the set A becomes

an empty set. At this point, the original balancing constraint is

eliminated and all the samples in L ∪ Ũ satisfy KKT conditions

simultaneously. The decremental learning process is summarized

in Algorithm 2.

Algorithm 2 Decremental Learning for α0

Input: α̃ ,b ′,C,C,M,E,O

Output: α̃ ,b ′,C,C,M,E,O
1: while α0 , 0 do
2: Remove (x0,y0) fromM,E or O .
3: Add (x0,y0) into A.
4: while A , ∅ do
5: Compute db ,dM ,dA and dд .
6: Compute the maximal quantity ηmax

.

7: Update α̃A, α̃ ,b
′,д,C,C,A,M,E,O .

8: end while
9: end while

3.2.2 Step 3: Add the Balancing Constraint in S3VM. In Step 3, to ap-
ply the balancing constraint to S

3
VM, we add the balancing dataset

V into Lnew ∪ Ũnew using the incremental learning method (see

Step 3: Incremental Learning in Figure 1). The update of the param-

eters and the migration of samples among the setsM,E,O,A in this

step also remain the same as the incremental learning process as

discussed in Section 2.2. Especially, for the update of the parameters

of the balancing sample (x0,y0), please refer to Step 1.

In the complete incremental learning process, we first remove

(x0,y0) from setV and add it into Lnew ∪ Ũnew . Then we compute

db′ ,dM ,dA and dд and find the maximum adjustment quantity



ηmax
of η. After that, we can update the αc ,α ,b

′,C,C,A,M,E and

O correspondingly. Repeating the above procedures, until set A is

empty. This procedure is summarized in Algorithm 3.

Algorithm 3 Incremental Learning for α0

Input: α̃ ,b ′,C,C,M,E,O

Output: α̃ ,b ′,C,C,M,E,O

1: Initialize α̃0 = 0 and compute C,C,д0.
2: Add (x0,y0) intoM,E,O or A according to д0.
3: while A , ∅ do
4: Compute db′ ,dM ,dA and dд .
5: Compute the maximal quantity ηmax

.

6: Update α̃A, α̃ ,b
′,д,C,C,A,M,E,O .

7: end while

4 ANALYSIS AND DISCUSSION
In this section, we first prove the finite convergence of IL-BCS

3
VM,

then provide the time complexity analysis of IL-BCS
3
VM.

4.1 Finite Convergence Analysis for
IL-BCS3VM Algorithm

In this section, we prove that IL-BCS
3
VM can converge to a local

minimal in a finite number of iterations (Theorem 3).

Our IL-BCS
3
VM algorithm consists of three steps, i.e. decre-

mental learning (i.e., Step 1), IL-S
3
VM algorithm (i.e., Step 2) and

incremental learning (i.e., Step 3) as discussed in Section 3.2. The

finite convergence of IL-S
3
VM was already proven in [7]. Thus

we only need to prove the finite convergence of the decremental

learning (i.e., Step 1) and the incremental learning (i.e., Step 3). We

first prove Theorem 1 as follows.

Theorem 1. During the process of decremental learning ( i.e., Step
1) and incremental learning ( i.e., Step 3), any sample from L ∪ Ũ ∪V
cannot migrate back and forth in successive adjustment steps among
the setsM , E, O and A.

Sketch of Proof As discussed in Section 3.2, the migration of

the samples during incremental and decremental learning process

is the same. Thus similar to the proof of Theorem 2 in [7], for

sample (xt ,yt ) where t ≥ 0, it is easy to verify the following four

sub-conclusions: 1) if a sample (xt ,yt ) is added into the set M ,

then (xt ,yt ) will not be removed from M in the immediate next

adjustment. 2) If (xt ,yt ) is removed from the set M , then (xt ,yt )
will not be added into M in the immediate next adjustment. 3) If

(xt ,yt ) is removed from the set E or O and added into the set A,
then (xt ,yt ) will not be removed from A in the immediate next

adjustment. 4) If (xt ,yt ) is removed from the set A and added into

the set E,M or O , then (xt ,yt ) will not be removed from E,M or O
in the immediate next adjustment. �

According to Theorem 1, we can have Corollary 1 as follows.

Corollary 1. For each adjustment of IL-BCS3VM, the maximum
adjustment ηmax is greater than zero.

Similar to the proof of Corollary 1 in [7] and Lemma 4 in [28],

Corollary 1 can be easily proven. Based on this corollary, we can

prove that the objective functionW (see Eq. (14)) is strictly mono-

tonically decreasing and increasing under different conditions in

Theorem 2 as follows:

Theorem 2. During the process of decremental learning and incre-
mental learning, the objective functionW has the following properties.

(1) If A only includes the new added balancing sample (x0,y0), i.e.,
A = (x0,y0),W is strictly monotonically decreasing.

(2) If A does not include the new added balancing sample (x0,y0)
and A , ∅,W is strictly monotonically increasing.

Sketch of Proof Suppose that the previous adjustment is in-

dexed by k , the immediate next is indexed by k + 1, and let αE = 0,

αO = 0, S = M ∪ E ∪O ∪A, V = {(x0,y0)} as we explained before.

Then similar to the proof of Theorem 3 in [7], we can have the con-

clusion thatW [k+1] −W [k ] = ηmax ∑
i ∈A di (д

[k]
i + 1

2
dдi
[k ]ηmax )

and

∑
j ∈A djdдj ≥ 0. Consequently, if A = (x0,y0), d0д

[k ]
0
< 0 can

be easily verified. Thus we haveW [k+1] −W [k ] < 0. If A does not

include (x0,y0) and A , ∅,
∑
i ∈A diд

[k ]
i > 0 can be easily verified.

Thus we haveW [k+1] −W [k ] > 0. �

Based on Theorem 2, we can prove the convergence of our IL-

BCS
3
VM in Theorem 3.

Theorem 3. IL-BCS3VM can converge to a local minimal in a
finite number of iterations.

Sketch of Proof Similar to the proof of Theorem 4 in [7], the

finite convergence of the process of decremental learning (Step 1)

and incremental learning (Step 3) can be easily proven. Therefore,

all three steps of IL-BCS
3
VM converge to a local minimal, and the

finite convergence of our IL-BCS
3
VM can be proven. �

4.2 Time Complexity Analysis
We will analyse the computational complexity according to the

three steps (stated in section 3.2) of our IL-BCS
3
VM respectively.

The time complexity of IL-S
3
VM is O(|M |(l + 2u)2 + |M |2(l + 2u))

[7]. The update of the parameters and sets in incremental learning

is the same as decremental learning except for the directions, so

the computational complexity of the two learning process is the

same. Similar to IL-S
3
VM [7], the time complexity of each iteration

during incremental learning and decemental learning process is

O(|M |(l + 2u)+ |M |2). Our IL-BCS3VM can converge to a local min-

imal in a finite number of iterations which is proven in Theorem

3. Besides, the number of iteration steps is rather a small number

compared with l +2u, which can be verified by the experiments. We

define the number of iterations as c , where c ≪ l +2u, then the time

complexity of both incremental learning process and decremental

learning process is O(c(|M |(l + 2u) + |M |2)). Therefore, the compu-

tational complexity of IL-BCS
3
VM isO(|M |(l + 2u)2 + |M |2(l + 2u)),

which still scales the same as IL-S
3
VM. That is to say, our IL-

BCS
3
VM can improve the algorithmic efficiency and reduce the

computational complexity significantly compared with existing

BCS
3
VM algorithms.



5 EXPERIMENTS
In this section, we first provide the experimental setup, and then

provide the experimental results and discussions.

5.1 Experimental Setup
Design of experiments: In the experiments, we first show the

effectiveness of our IL-BCS
3
VM, and then demonstrate the advan-

tage of our IL-BCS
3
VM in terms of computational efficiency and

classification accuracy.

To verify the effectiveness of our IL-BCS
3
VM, we investigate

the convergence of IL-BCS
3
VM by counting the numbers of itera-

tions during the adjustments whenever a sample is added into the

datasets, over 20 trails.

In order to demonstrate the great algorithmic efficiency and

classification accuracy of our IL-BCS
3
VM over other batch and

incremental S
3
VM algorithms, we compare the running time and

unlabeled accuracy of our IL-BCS
3
VMwith other algorithms. Specif-

ically, the compared algorithms are summarized as follows:

(1) BL-S
3
VM (also called UniverSVM [27]): the state-of-the art

batch S
3
VM algorithm based on the CCCP algorithm and SMO

algorithm.

(2) BCS
3
VM (also called CCCP-TSVM [1]): a S

3
VM algorithm with

balancing constraint based on the CCCP algorithm.

(3) IL-BCS
3
VM: our proposed incremental S

3
VM learning algo-

rithm with balancing constraint.

Implementation: We implement our IL-BCS
3
VM in MATLAB.

BL-S
3
VM based on CCCP algorithm proposed by Sinz and Roffilli

was implemented in C/C++. To compare the run-time in the same

platform, we implement BL-S
3
VM in MATLAB. Besides, BCS

3
VM

is also implemented in MATLAB. For kernels, the linear kernel,

polynomial kernel K(x1,x2) = (x1 · x2 + 1)d with d = 2, and

Gaussian kernel K(x1,x2) = exp(−k | |x1 − x2 | |
2) with k = 0.1 are

used in all the experiments. The parameters C and C∗ are fixed at

10 and 5 respectively.

For the experiments of showing the effectiveness of our IL-

BCS
3
VM, we add a labeled or unlabeled sample into the original

training dataset at a time and count the average number of itera-

tions on different datasets. For the experiments which compare the

running time and classification accuracy, we add 20 labeled or unla-

beled samples into the training dataset. Our IL-BCS
3
VM can update

the current solution to merge the 20 new (labeled or unlabeled)

samples and the original dataset, while the two other algorithms

need to recompute a solution from scratch. Besides, compared with

BL-S
3
VM, BCS

3
VM and our IL-BCS

3
VM can handle the imbalanced

classification problem of the new emerged dataset and improve the

accuracy by using the balancing constraint.

Datasets: Table 1 shows the nine benchmark datasets used in

our experiments, which are derived from LIBSVM
5
and Olivier

6

sources. Originally, the Usps dataset has ten classes from 0 to 9. We

created a binary version of Usps dataset by classifying digits 0 to

4 versus 5 to 9. Originally, these datasets are used for supervised

learning. To conduct the experiments of semi-supervised learn-

ing, we transfer these fully labeled datasets to the partially labeled

datasets, by randomly dropping the labels of a part of samples

5
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html.

6
http://olivier.chapelle.cc/lds/.

out. The numbers of unlabeled samples are listed in the column

“Unlabeled” of Table 1.

Table 1: The real-world dasetsets used in the experiments.

Dataset Dimensionality Samples Unlabeled Source

W6a 300 17188 17000 LIBSVM

Text 7511 1946 1800 Olivier

CodRNA 8 59535 59035 LIBSVM

Usps 256 2007 1800 LIBSVM

Madelon 500 2000 1800 LIBSVM

IJCNN1 22 49990 49790 LIBSVM

A9a 123 32561 32200 LIBSVM

Mushrooms 112 8124 7900 LIBSVM

Phishing 68 11055 10800 LIBSVM

5.2 Results and Discussions
Table 2 shows the average and standard deviation of the numbers of

iterations during the running time of our IL-BCS
3
VM by adding a

labeled or unlabeled sample over 20 trails. The experiments results

verified that the number of the iteration steps is limited for both

labeled and unlabeled samples, which means that by effectively

handling the balancing sample, our IL-BCS
3
VM can guarantee to

converge to a local minimal in a finite number of iterations.

Figure 2 shows the average running time (in seconds) of BCS
3
VM,

BL-S
3
VM and IL-BCS

3
VM. In the notation(·), the abbreviations L, P

and G stand for the linear, polynomial and Gaussian kernels respec-

tively. The results of the experiments are an excellent proof that

our IL-BCS
3
VM is much faster than BCS

3
VM and BL-S

3
VM. That

is because, BCS
3
VM and BL-S

3
VM need to rebuild the solution of

S
3
VM from scratch. However, by introducing the incremental learn-

ing method based on path following technique, our IL-BCS
3
VM

can directly update the solution of BCS
3
VM to converge to a local

minimal and effectively handle the balancing constraint.

Figure 3 presents the unlabeled accuracy of BCS
3
VM, BL-S

3
VM

and IL-BCS
3
VM over 10 trails with notched box plot, when 20

labeled and unlabeled samples are added into the original dataset

using the Gaussian kernel. The results show that our IL-BCS
3
VM

has much higher accuracy than BL-S
3
VM and almost achieve the

same accuracy as BCS
3
VM on most unlabeled dataset. These results

demonstrate that by using incremental learning methods to handle

balancing constraint, our IL-BCS
3
VM is much faster than most

existing batch and incremental learning algorithms while retaining

the same high classification accuracy as BCS
3
VM.

6 CONCLUSION
Although existing BCS

3
VM algorithms can effectively avoid the

trivial solution of classifying all the unlabeled examples to a same

class, they still have rather high computational complexity which

impedes the applications of BCS
3
VM in large-scale problems. In

this paper, we propose a new incremental algorithm for BCS
3
VM

(IL-BCS
3
VM) based on IL-S

3
VM. Our new IL-BCS

3
VM algorithm

can effectively handle the balancing constraint and incorporate

new samples to update the solution of BCS
3
VM by overcoming

the challenge of the dynamic relationships of balancing constraint



Table 2: Average results with the standard deviation of IL-BCS3VM (adding a labeled sample and adding an unlabeled sample)
over 20 trials, where linear, polynomial and Gaussian kernels were used.

Dataset Size

Iterations (labeled) Iterations (unlabeled)

Linear Polynomial Gaussian Linear Polynomial Gaussian

W6a

4000 22.0±15.1 27.6±14.4 20.3±11.1 28.3±20.5 25.4±9.3 19.1±11.3

8000 61.8±43.5 51.6±28.9 24.7±13.2 57.7±30.1 32.9±14.8 28.4±15.5

12000 65.4±39.9 72.2±40.0 37.4±23.0 52.7±37.5 42.8±23.1 42.0±26.1

16000 120.7±82.7 64.9±53.7 61.8±44.4 88.9±72.5 64.8±39.7 41.9±32.3

Text

400 15.1±1.1 8.2±25.7 2.5±1.7 11.4±2.2 3.7±1.3 2.2±1.3

800 60.7±6.5 8.9±4.4 2.8±1.6 31.8±12.0 10.9±6.6 3.6±0.8

1200 83.1±14.4 39.4±15.5 2.9±1.9 64.0±24.2 31.6±16.0 2.5±0.9

1600 151.0±37.1 69.7±34.2 2.1±1.3 110.2±33.1 79.5±31.5 2.5±1.3

CodRNA

4000 18.0±11.5 3.6±2.3 16.5±2.0 31.1±5.4 26.6±7.0 17.6±4.6

8000 22.1±17.1 11.1±7.7 21.9±2.9 23.7±12.1 32.1±12.1 22.9±6.7

12000 22.2±14.8 14.1±8.0 26.2±6.9 59.4±23.4 60.0±42.8 27.7±13.8

16000 39.1±13.2 21.9±13.8 32.8±7.9 74.5±40.4 59.7±37.1 30.2±14.5

Usps

400 14.7±29.9 2.7±1.8 2.8±1.7 9.4±4.7 6.5±8.9 2.8±1.1

800 21.5±27.2 2.8±1.6 3.2±6.3 14.1±10.9 3.8±8.8 3.1±1.4

1200 25.4±27.6 13.1±14.6 17.4±21.0 28.6±12.7 1.2±3.8 2.9±1.2

1600 17.4±26.9 12.3±16.0 2.4±1.3 39.0±17.5 2.6±4.7 3.5±2.1

Madelon

400 34.0±60.2 1.1±1.1 1.2±1.6 15.2±22.5 1.3±0.7 1.5±1.8

800 27.0±38.5 1.6±1.2 1.9±2.2 16.7±47.1 1.3±0.6 1.6±1.7

1200 40.0±65.0 1.2±1.2 1.1±1.6 5.2±9.4 2.5±3.4 1.0±1.5

1600 35.4±67.4 2.0±3.0 0.8±1.2 3.6±8.0 10.4±26.5 0.4±0.7

Ijcnn1

4000 103.4±44.2 94.8±38.0 45.7±14.6 85.6±69.9 92.5±62.7 50.8±28.0

8000 129.0±46.3 107.0±33.5 53.4±21.4 194.4±100.2 114.4±60.8 58.6±44.0

12000 242.8±89.1 100.1±58.0 55.2±24.1 228.8±144.2 107.0±99.1 50.6±42.1

16000 317.8±176.0 114.6±36.2 40.0±26.8 210.6±202.1 111.4±67.8 42.7±49.0

A9a

3000 62.8±37.1 22.9±16.6 10.7±4.6 61.1±36.6 26.4±19.1 23.4±16.3

6000 58.3±46.4 43.7±29.7 21.7±15.6 63.9±30.3 35.9±27.8 47.3±27.4

9000 76.8±55.8 54.9±39.2 39.0±27.8 101.8±70.2 92.1±46.0 39.1±26.1

12000 95.0±55.9 90.4±53.0 67.6±40.1 103.2±56.9 90.2±75.6 58.1±32.6

Mushrooms

1500 6.4±3.9 4.5±0.7 3.8±1.3 11.4±5.6 1.4±1.0 4.3±2.2

3000 3.1±2.0 2.0±1.2 6.5±3.1 16.6±8.1 1.4±1.1 7.0±4.7

4500 7.3±4.4 2.4±1.4 6.3±2.1 8.1±5.4 5.1±2.1 6.5±4.9

6000 8.0±5.1 4.3±2.8 3.6±2.2 27.8±10.2 10.2±5.5 4.2±3.9

Phishing

1500 4.5±14.2 13.2±29.4 7.8±5.8 2.6±8.2 5.5±7.2 8.0±7.8

3000 25.4±42.3 29.7±89.1 4.7±7.2 62.8±122.3 15.3±30.8 2.3±5.6

4500 58.5±82.7 26.4±65.7 3.6±9.0 69.3±132.7 11.8±30.9 9.2±14.4

6000 97.6±152.5 96.8±122.4 15.0±16.4 109.1±182.7 15.0±47.4 7.7±11.2

with previous labeled and unlabeled samples. IL-BCS
3
VM improves

the efficiency of BCS
3
VM algorithms significantly while retaining

almost the same high classification accuracy as BCS
3
VM. What’s

more, we provide the finite convergence analysis for IL-BCS
3
VM.

Experimental results on a variety of benchmark datasets not only

verify the finite convergence of our IL-BCS
3
VM, but also show a

huge reduction of computational time compared with existing batch

and incremental learning algorithms, while retaining the similar

generalization performance.
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