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Abstract
In this paper, we propose a faster stochastic al-

ternating direction method of multipliers (AD-

MM) for nonconvex optimization by using a

new stochastic path-integrated differential es-

timator (SPIDER), called as SPIDER-ADMM.

Moreover, we prove that the SPIDER-ADMM

achieves a record-breaking incremental first-

order oracle (IFO) complexity of � (n+n1/2ε−1)
for finding an ε-approximate stationary point,

which improves the deterministic ADMM by a

factor � (n1/2), where n denotes the sample size.

As one of major contribution of this paper, we

provide a new theoretical analysis framework for

nonconvex stochastic ADMM methods with pro-

viding the optimal IFO complexity. Based on

this new analysis framework, we study the un-

solved optimal IFO complexity of the existing

non-convex SVRG-ADMM and SAGA-ADMM

methods, and prove they have the optimal I-

FO complexity of � (n + n2/3ε−1). Thus, the

SPIDER-ADMM improves the existing stochas-

tic ADMM methods by a factor of � (n1/6).
Moreover, we extend SPIDER-ADMM to the on-

line setting, and propose a faster online SPIDER-

ADMM. Our theoretical analysis shows that the

online SPIDER-ADMM has the IFO complexi-

ty of � (ε−
3
2 ), which improves the existing best

results by a factor of � (ε
1
2 ). Finally, the exper-

imental results on benchmark datasets validate

that the proposed algorithms have faster conver-

gence rate than the existing ADMM algorithms

for nonconvex optimization.
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1. Introduction
Alternating direction method of multipliers (ADMM)

(Gabay & Mercier, 1976; Boyd et al., 2011) is a powerful

optimization tool for the composite or constrained prob-

lems in machine learning. In general, it considers the fol-

lowing optimization problem:

min
x,y

f(x) + g(y), s.t. Ax+By = c,

where f(x) : Rd ∞ R and g(y) : Rp ∞ R are convex

functions. For example, in machine learning, f(x) can

be used for the empirical loss, g(y) for the structure reg-

ularizer, and the constraint for encoding the structure pat-

tern of model parameters. Due to the flexibility in splitting

the objective function into loss f(x) and regularizer g(y),
the ADMM can relatively easily solve some complicated

structure problems in machine learning, such as the graph-

guided fused lasso (Kim et al., 2009) and the overlapping

group lasso, which are too complicated for the other popu-

lar optimization methods such as proximal gradient meth-

ods (Nesterov, 2005; Beck & Teboulle, 2009). Thus, the

ADMM has been extensively studied in recent years (Boyd

et al., 2011; Nishihara et al., 2015; Xu et al., 2017).

The above deterministic ADMM generally needs to com-

pute the gradients of empirical loss function on all exam-

ples at each iteration, which makes it unsuitable for solv-

ing big data problems. Thus, the online and stochastic ver-

sions of ADMM (Wang & Banerjee, 2012; Suzuki, 2013;

Ouyang et al., 2013) are developed. However, due to large

variance of stochastic gradients, these stochastic methods

suffer from a slow convergence rate. Recently, some fast

stochastic ADMM methods (Zhong & Kwok, 2014; Suzu-

ki, 2014; Zheng & Kwok, 2016a) have been proposed by

using the variance reduced (VR) techniques.

So far, the above discussed ADMM methods build on the

convexity of objective functions. In fact, ADMM is al-

so highly successful in solving various nonconvex prob-

lems such as tensor decomposition (Kolda & Bader, 2009)

and training neural networks (Taylor et al., 2016). Thus,

some works (Li & Pong, 2015; Wang et al., 2015a;b; Hong

et al., 2016; Jiang et al., 2019) have devoted to studying

the non-convex ADMM methods. More recently, for solv-

ing the big data problems, the nonconvex stochastic AD-

MMs (Huang et al., 2016; Zheng & Kwok, 2016b) have
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Table 1. IFO complexity comparison of the non-convex ADMM methods for finding an ε-approximate stationary point of the problem

(1), i.e., E‖∇L(x, y[m], z)‖2 ≤ ε. n denotes the sample size.

Problem Algorithm Reference IFO

Finite-sum

ADMM Jiang et al. (2019) � (nε−1)

SVRG-ADMM Huang et al. (2016); Zheng & Kwok (2016b) � (n+ n
2
3 ε−1)

SAGA-ADMM Huang et al. (2016) � (n+ n
2
3 ε−1)

SPIDER-ADMM Ours � (n+ n
1
2 ε−1)

Online
SADMM Huang & Chen (2018) � (ε−2)

Online SPIDER-ADMM Ours � (ε−
3
2 )

been proposed with the VR techniques such as the SVRG

(Johnson & Zhang, 2013) and the SAGA (Defazio et al.,

2014). In addition, Huang & Chen (2018) have extended

the online/stochastic ADMM (Ouyang et al., 2013) to the

nonconvex setting.

Although these works have studied the convergence of non-

convex stochastic ADMMs and proved these methods have

� ( c
T ) convergence rate, where T denotes number of itera-

tion and c a constant independent on T , they have not pro-

vided the optimal incremental/stochastic first-order oracle

(IFO/SFO (Ghadimi & Lan, 2013)) complexity for these

methods yet. In other words, they have only proved these

stochastic ADMMs have the same convergence rate to the

deterministic ADMM (Jiang et al., 2019), but don’t tell us

whether these stochastic ADMMs have less IFO complex-

ity than the deterministic ADMM, which is a key assess-

ment criteria of the first-order stochastic methods (Red-

di et al., 2016). For example, from the existing noncov-

ex SAGA-ADMM and SVRG-ADMM (Zheng & Kwok,

2016b; Huang et al., 2016), we only obtain a rough IFO

complexity of � (n + bcε−1) for finding an ε-approximate

stationary point, where b denotes the mini-batch size. In

their convergence analysis, to ensure the convergence of

these methods, they need to choose a small step size η and

a large penalty parameter ρ. Under this case, we maybe

have bc � n, so that these stochastic ADMMs have no less

IFO complexity than the deterministic ADMM. Thus, there

still exist two important problems to be addressed:

≤ Does the stochastic ADMM have less IFO complex-
ity than the deterministic ADMM for nonconvex opti-
mization?

≤ If the stochastic ADMM improves IFO complexity,
how much can it improve?

In the paper, we answer the above challenging questions

with positive solutions and propose a new faster stochastic

ADMM method (i.e., SPIDER-ADMM) to solve the fol-

lowing nonconvex nonsmooth problem:

min
x,{yj}mj=1

f(x) :=

⎩∑⎪
∑⎨

1

n

n

i=1

fi(x) (finite-sum)

Eζ [f(x, ζ)] (online)

+

m

j=1

gj(yj)

s.t. Ax+
m

j=1

Bjyj = c, (1)

where A ∀ R
l×d, Bj ∀ R

l×p for all j ∀ [m], f(x) :
R

d ∞ R is a nonconvex and smooth function, and gj(yj) :
R

p ∞ R is a convex and possibly nonsmooth function for

all j ∀ [m], m � 1. In machine learning, f(x) can be

used for losses such as activation functions of neural net-

works,
∑m

j=1 gj(yj) can be used for not only single struc-

ture penalty (e.g., sparse, low rank) but also superposition

structures penalties (e.g., sparse + low rank, sparse + group

sparse), which are widely applied in robust PCA (Candès

et al., 2011), subspace clustering (Liu et al., 2010), and

dirty models (Jalali et al., 2010). For the problem (1), it-

s finite-sum subproblem generally arises from the empir-

ical loss minimization and M-estimation. While its on-

line subproblem comes from the expected loss minimiza-

tion. To address the online subproblem, we extend the

SPIDER-ADMM to the online setting, and propose an on-

line SPIDER-ADMM.

1.1. Challenges and Contributions

Our SPIDER-ADMM methods use a new stochastic path-

integrated differential estimator (SPIDER (Fang et al.,

2018)), which is a variant of stochastic recursive gradi-

ent algorithm (SARAH (Nguyen et al., 2017a;b)) and is

further improved by SpiderBoost in (Wang et al., 2018).

Although the SPIDER and SpiderBoost have shown good

performances in the stochastic gradient descent (SGD) and

proximal SGD methods, applying these techniques to the

nonconvex ADMM method is not a trivial task. There ex-

ist the following two main challenges:

≤ Due to failure of the Fejér monotonicity of iteration,

the convergence analysis of the nonconvex ADMM is

generally quite difficult (Wang et al., 2015a). With

using the inexact stochastic gradient, this difficulty is

greater in the nonconvex stochastic ADMM methods;

≤ To obtain the optimal IFO complexity of our methods,

we need to design a new effective Lyapunov function,

which can not follow the existing nonconvex stochas-

tic ADMM methods (Huang et al., 2016).

In this paper, thus, we will fill this gap between the noncon-

vex ADMM and the SPIDER/SpiderBoost methods. Our

main contributions are summarized as follows:

1) We propose a faster stochastic ADMM ( i.e., SPIDER-

ADMM ) method for nonconvex optimization based
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on the SPIDER/SpiderBoost. Moreover, we prove

that the SPIDER-ADMM achieves an optimal I-

FO complexity of � (n + n1/2ε−1) for finding an

ε-approximate stationary point of the problem (1),

which improves the deterministic ADMM by a factor

� (n1/2).
2) We extend the SPIDER-ADMM method to the online

setting, and propose a faster online SPIDER-ADMM

for nonconvex optimization. Moreover, we prove that

the online SPIDER-ADMM achieves the optimal IFO

complexity of � (ε−
3
2 ), which improves the existing

best results by a factor of � (ε
1
2 ).

3) We provide an useful theoretical analysis framework

for nonconvex stochastic ADMM methods with pro-

viding the optimal IFO complexity. Based on our new

analysis framework, we also prove that the existing

nonconvex SVRG-ADMM and SAGA-ADMM have

the optimal IFO complexity of � (n+n2/3ε−1). Thus,

our SPIDER-ADMM improves the existing stochastic

ADMMs by a factor of � (n1/6).

1.2. Notations
Let y[m] = }y1,×××, ym〈 and y[j:m] = }yj ,×××, ym〈
for j ∀ [m] = }1, 2,×××,m〈 . Given a positive definite

matrix G, √x√2G = xTGx; σmax(G) and σmin(G) de-

note the largest and smallest eigenvalues of matrix G, re-

spectively; κG = σmax(G)
σmin(G) � 1. σA

max and σA
min denote

the largest and smallest eigenvalues of matrix ATA, re-

spectively. Given positive definite matrices }Hj〈mj=1, let

σH
min = minj σmin(Hj) and σH

max = maxj σmax(Hj). Id
denotes a d©d identity matrix.

2. Preliminaries
In the section, we introduce some preliminaries regarding

problem (1). First, we restate the standard ε-approximate s-

tationary point of the nonconvex problem (1) used in (Jiang

et al., 2019; Zheng & Kwok, 2016b).

Definition 1. Given ε > 0, the point (x∗, y∗[m], z
∗) is said

to be an ε-approximate stationary point of the problem (1),
if it holds that

E
]
dist(0, ∂L(x∗, y∗[m], z

∗))2
{≥ ε, (2)

where L(x, y[m], z) = f(x) +
∑m

j=1 gj(yj) 〉z,Ax +∑m
j=1 Bjyj c| ,

∂L(x, y[m], z) =

⎤
⎥⎥⎥⎥⎦

xL(x, y[m], z)
∂y1L(x, y[m], z)

×××
∂ymL(x, y[m], z)

Ax
∑m

j=1 Bjyj + c

⎣
⎧⎧⎧⎧⎢
,

and dist(0, ∂L) = infL′∈∂L√0 L′√.
Next, we give some standard assumptions regarding prob-

lem (1) as follows:

Assumption 1. Each loss function fi(x) is L-smooth such
that

√ fi(x) fi(y)√≥ L√x y√, Ix, y ∀ R
d,

which is equivalent to

fi(x) ≥ fi(y) + fi(y)
T (x y) +

L

2
√x y√2.

Assumption 2. Gradient of each loss function fi(x) is
bounded, i.e., there exists a constant δ > 0 such that for
all x, it follows √ fi(x)√2 ≥ δ2.
Assumption 3. f(x) and gj(yj) for all j ∀ [m] are all
lower bounded, and let f∗ = infx f(x) > ∈ and g∗j =
infyj gj(yj) > ∈ .
Assumption 4. A is a full row or column rank matrix.

Assumption 1 imposes smoothness on the individual loss

functions, which is commonly used in convergence anal-

ysis of the nonconvex algorithms (Ghadimi & Lan, 2013;

Ghadimi et al., 2016). Assumption 2 shows the gradients of

loss functions have a bounded norm, which is used in the s-

tochastic gradient-based and ADMM-type methods (Boyd

et al., 2011; Suzuki, 2013; Hazan et al., 2016). Assump-

tions 3 and 4 have been used in the study of nonconvex

ADMMs (Hong et al., 2016; Jiang et al., 2019; Zheng &

Kwok, 2016b). Assumptions 3 guarantees the feasibility of

the problem (1). Assumption 4 guarantees the matrix ATA
or AAT is non-singular. Since there exist multiple regular-

izers in the above problem (1), A is general a full column

rank matrix. Without loss of generality, we will use the full

column rank matrix A below.

3. Fast SPIDER-ADMM Method
In the section, we propose a new faster stochastic ADM-

M algorithm, i.e., SPIDER-ADMM, to solve the finite-sum

problem (1). We begin with giving the augmented La-

grangian function of the problem (1):

Oρ(x, y[m], z) =f(x) +
m

j=1

gj(yj) 〉z,Ax+
m

j=1

Bjyj c|

+
ρ

2
√Ax+

m

j=1

Bjyj c√2, (3)

where z ∀ R
l and ρ > 0 denote the dual variable and penal-

ty parameter, respectively. Due to using stochastic gradient

of the function f(x) to update x, we define an approximat-

ed function over xk as follows:

Ôρ(x, y
k+1
[m] , zk, vk) = f(xk) + vTk (x xk) +

1

2η
√x xk√2G

+

m

j=1

gj(y
k+1
j ) zTk (Ax+

m

j=1

Bjy
k+1
j c)

+
ρ

2
√Ax+

m

j=1

Bjy
k+1
j c√2, (4)



Faster Stochastic ADMM for Nonconvex Optimization

where η > 0 is a step size; vk is an unbiased stochastic

gradient over xk, i.e., E[vk] = f(xk); G→0 is a positive

matrix. In updating x, to avoid computing inverse of G
η +

ATA, we can set G = rId ρηATA � Id with r �
ρησA

max+1 to linearize term ρ
2√Ax+

∑m
j=1 Bjy

k+1
j c√2.

To use the following proximal operator to update yj :

yk+1
j = argmin

yj∈Rp

1

2
√yj ykj√2 + gj(yj), Ij ∀ [m] (5)

we can set Hj = τjIp ρBT
j Bj � Ip with τj �

ρσmax(B
T
j Bj) + 1 for all j ∀ [m] to linearize term

ρ
2√Axk +

∑j−1
i=1 Biy

k+1
i +Bjyj +

∑m
i=j+1 Biy

k
i c√2.

Algorithm 1 gives the SPIDER-ADMM algorithmic frame-

work. In Algorithm 1, after setting v0 = f(x0), for each

subsequent iteration k, we have:

vk = fIk(xk) fIk(xk−1) + vk−1, (6)

where fIk(xk) = 1
|Ik|

∑
i∈Ik fi(xk). It is easy to

check E[vk‖x0] = f(xk), i.e., an unbiased estimate gra-

dient over xk. Comparing the existing SVRG-ADMM, our

SPIDER-ADMM constructs stochastic gradient vk based

on the information xk−1 and vk−1, while the SVRG-

ADMM constructs vk based on the information x0 and v0
(i.e., the initalization information of each outer loop). Due

to using more fresh information, thus, SPIDER-ADMM

can yield more accurate estimation of the full gradient than

SVRG-ADMM. Simultaneously, it does not require to ad-

ditional computation and memory, so it costs less memory

than the existing SAGA-ADMM.

Algorithm 1 SPIDER-ADMM Algorithm

1: Input: b, q, K, η > 0 and ρ > 0;

2: Initialize: x0 ∀ R
d, y0j ∀ R

p, j ∀ [m] and z0 ∀ R
l;

3: for k = 0, 1,×××,K 1 do
4: if mod(k, q) = 0 then
5: Compute vk = f(xk);
6: else
7: Uniformly randomly pick a mini-batch Lk (with

replacement) from }1, 2,×××, n〈 with ‖Lk‖ = b,
and compute

vk = fIk(xk) fIk(xk−1) + vk−1;

8: end if
9: yk+1

j = argminyj

}Oρ(xk, y
k+1
[j−1], yj , y

k
[j+1:m], zk)+

1
2√yj ykj√2Hj

⎡
for all j ∀ [m];

10: xk+1 = argminx Ôρ x, yk+1
[m] , zk, vk

[
;

11: zk+1 = zk ρ(Axk+1 +
∑m

j=1 Bjy
k+1
j c);

12: end for
13: Output: }x, y[m], z〈 chosen uniformly random from

}xk, y
k
[m], zk〈Kk=1.

4. Fast Online SPIDER-ADMM Method
In the section, we propose an online SPIDER-ADMM to

solve the online problem (1), which is equivalent to the fol-

lowing stochastic constrained problem:

minEζ [f(x, ζ)]+
m

j=1

gj(yj), s.t. Ax+
m

j=1

Bjyj = c, (7)

where f(x) = Eζ [f(x, ζ)] denotes a population risk over

an underlying data distribution. The problem (7) can be

viewed as having infinite samples, so we cannot evaluate

the full gradient f(x). For the problem (7), we use s-

tochastic sampling to evaluate the full gradient. Algorith-

m 2 shows the algorithmic framework of online SPIDER-

ADMM method. In Algorithm 2, we use the mini-batch

samples to estimate the full gradient.

Algorithm 2 Online SPIDER-ADMM Algorithm

1: Input: b1, b2, q, K, η > 0 and ρ > 0;

2: Initialize: x0 ∀ R
d, y0j ∀ R

p, j ∀ [m] and z0 ∀ R
l;

3: for k = 0, 1,×××,K 1 do
4: if mod(k, q) = 0 then
5: Draw S1 samples with ‖S1‖ = b1, and compute

vk = 1
b1

∑
i∈S1

fi(xk);
6: else
7: Draw S2 samples with ‖S2‖ = b2 =

∇
b1, and

compute

vk =
1

b2
i∈S2

fi(xk) fi(xk−1)
[
+ vk−1;

8: end if
9: yk+1

j = argminyj

}Oρ(xk, y
k+1
[j−1], yj , y

k
[j+1:m], zk)+

1
2√yj ykj√2Hj

⎡
for all j ∀ [m];

10: xk+1 = argminx Ôρ x, yk+1
[m] , zk, vk

[
;

11: zk+1 = zk ρ(Axk+1 +
∑m

j=1 Bjy
k+1
j c);

12: end for
13: Output: }x, y[m], z〈 chosen uniformly random from

}xk, y
k
[m], zk〈Kk=1.

5. Convergence Analysis
In the section, we study the convergence properties of both

the SPIDER-ADMM and online SPIDER-ADMM. At the

same time, based on our new theoretical analysis frame-

work, we afresh analyze the convergence properties of ex-

isting ADMM-based nonconvex optimization algorithms,

i.e., SVRG-ADMM and SAGA-ADMM, and derive their

optimal IFO complexity for finding an ε-approximate sta-

tionary point of the problem (1).
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5.1. Convergence Analysis of SPIDER-ADMM

In the subsection, we study convergence properties of the

SPIDER-ADMM algorithm. Throughout the paper, let

nk = �k/q{ such that (nk 1)q ≥ k ≥ nkq 1.

Lemma 1. Suppose the sequence }xk, y
k
[m], zk〈Kk=1 is gen-

erated from Algorithm 1, and define a Lyapunov function
Rk as follows:

Rk=Oρ(xk, y
k
[m], zk)+(

9L2

σA
minρ

+
3σ2

max(G)

σA
minη

2ρ
)√xk xk−1√2

+
2L2

σA
minρb

k−1

i=(nk−1)q

E√xi+1 xi√2.

Let b = q, η = 2ασmin(G)
3L (0 < α ≥ 1) and ρ =

√
170κGL
σA
minα

,
then we have

1

K

K−1

k=0

√xk+1 xk√2 +
m

j=1

√ykj yk+1
j √2[ ≥ R0 R∗

Kγ
,

where γ = min(χ, σH
min) with χ �

√
170κGL
4α and R∗ is a

lower bound of the function Rk.

Let θk = E
]√xk+1 xk√2 + √xk xk−1√2 +

1
q

∑k
i=(nk−1)q√xi+1 xi√2+

∑m
j=1√ykj yk+1

j √2{. Next,

based on the above lemma, we give the convergence prop-

erties of SPIDER-ADMM.

Theorem 1. Suppose the sequence }xk, y
k
[m], zk)

K
k=1 is

generated from Algorithm 1. Let

ν1 = m ρ2σB
maxσ

A
max + ρ2(σB

max)
2 + σ2

max(H)
[
,

ν2 = 3(L2 +
σ2
max(G)

η2
), ν3 =

18L2

σA
minρ

2
+

3σ2
max(G)

σA
minη

2ρ2
,

and let b = q, η = 2ασmin(G)
3L (0 < α ≥ 1), and ρ =√

170κGL
σA
minα

, then we have

min
1≤k≤K

E
]
dist(0, ∂L(xk, y

k
[m], zk))

2
{≥ νmax

K

K−1

k=1

θk

≥ 3νmax(R0 R∗)
Kγ

,

where γ = min(χ, σH
min) with χ �

√
170κGL
4α , νmax =

max}ν1, ν2, ν3〈 and R∗ is a lower bound of the function
Rk. It implies that the iteration number K satisfies

K =
3νmax(R0 R∗)

εγ
,

then (xk∗ , yk
∗

[m], zk∗) is an ε-approximate stationary point
of (1), where k∗ = argmink θk.

Remark 1. Theorem 1 shows that the SPIDER-ADMM has
O(1/K) convergence rate. Moreover, given b = q =

�n 1
2 {, η = 2ασmin(G)

3L (0 < α ≥ 1) and ρ =
√
170κGL
σA
minα

, the

SPIDER-ADMM has the optimal IFO of � (n+n
1
2 ε−1) for

finding an ε-approximate stationary point. In particular,
we can choose α ∀ (0, 1] according to different problems
to obtain appropriate step-size η and penalty parameter ρ,
e.g., set α = 1, we have η = 2σmin(G)

3L and ρ =
√
170κGL
σA
min

.

5.2. Convergence Analysis of Online SPIDER-ADMM

In the subsection, we study convergence properties of the

online SPIDER-ADMM algorithm.

Lemma 2. Suppose the sequence }xk, y
k
[m], zk〈Kk=1 is gen-

erated from Algorithm 2, and define a Lyapunov function
Φk as follows:

Φk =Oρ(xk, y
k
[m], zk) + (

9L2

σA
minρ

+
3σ2

max(G)

σA
minη

2ρ
)√xk xk−1√2

+
2L2

σA
minρb2

k−1

i=(nk−1)q

E√xi+1 xi√2.

Let b2 = q, η = 2ασmin(G)
3L (0 < α ≥ 1) and ρ =

√
170κGL
σA
minα

,
then we have

1

K

K−1

k=0

√xk+1 xk√2 +
m

j=1

√ykj yk+1
j √2[

≥ Φ0 Φ∗

Kγ
+

2δ2

b1Lγ
+

72δ2

σA
minb1ργ

,

where γ = min(χ, σH
min) with χ �

√
170κGL
4α and Φ∗ is a

lower bound of the function Φk.

Let θk = E
]√xk+1 xk√2 + √xk xk−1√2 +

1
q

∑k
i=(nk−1)q√xi+1 xi√2 +

∑m
j=1√ykj yk+1

j √2{.
Theorem 2. Suppose the sequence }xk, y

k
[m], zk)

K
k=1 is

generated from Algorithm 2. Let

ν1 = m ρ2σB
maxσ

A
max + ρ2(σB

max)
2 + σ2

max(H)
[
,

ν2 = 3(L2 +
σ2
max(G)

η2
), ν3 =

18L2

σA
minρ

2
+

3σ2
max(G)

σA
minη

2ρ2
,

and let b2 = q =
∇
b1, η = 2ασmin(G)

3L (0 < α ≥ 1) and

ρ =
√
170κGL
σA
minα

, then we have

min
1≤k≤K

E
]
dist(0, ∂L(xk, y

k
[m], zk))

2
{≥ νmax

K

K−1

k=1

θk +
w

b1

≥ 3νmax(Φ0 Φ∗)
Kγ

+
6νmaxδ

2

b1γ
(
1

L
+

36

σA
minρ

) +
w

b1
,
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where w = 12δ2 max}1, 6
σA
minρ

2 〈 , γ = min(χ, σH
min) with

χ �
√
170κGL
4α , νmax = max}ν1, ν2, ν3〈 and Φ∗ is a lower

bound of the function Φk. It implies that K and b1 satisfy

K=
6νmax(Φ0 Φ∗)

εγ
, b1=

12νmaxδ
2

εγ
(
1

L
+

36

σA
minρ

)+
2w

ε
,

then (xk∗ , yk
∗

[m], zk∗) is an ε-approximate stationary point
of (1), where k∗ = argmink θk.

Remark 2. Theorem 2 shows that given b2 = q =
∇
b1,

η = 2ασmin(G)
3L (0 < α ≥ 1), ρ =

√
170κGL
σA
minα

and b1 =

� (ε−1), the online SPIDER-ADMM has the optimal IFO
of � (ε−

3
2 ) for finding an ε-approximate stationary point.

5.3. Convergence Analysis of Non-convex
SVRG-ADMM

In the subsection, we extend the existing nonconvex

SVRG-ADMM method (Huang et al., 2016; Zheng & K-

wok, 2016b) to the multiple variables setting for solving the

problem (1). The SVRG-ADMM algorithm is described in

Algorithm 3 given in the supplementary document. Next,

we analyze convergence properties of the SVRG-ADMM

algorithm, and derive its optimal IFO complexity.

Lemma 3. Suppose the sequence }(xs
t , y

s,t
[m], z

s
t )

M
t=1〈Ss=1 is

generated from Algorithm 3, and define a Lyapunov func-
tion:

Γs
t =E

]Oρ(x
s
t , y

s,t
[m], z

s
t )+(

3σ2
max(G)

σA
minη

2ρ
+

9L2

σA
minρ

)√xs
t xs

t−1√2

+
9L2

σA
minρb

√xs
t−1 x̃s√2 + ct√xs

t x̃s√2{,

where the positive sequence }ct〈 satisfies, for s =
1, 2,×××, S

ct =

⎩∑⎪
∑⎨

18L2

σA
minρb

+
L

b
+ (1 + β)ct+1, 1 ≥ t ≥M,

0, t �M + 1.

Let M = �n 1
3 {, b = �n 2

3 {, η = ασmin(G)
5L (0 < α ≥ 1) and

ρ = 2
√
231κGL
σA
minα

, we have

1

T

S

s=1

M−1

t=0

σH
min

m

j=1

√ys,tj ys,t+1
j √2 + χt√xs

t+1 xs
t√2

+
L

2b
√xs

t x̃s√2[ ≥ Γ1
0 Γ∗

T
. (8)

where T = MS, χt �
√
231κGL
2α > 0, and Γ∗ denotes a

lower bound of function Γs
t .

Let θst = E
]√xs

t+1 xs
t√2+√xs

t xs
t−1√2+ 1

b (√xs
t x̃s√2+

√xs
t−1 x̃s√2) +∑m

j=1√ys,tj ys,t+1
j √2{.

Theorem 3. Suppose the sequence }(xs
t , y

s,t
[m], z

s
t )

M
t=1〈Ss=1

is generated from Algorithm 3. Let

ν1 = m ρ2σB
maxσ

A
max + ρ2(σB

max)
2 + σ2

max(H)
[
,

ν2 = 3L2 +
3σ2

max(G)

η2
, ν3 =

9L2

σA
minρ

2
+

3σ2
max(G)

σA
minη

2ρ2
,

and let M = �n 1
3 {, b = �n 2

3 {, η = ασmin(G)
5L (0 < α ≥ 1)

and ρ = 2
√
231κGL
σA
minα

, then we have

min
s,t

E
]
dist(0, ∂L(xs

t , y
s,t
[m], z

s
t ))

2
{≥ 2νmax(Γ

1
0 Γ∗)

γT
,

where γ = min(σH
min,

L
2 , χt) with χt �

√
231κGL
2α > 0,

νmax = max(ν1, ν2, ν3) and Γ∗ is a lower bound of the
function Γs

t . It implies that the whole iteration number T =
MS satisfies

T =
2νmax(Γ

1
0 Γ∗)

εγ
,

then (xs∗
t∗ , y

s∗,t∗

[m] , zs
∗

t∗ ) is an ε-approximate stationary point
of (1), where (t∗, s∗) = argmint,s θ

s
t .

Remark 3. Theorem 3 shows that given M = �n 1
3 {, b =

�n 2
3 {, η = ασmin(G)

5L (0 < α ≥ 1) and ρ = 2
√
231κGL
σA
minα

, the
non-convex SVRG-ADMM has the optimal IFO complexity
of � (n + n

2
3 ε−1) for finding an ε-approximate stationary

point.

5.4. Convergence Analysis of Non-convex
SAGA-ADMM

In the subsection, we extend the existing nonconvex

SAGA-ADMM method (Huang et al., 2016) to the multiple

variables setting for solving the problem (1). The SAGA-

ADMM algorithm is described in Algorithm 4 given in the

supplementary document. Next, we analyze convergence

properties of non-convex SAGA-ADMM, and derive its the

optimal IFO complexity.

Lemma 4. Suppose the sequence }xt, y
t
[m], zt〈Tt=1 is gen-

erated from Algorithm 4, and define a Lyapunov function

Ωt =E
]Oρ(xt, y

t
[m], zt) + (

3σ2
max(G)

σA
minη

2ρ
+

9L2

σA
minρ

)√xt xt−1√2

+
9L2

σA
minρb

1

n

n

i=1

√xt−1 ut−1
i √2 + ct

1

n

n

i=1

√xt ut
i√2

{
,

where the positive sequence }ct〈 satisfies

ct =

⎩∑⎪
∑⎨

18L2

σA
minρb

+
L

b
+ (1 p)(1 + β)ct+1, 0 ≥ t ≥ T 1,

0, t � T,
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where p denotes probability of an index i being in Lt. Fur-
ther, let b = �n 2

3 {, η = ασmin(G)
17L (0 < α ≥ 1) and

ρ = 2
√
2031κG

σA
minα

we have

1

T

T

t=1

σH
min

m

j=1

√ytj yt+1
j √2 + χt√xt xt+1√2

+
L

2b

1

n

n

i=1

√xt ut
i√2

[ ≥ Ω0 Ω∗

T
,

where χt �
√
2031κGL

2α > 0 and Ω∗ denotes a lower bound
of function Ωt.

Let θt = E
]√xt+1 xt√2+√xt xt−1√2+ 1

bn

∑n
i=1(√xt

ut
i√2 +√xt−1 ut−1

i √2) +∑m
j=1√ytj yt+1

j √2{.
Theorem 4. Suppose the sequence }xt, y

t
[m], zt〈Tt=1 is

generated from Algorithm 4. Let

ν1 = m ρ2σB
maxσ

A
max + ρ2(σB

max)
2 + σ2

max(H)
[
,

ν2 = 3L2 +
3σ2

max(G)

η2
, ν3 =

9L2

σA
minρ

2
+

3σ2
max(G)

σA
minη

2ρ2
,

and let b = �n 2
3 {, η = ασmin(G)

17L (0 < α ≥ 1) and ρ =
2
√
2031κG

σA
minα

, then we have

min
1≤t≤T

E
]
dist(0, ∂L(xt, y

t
[m], zt))

2
{≥ 2νmax(Ω0 Ω∗)

γT
,

where γ = min(σH
min,

L
2 , χt) with χt �

√
2031κGL

2α > 0,
νmax = max(ν1, ν2, ν3) and Ω∗ is a lower bound of the
function Ωt. It implies that the iteration number T satisfies

T =
2νmax

εγ
(Ω0 Ω∗),

then (xt∗ , y
t∗
[m], zt∗) is an ε-approximate stationary point of

(1), where t∗ = argmin1≤t≤T θt.

Remark 4. Theorem 4 shows that given b = �n 2
3 {,

η = ασmin(G)
17L (0 < α ≥ 1) and ρ = 2

√
2031κGL
σA
minα

, the
non-convex SAGA-ADMM has the optimal IFO of � (n +

n
2
3 ε−1) for finding an ε-approximate stationary point.

Remark 5. Our contributions on convergence analysis of
both the non-convex SVRG-ADMM and SAGA-ADMM are
given as follows:

≤We extend both the existing non-convex SVRG-ADMM
and SAGA-ADMM to the multi-block setting for solv-
ing the problem (1);

≤We not only give its optimal IFO complexity of � (n+

n
2
3 ε−1), but also provide the specific and simple

choice on step-size η and penalty parameter ρ.

All related proofs are provided in the supplementary docu-
ment.

Table 2. Real datasets
datasets #samples #features #classes

a9a 32,561 123 2

w8a 64,700 300 2

ijcnn1 126,702 22 2

covtype.binary 581,012 54 2

letter 15,000 16 26

sensorless 58,509 48 11

mnist 60,000 780 10

covtype 581,012 54 7

6. Experiments
In this section, we will compare the proposed algorith-

m (SPIDER-ADMM) with the existing non-convex algo-

rithms nc-ADMM (Jiang et al., 2019), nc-SVRG-ADMM

(Huang et al., 2016; Zheng & Kwok, 2016b), nc-SAGA-

ADMM (Huang et al., 2016) and nc-SADMM (Huang &

Chen, 2018)
[

on two applications: 1) Graph-guided bi-

nary classification; 2) Multi-task learning. In the experi-

ment, we use some publicly available datasets1, which are

summarized in Table 2. All algorithms are implemented in

MATLAB, and all experiments are performed on a PC with

an Intel i7-4790 CPU and 16GB memory.

6.1. Graph-Guided Binary Classification

In the subsection, we focus on the binary classification task.

Specifically, given a set of training samples (ai, bi)
n
i=1,

where ai ∀ R
d, bi ∀ } 1, 1〈 , then we solve the follow-

ing nonconvex empirical loss minimization problem:

min
x∈Rd

1

n

n

i=1

fi(x) + λ√Ax√1, (9)

where fi(x) =
1

1+exp(biaT
i x)

is the nonconvex sigmoid loss

function. We use the nonsmooth regularizer i.e., graph-

guided fused lasso (Kim et al., 2009), and A decodes the

sparsity pattern of graph, which is obtained by sparse pre-

cision matrix estimation (Friedman et al., 2008). To solve

the problem (9), we give an auxiliary variable y with the

constraint y = Ax. In the experiment, we fix the parameter

λ = 10−5, and use the same initial solution x0 from the

standard normal distribution for all algorithms.

Figure 1 shows that the objective values of our SPIDER-

ADMM method faster decrease than those of other meth-

ods, as CPU time consumed increases. Thus, these results

demonstrate that our method has a relatively faster conver-

gence rate than other methods.

1 These data are from the LIBSVM website
(www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/).
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(a) a9a (b) w8a

(c) ijcnn1 (d) covtype.binary

Figure 1. Objective value versus CPU time of the nonconvex
graph-guided binary classification model on some real datasets.

6.2. Multi-Task Learning

In this subsection, we focus on the multi-task learning task

with sparse and low-rank structures. Specifically, given a

set of training samples (ai, bi)
n
i=1, where ai ∀ R

d and bi ∀
}1, 2,×××, c〈 , then let D ∀ R

n×c with Dij = 1 if j =
bi, and Dij = 0 otherwise. This multi-task learning is

equivalent to solving the following nonconvex problem:

min
X∈Rc×d

1

n

n

i=1

fi(X) + λ1

ij

κ(‖Xij‖) + λ2√X√∗, (10)

where fi(X) = log(
∑c

j=1 exp(Xj,.ai))∑c
j=1 DijXj,.ai is a multinomial logistic loss func-

tion, κ(‖Xij‖) = β log(1 +
|Xij |
α ) is the nonconvex

log-sum penalty function (Candes et al., 2008). Next, we

change the above problem into the following form:

min
1

n

n

i=1

f̄i(X) + λ1κ0√Y1√1 + λ2√Y2√∗ (11)

s.t. AX +B1Y1 +B2Y2 = 0,

where f̄i(X) = fi(X)+λ1

∑
ij κ(‖Xij‖) κ0√X√1

[
, and

κ0 = κ′(0). Here A = [Ic; Ic] ∀ R
2c×c, B1 = [ Ic; 0] ∀

R
2c×c and B2 = [0; I]. By the Proposition 2.3 in Yao

& Kwok (2016), f̄i(X) is nonconvex and smooth. In the

experiment, we fix the parameters λ1 = 10−5 and λ2 =
10−4, and use the same initial solution x0 from the standard

normal distribution for all algorithms.

Figure 2 shows that objective values of our SPIDER-

ADMM faster decrease than those of the other methods,

as CPU time consumed increases. Similarly, these result-

s also demonstrate that our method has a relatively faster

convergence rate than other methods.

(a) letter (b) sensorless

(c) mnist (d) covtype

Figure 2. Objective value versus CPU time of the nonconvex
multi-task learning on some real datasets.

7. Conclusion
In the paper, we propose a faster stochastic ADMM method

(i.e., SPIDER-ADMM) for nonconvex optimization. More-

over, we prove that the SPIDER-ADMM achieves a record-

breaking IFO complexity of � (n + n1/2ε−1). Further, we

extend the SPIDER-ADMM to the online setting, and pro-

pose a faster online ADMM method (i.e., online SPIDER-

ADMM). As one of major contribution of this paper, we

give a new theoretical analysis framework for the noncon-

vex stochastic ADMM methods with providing the opti-

mal IFO complexity. Based on our new theoretical analysis

framework, we study the unsolved optimal IFO complexi-

ty of the existing non-convex SVRG-ADMM and SAGA-

ADMM methods, and prove they have the optimal IFO

complexity of � (n + n2/3ε−1). In the future work, we

will apply the stage-wise stochastic momentum technique

(Chen et al., 2018) to our methods.
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