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Abstract

In this paper, we propose a faster stochastic al-
ternating direction method of multipliers (AD-
MM) for nonconvex optimization by using a
new stochastic path-integrated differential es-
timator (SPIDER), called as SPIDER-ADMM.
Moreover, we prove that the SPIDER-ADMM
achieves a record-breaking incremental first-
order oracle (IFO) complexity of [ (n+n'/2e1)
for finding an e-approximate stationary point,
which improves the deterministic ADMM by a
factor [ (n'/?), where n denotes the sample size.
As one of major contribution of this paper, we
provide a new theoretical analysis framework for
nonconvex stochastic ADMM methods with pro-
viding the optimal IFO complexity. Based on
this new analysis framework, we study the un-
solved optimal IFO complexity of the existing
non-convex SVRG-ADMM and SAGA-ADMM
methods, and prove they have the optimal I-
FO complexity of [ (n + n?/3¢~1). Thus, the
SPIDER-ADMM improves the existing stochas-
tic ADMM methods by a factor of [ (n'/®).
Moreover, we extend SPIDER-ADMM to the on-
line setting, and propose a faster online SPIDER-
ADMM. Our theoretical analysis shows that the
online SPIDER-ADMM has the IFO complexi-
ty of [ (¢~2), which improves the existing best
results by a factor of [ (¢2). Finally, the exper-
imental results on benchmark datasets validate
that the proposed algorithms have faster conver-
gence rate than the existing ADMM algorithms
for nonconvex optimization.
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1. Introduction

Alternating direction method of multipliers (ADMM)
(Gabay & Mercier, 1976; Boyd et al., 2011) is a powerful
optimization tool for the composite or constrained prob-
lems in machine learning. In general, it considers the fol-
lowing optimization problem:

min f(z) + g(y), st Ax+ By =c,
@,y

where f(z) : R? oo R and g(y) : R? oo R are convex
functions. For example, in machine learning, f(z) can
be used for the empirical loss, g(y) for the structure reg-
ularizer, and the constraint for encoding the structure pat-
tern of model parameters. Due to the flexibility in splitting
the objective function into loss f(z) and regularizer g(y),
the ADMM can relatively easily solve some complicated
structure problems in machine learning, such as the graph-
guided fused lasso (Kim et al., 2009) and the overlapping
group lasso, which are too complicated for the other popu-
lar optimization methods such as proximal gradient meth-
ods (Nesterov, 2005; Beck & Teboulle, 2009). Thus, the
ADMM has been extensively studied in recent years (Boyd
et al., 2011; Nishihara et al., 2015; Xu et al., 2017).

The above deterministic ADMM generally needs to com-
pute the gradients of empirical loss function on all exam-
ples at each iteration, which makes it unsuitable for solv-
ing big data problems. Thus, the online and stochastic ver-
sions of ADMM (Wang & Banerjee, 2012; Suzuki, 2013;
Ouyang et al., 2013) are developed. However, due to large
variance of stochastic gradients, these stochastic methods
suffer from a slow convergence rate. Recently, some fast
stochastic ADMM methods (Zhong & Kwok, 2014; Suzu-
ki, 2014; Zheng & Kwok, 2016a) have been proposed by
using the variance reduced (VR) techniques.

So far, the above discussed ADMM methods build on the
convexity of objective functions. In fact, ADMM is al-
so highly successful in solving various nonconvex prob-
lems such as tensor decomposition (Kolda & Bader, 2009)
and training neural networks (Taylor et al., 2016). Thus,
some works (Li & Pong, 2015; Wang et al., 2015a;b; Hong
et al., 2016; Jiang et al., 2019) have devoted to studying
the non-convex ADMM methods. More recently, for solv-
ing the big data problems, the nonconvex stochastic AD-
MMs (Huang et al., 2016; Zheng & Kwok, 2016b) have



Faster Stochastic ADMM for Nonconvex Optimization

Table 1. TFO complexity comparison of the non-convex ADMM methods for finding an e-approximate stationary point of the problem

(1), ice., E||VL(z, Yjm), 2)||* < €. n denotes the sample size.

Problem Algorithm Reference IFO
ADMM Jiang et al. (2019) [ (ne” 1)
Finite-sum SVRG-ADMM Huang et al. (2016); Zheng & Kwok (2016b) | [ (n+n3e 1)
SAGA-ADMM Huang et al. (2016) [ (n+n35et)
SPIDER-ADMM Ours [ (n+n2e )
Online SADMM Huang & Chen (2018) [ (€_i)
Online SPIDER-ADMM Ours [ (e72)

been proposed with the VR techniques such as the SVRG
(Johnson & Zhang, 2013) and the SAGA (Defazio et al.,
2014). In addition, Huang & Chen (2018) have extended
the online/stochastic ADMM (Ouyang et al., 2013) to the
nonconvex setting.

Although these works have studied the convergence of non-
convex stochastic ADMMs and proved these methods have
[ (%) convergence rate, where 7" denotes number of itera-
tion and ¢ a constant independent on 7', they have not pro-
vided the optimal incremental/stochastic first-order oracle
(IFO/SFO (Ghadimi & Lan, 2013)) complexity for these
methods yet. In other words, they have only proved these
stochastic ADMMs have the same convergence rate to the
deterministic ADMM (Jiang et al., 2019), but don’t tell us
whether these stochastic ADMMs have less IFO complex-
ity than the deterministic ADMM, which is a key assess-
ment criteria of the first-order stochastic methods (Red-
di et al., 2016). For example, from the existing noncov-
ex SAGA-ADMM and SVRG-ADMM (Zheng & Kwok,
2016b; Huang et al., 2016), we only obtain a rough IFO
complexity of [ (n + bce~1) for finding an e-approximate
stationary point, where b denotes the mini-batch size. In
their convergence analysis, to ensure the convergence of
these methods, they need to choose a small step size  and
a large penalty parameter p. Under this case, we maybe
have be > n, so that these stochastic ADMMSs have no less
IFO complexity than the deterministic ADMM. Thus, there
still exist two important problems to be addressed:
< Does the stochastic ADMM have less IFO complex-
ity than the deterministic ADMM for nonconvex opti-
mization?
< If the stochastic ADMM improves IFO complexity,

how much can it improve?
In the paper, we answer the above challenging questions
with positive solutions and propose a new faster stochastic
ADMM method (i.e., SPIDER-ADMM) to solve the fol-
lowing nonconvex nonsmooth problem:

f(l‘) e Ek:% fi (I) (finite-sum) m

min i=1 + 9j (yj)
I7{yj };nyzl . i—1
%:Ec [£(2,¢)] (online) =

s.t. Ax + Bjy; =c, (1)

j=1

where A V R4 B; v R>P forall j V [m], f(x) :
R oo R is a nonconvex and smooth function, and g;(y;) :
RP oo R is a convex and possibly nonsmooth function for
all j V [m], m = 1. In machine learning, f(x) can be
used for losses such as activation functions of neural net-
works, 2;7:1 g;(y;) can be used for not only single struc-
ture penalty (e.g., sparse, low rank) but also superposition
structures penalties (e.g., sparse + low rank, sparse + group
sparse), which are widely applied in robust PCA (Candes
et al., 2011), subspace clustering (Liu et al., 2010), and
dirty models (Jalali et al., 2010). For the problem (1), it-
s finite-sum subproblem generally arises from the empir-
ical loss minimization and M-estimation. While its on-
line subproblem comes from the expected loss minimiza-
tion. To address the online subproblem, we extend the
SPIDER-ADMM to the online setting, and propose an on-
line SPIDER-ADMM.

1.1. Challenges and Contributions

Our SPIDER-ADMM methods use a new stochastic path-
integrated differential estimator (SPIDER (Fang et al.,
2018)), which is a variant of stochastic recursive gradi-
ent algorithm (SARAH (Nguyen et al., 2017a;b)) and is
further improved by SpiderBoost in (Wang et al., 2018).
Although the SPIDER and SpiderBoost have shown good
performances in the stochastic gradient descent (SGD) and
proximal SGD methods, applying these techniques to the
nonconvex ADMM method is not a trivial task. There ex-
ist the following two main challenges:

< Due to failure of the Fejér monotonicity of iteration,
the convergence analysis of the nonconvex ADMM is
generally quite difficult (Wang et al., 2015a). With
using the inexact stochastic gradient, this difficulty is
greater in the nonconvex stochastic ADMM methods;

< To obtain the optimal IFO complexity of our methods,
we need to design a new effective Lyapunov function,
which can not follow the existing nonconvex stochas-
tic ADMM methods (Huang et al., 2016).
In this paper, thus, we will fill this gap between the noncon-
vex ADMM and the SPIDER/SpiderBoost methods. Our
main contributions are summarized as follows:
1) We propose a faster stochastic ADMM ( i.e., SPIDER-
ADMM ) method for nonconvex optimization based
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on the SPIDER/SpiderBoost. Moreover, we prove
that the SPIDER-ADMM achieves an optimal I-
FO complexity of [ (n + n'/2¢7!) for finding an
e-approximate stationary point of the problem (1),
which improves the deterministic ADMM by a factor
[ (n1/?).

2) We extend the SPIDER-ADMM method to the online
setting, and propose a faster online SPIDER-ADMM
for nonconvex optimization. Moreover, we prove that
the online SPIDER-ADMM achieves the optimal IFO
complexity of [ (e~ %), which improves the existing
best results by a factor of | (e% ).

3) We provide an useful theoretical analysis framework
for nonconvex stochastic ADMM methods with pro-
viding the optimal IFO complexity. Based on our new
analysis framework, we also prove that the existing
nonconvex SVRG-ADMM and SAGA-ADMM have
the optimal IFO complexity of [ (n+n?/3¢~1). Thus,
our SPIDER-ADMM improves the existing stochastic
ADMMs by a factor of [ (n'/%).

1.2. Notations

Let Ym) = }y1, 0% Ym( and Ypjum) = 1y, 20K Y (
for j V [m] = }1,2, % m(. Given a positive definite
matrix G, = 2TGw; omax(G) and opin(G) de-
note the larngf and smallest eigenvalues of matrix G, re-

spectively; kg = ‘;‘;%((GG)) = 1. o4, . and 02, denote

the largest and smallest eigenvalues of matrix AT A, re-
spectively. Given positive definite matrices } H; (" ey let

ol = min; omin(H;) and o = max; omax(H;). Iy

min

denotes a d ()d identity matrix.

2. Preliminaries

In the section, we introduce some preliminaries regarding
problem (1). First, we restate the standard e-approximate s-
tationary point of the nonconvex problem (1) used in (Jiang
et al., 2019; Zheng & Kwok, 2016b).

Definition 1. Given € > 0, the point (z*, Yo 2*) is said
to be an e-approximate stationary point of the problem (1),
if it holds that

IE} dist(0, 0L (z™, y[*m], z*))Q{ > e, 2)
where L(x,ym], 2) = f(x) + Zil gi(y;) )z Az +
Z‘nzl Bjy;
L(‘Ta Yim)» = )
ay1L(‘ray[m]; )
OL(x, Yy, 2) = XXX ;
al/mL<x Yim]» 2 )
Az Z’ Bjy; +c¢
and dist(O, 8L) = infL’eaL L.

Next, we give some standard assump}{ons regarding prob-
lem (1) as follows:

Assumption 1. Each loss function f;(x) is L-smooth such
that

which is equivalent to
@)z 5+ (W0 05 v

Assumption 2. Gradient of each loss function f;(x) is
bounded, i.e., there exists a constant § > 0 such that for
all z, itfollows filx) 2> 62

Assumption 3. f an\é g;(y;) for all § ¥ [m] are all
lower bounded, and let fr=inf, f(z) > € andgj =
infy; g;(y;) > €.

Assumption 4. A is a full row or column rank matrix.

Assumption 1 imposes smoothness on the individual loss
functions, which is commonly used in convergence anal-
ysis of the nonconvex algorithms (Ghadimi & Lan, 2013;
Ghadimi et al., 2016). Assumption 2 shows the gradients of
loss functions have a bounded norm, which is used in the s-
tochastic gradient-based and ADMM-type methods (Boyd
et al., 2011; Suzuki, 2013; Hazan et al., 2016). Assump-
tions 3 and 4 have been used in the study of nonconvex
ADMMs (Hong et al., 2016; Jiang et al., 2019; Zheng &
Kwok, 2016b). Assumptions 3 guarantees the feasibility of
the problem (1). Assumption 4 guarantees the matrix A7 A
or AAT is non-singular. Since there exist multiple regular-
izers in the above problem (1), A is general a full column
rank matrix. Without loss of generality, we will use the full
column rank matrix A below.

3. Fast SPIDER-ADMM Method

In the section, we propose a new faster stochastic ADM-
M algorithm, i.e., SPIDER-ADMM, to solve the finite-sum
problem (1). We begin with giving the augmented La-
grangian function of the problem (1):

O (@, Ypm)» 2) =f(x) +  g;(y;) )z Az + By,
=1 j=1
+ Ax + Blyl ¢ 2 3)
2/ Wiy

where z V R! and p > 0 denote the dual variable and penal-
ty parameter, respectively. Due to using stochastic gradient
of the function f(z) to update =, we define an approximat-
ed function over x, as follows:

= f(zr) + v (2
+ g™ Z(Ax+ Byt o
j=1 j=1

@P(I?yﬁi—]lv Zk'avk')

277f

B k+1 2
2\/A ) B]yj c\/7 4)

<l
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where 7 > 0 is a step size; vy is an unbiased stochastic
gradient over zy, i.e., E[vg] =  f(z1); G —0is apositive
matrix. In updating z, to avoid computing inverse of % +
AT A, we can set G = rl; pnATA = I; with r >

P10 + 1 to linearize term £ Az + i Bjy;-”l c 2.
To use the following proximal b/perator 0 update y;: v
1
k+1 . k2 .
y: T =argmin— y; y; S +9g;y;), ZjV [m| (5)
J v, ERP 2\?] j\/ J( J)’ [ ]
we can set H; = 7;1, ijTBj = I, with 7; =

Pomax(B] Bj) + 1 for all j ¥ [m] to linearize term
5\749316 + 3700 Byt By + 3 Bk C\/Q-
Algorithm 1 gives the SPIDER-ADMM algorithmic frame-

work. In Algorithm 1, after setting v =  f(z0), for each
subsequent iteration k, we have:

fz, (zx) fr, (Th—1) + V1, (6)

where  fr, () = ﬁ EEIk fi(zy). Tt is easy to
check E[vglko] =  f(ag), i.e., an unbiased estimate gra-
dient over x;,. Comparing the existing SVRG-ADMM, our
SPIDER-ADMM constructs stochastic gradient v based
on the information xj_; and vj_q, while the SVRG-
ADMM constructs vy based on the information g and v
(i.e., the initalization information of each outer loop). Due
to using more fresh information, thus, SPIDER-ADMM
can yield more accurate estimation of the full gradient than
SVRG-ADMM. Simultaneously, it does not require to ad-
ditional computation and memory, so it costs less memory
than the existing SAGA-ADMM.

Ve =

Algorithm 1 SPIDER-ADMM Algorithm
1: Input: b, ¢, K, n > 0and p > 0;
2: Initialize: 2o V R, y? V RP, jV [m]and 2o V RY;
3: for k=0,1,xx, K 1do

4:  ifmod(k,q) = 0 then

5: Compute v, = f(xp);

6: else

7: Uniformly randomly pick a mini-batch £, (with
replacement) from }1,2, xx, n{ with |G| = b,
and compute

vg = fr,. (k) fr, (Tr—1) + vg—1;
8: endif
9: y;?Jrl = argmin,, }Op(mk, y@tll],yj,yﬁ.H:mP zr)+

3 Y Yy g, [foralljV [m];

10:  xp4; = argming, @p x,y{jﬂﬁl, Ziy Uk [;

1: zgy1 =2 p(Azpyr + Ejzl Bjy;ﬁ'l c);

12: end for

13: Output: }z, Yim], 2{ chosen uniformly random from

}xkvyfm,]v Zk<kK:1'

4. Fast Online SPIDER-ADMM Method

In the section, we propose an online SPIDER-ADMM to
solve the online problem (1), which is equivalent to the fol-
lowing stochastic constrained problem:

minE:[f(z, )]+  g¢;(y;), st. Az+  Bjy; =c¢, (1)
j=1 j=1

where f(z) = E¢[f(x,()] denotes a population risk over
an underlying data distribution. The problem (7) can be
viewed as having infinite samples, so we cannot evaluate
the full gradient f(x). For the problem (7), we use s-
tochastic sampling to evaluate the full gradient. Algorith-
m 2 shows the algorithmic framework of online SPIDER-
ADMM method. In Algorithm 2, we use the mini-batch
samples to estimate the full gradient.

Algorithm 2 Online SPIDER-ADMM Algorithm
1: Input: by, bo, ¢, K, > 0and p > 0;
2: Initialize: 2 V R%, Y}V RP, jV [m]and z V R
3: fork=0,1,xx K 1do
4:  if mod(k, ¢) = 0 then

5: Draw S; samples with ||S1|| = b1, and compute
Uk = 5 2651 fi(z):
6. else v
7: Draw Sy samples with ||S2|| = by = by, and
compute
1
Vg = . filze)  fi(wp—1) [ + Vg—1;
2 i€Sy
8: endif
9: y;?Jrl = argmin,, }Op(xk, y@tlu,yj, yf“jH:m], zr )+

%\yj yy 5, [forall j ¥ [m];

10 xp41 = argming, @p x7yfjn+]1, 2y Uk [;

11: zppr =2z p(Azggr + 2”:1 Bjy;ﬁ'1 c);

12: end for

13: Output: }2, Y[y, z( chosen uniformly random from

}Ikv yﬁn]a Zk<£<:1-

5. Convergence Analysis

In the section, we study the convergence properties of both
the SPIDER-ADMM and online SPIDER-ADMM. At the
same time, based on our new theoretical analysis frame-
work, we afresh analyze the convergence properties of ex-
isting ADMM-based nonconvex optimization algorithms,
i.e., SVRG-ADMM and SAGA-ADMM, and derive their
optimal IFO complexity for finding an e-approximate sta-
tionary point of the problem (1).
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5.1. Convergence Analysis of SPIDER-ADMM Remark 1. Theorem I shows that the SPIDER-ADMM has
O(1/K e rate. M ; given b = ¢ =
In the subsection, we study convergence properties of the (; / )_CO:OY f:ie(’éc)e rate >0reover gl_ver\z/mm Lq
SPIDER-ADMM algorithm. Throughout the paper, let In2{n=""5r=0<az1)andp = oA o the
ny = 1k/q{ such that (ny, 1) >k >npg 1. SPIDER-ADMM has the optimal IFO of [ (n+n2e™") for

finding an e-approximate stationary point. In particular,
we can choose o ¥ (0, 1] according to different problems
to obtain appropriate step-size 1 and penalty parameter p,

Lemma 1. Suppose the sequence }xy,, y¥ Yoy L2k ( K is gen-
erated from Algorithm 1, and define a Lyapunov function
Ry, as follows:

e.g., seta = 1, we have n = 20"})72@) and p = 7”079‘@.
k 9L2 301211ax(G) 2 -
R =0y (ke Ypmps 26) H (o —+ —71 o )fk Th—1 ) )
OminP  Omin’l"P vVooos2. Convergence Analysis of Online SPIDER-ADMM
k—1
N 212 E g1 i 2 In the subsection, we study convergence properties of the
TininPb | _— J RV, online SPIDER-ADMM algorithm.
—(np—
Lemma 2. Suppose the sequence }xy,, y* Y] 2k (K s gen-
Letb=gq,n= 20‘”%‘72‘(@ (0<a>1)andp = %, erated from Algorithm 2, and define a Lyapunov function
then we have " Dy, as follows:
K-1 * 9L 302, (G)
1 k+1 2 RO R b, =0 ( k max
> k =0 (X, Yy 21) + ( + ) Tk Tr—1
k ) jk+1 xk \7] = Ky ] Uéinp UrﬁinWQP \f
2 k—1
. 2L . D ow 2
where v = min(x, o, ) with x = 7”100'@ and R* is a rﬁmp 2 i (1) f” 'V
lower bound of the function Ry,. e
_ _ 200min(G) _ \170kgL
Let 0, = IE] . + o Th1 2 + Letbgfq,nfT(O<a21)andpr:§,
1 Vf k+1 2 14 then we have
EZ;(% 1)gq Fitl j=1 i { Next,
based on the above lemmé/ we give the converge ce prop- 1 K—1
erties of SPIDER-ADMM. f ppl T k \/yj k+1 2
Theorem 1. Suppose the sequence }ack7 ] c2i) K s Ko
generated from Algorithm 1. Let S dy P n 262 7252

+
-~ Ky biLy oA bipy’
vp=m p20£ax Omax +p ( ﬁax)2 + a?nax(H) [7 o

a2 2. (G)  BL*  302..(G) where v = min(x, o, ) with x = YD5GL gnd * is a
vy = 3( e );vs = ol p2 ol n2p?’ lower bound of the function .
. _ 2
and letb = ¢, n = 720‘”‘5“2“(@ 0O<a>1),adp= Let O = E kxlf 1{/ +
1 +1 2
7”;10_“?, then we have q Z (nk—1)q f”l xl\/ f j v
o Theorem 2. Suppose the sequence }xk, ] czi) K s
Vs 0 generated from Algorithm 2. Let
lgllﬂiélKE]dist(O,8L(mk,yﬁn],zk))2{2 % 0y
o k=1 vy =1m pzo-gaxarﬁax + p2(0£ax)2 + o—fnax(H) [7
S Smax(Fo  R") 312 + ThslG)) 1812 302%,.(G)
— ? Vo = — ") Vg =
Ky ’ U e TiinP?  Thin?P?
. . H . V170kg L _ Vﬁ .
where 7y = mm(X’Gmin? with x = o - o Vmax T gpdetby = g = by, = 2wl§f(6) (0 <a>1)and
max }uvy, va, v3{ and R* is a lower bound of the function
- . . : VIT0kaL thon we h
Ry. It implies that the iteration number K satisfies = oA o o lnenwehave
3Vmax(Ro  R*) K-1
K= —" - =~ 7 2 Vmax w
9 > —
e 1£I}€1<1'1 E|dist(0, OL(wx, [m],zk)) {> K O + ™
then (:vk*,yfj;],zk*) is an e-approximate stationary point - Wmax(Po D) n 6Vmax0> (l + 36 )
of (1), where k* = arg min, 6. = K~ biy 'L oA p

2

v
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where w = 1262 max}1
Vv 17 KGL

,ﬁ(, v = min(x,agm) with

X = s Vmax = Max}y, va, v3( and * is a lower
bound 0f the function Dy. It implies that K and by satisfy
6Vmax(Po D) 120max0% 1 36 2w
K=—""———= b= — —
€y . €y (L + a][‘;‘linp)jL e’

then (xp«, yfj;],zk*) is an e-approximate Sstationary point
of (1), where k* = argmin,, 0.

b1,
\/17 V170kg L and bl —

Remark 2. Theorem 2 shows that given by =q =
n = 2%l@ (0 < a > 1), p = Ve
[ (e71), the online SPIDER-ADMM has the optimal IFO

of [ (e72) for finding an e-approximate stationary point.

5.3. Convergence Analysis of Non-convex
SVRG-ADMM

In the subsection, we extend the existing nonconvex
SVRG-ADMM method (Huang et al., 2016; Zheng & K-
wok, 2016b) to the multiple variables setting for solving the
problem (1). The SVRG-ADMM algorithm is described in
Algorithm 3 given in the supplementary document. Next,
we analyze convergence properties of the SVRG-ADMM
algorithm, and derive its optimal IFO complexity.

Lemma 3. Suppose the sequence } (x5, y[i;f] L2)ML (S s
generated from Algorithm 3, and define a Lyapunov func-

tion:
3ar2r1ax (G) 9L2 s s 2

+ _
[ Jrl?linn2p Url‘?linp)\;;t i \/

4 9L2 s 2_|_ s

A 7 Fr1 T Ct Ty

Uéinpb\f \/ \f

where the positive sequence }ci( satisfies, for s =
1,2, xxx, S

i 1812 L L
pb b

C mlIl

ry ﬁE] O, (z}, ys’t] 20 )+ (

+ (1 +B)etr, L=t > M,

?0, t=M+1.
Let M =Tn3{ b=1n3{n= 222 0 <a>1)and
p= 2‘??71:@ we have
1 S M-1 o m \7]5,5 yjs 2 s 25 2
1 *
gt T ®

where T = MS, x: = 7Vz32;GL > 0, and I'* denotes a
lower bound of function I'}.

zi oy 2HE( g 3 2+
stt+11\/2{ b jt

v

Let 0; = E] \Zfﬂ S\/?+

VAERVADY SN

Theorem 3. Suppose the sequence }(x5,y Yy, t] Z)M (S
is generated from Algorithm 3. Let

A
vp=m pzarﬁaxamax + pz(aﬁax)Q + U?nax(H) [7

302 (G 9L? 302, (G
Uy = 3L2 4 ma;c( )7 vy = ~ Amaxg 2)7
Yl O minP Omin’l"P
and let M = WnS{b—]nS{n—wL“(G)(0<a21)
and p = 2 Vfg 5GL - then we have
, Winax (TS %)
. . s st 2 max\1 (
n;}trlE]dlst(O,8L(xt,y[m],zf)) {2 ’Y—T’
where v = min(ofL L ) with y, = ¥24ral >,

Vmax = max(vy,va,v3) and T* is a lower bound of the
Sunction I';. It implies that the whole iteration number T' =
MS satisfies

Wiax Ty T%)

T= ,
€Y
then (acf* , yFm’]t , zf ) is an e-approximate stationary point

of (1), where (t*,s*) = arg min, , 0;.

Remark 3. Theorem 3 shows that given M = |n3{, b =

]n%{, n= 70“7'%‘2(@ (0 < a>1)and p = 223ncl QIE’{KGL the
non-convex SVRG-ADMM has the optimal IFO complexity
of [ (n+ ngefl) for finding an e-approximate stationary

point.

5.4. Convergence Analysis of Non-convex
SAGA-ADMM

In the subsection, we extend the existing nonconvex
SAGA-ADMM method (Huang et al., 2016) to the multiple
variables setting for solving the problem (1). The SAGA-
ADMM algorithm is described in Algorithm 4 given in the
supplementary document. Next, we analyze convergence
properties of non-convex SAGA-ADMM, and derive its the
optimal IFO complexity.

Lemma 4. Suppose the sequence }a:t, m] 2z (L is gen-
erated from Algorithm 4, and define a Lyapunov Sfunction

302 (G) 9L?
Qr =E| O, (4, Yf oy, 21) + (—52 + ) Jr w1 2
] ! ] O'IqulinTIQp Uéinp \f \/
9L2 1 " =t 2 I t 2
t—1 U +c— t Uy ’
ot TN

where the positive sequence }c;( satisfies

1812 L
- mll’lpb b

?0 t =T,

+(1 p)A+B)cig1, 02t >T 1,
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where p denotes probability of an index i being in L;. Fur-

ther, let b = 1ni{, n = %“L(G) (0 < a>1)and
p= 2\/02031110 we have
17
T O min \}7’] y§+1 2+tht xt+1\/
L 1" S o
\ft 7 - T )
i=1
where x; > 7v203(11“GL > 0 and Q* denotes a lower bound
of function §y.
Let 9t

ul 2+
Theorem 4. Suppose the sequence }zt,y[m],zt<tT:1 is
generated from Algorithm 4. Let

:]tlxt o1 2+ 2N (g
ATt

vp=mp Umaxo-rjgax + P ( gax)2 + JFQHaX(H) [7
302, (G 9L? 302, (G
1/2:3L2+ 2( ),V3: A A 52)7
n O minP Omin!l"P
and let b = In3{, n = %’L(G) 0<a>1)andp =

2\/2051

:G then we have

2VII1aX(QO Q*)
T ’
vV 2031/{(;1/ > 0

. . t 2 >
nin E|dist(0, OL(x, Y]+ 2t)) {>

where v = min(oll, | Q,Xt) with x; =
Vmax = max(vy, Ve, vs) and Q* is a lower bound of the
Sfunction Q. It implies that the iteration number T satisfies

2Vmax

€y

T= (o Q)
then (zy+, yf:n] , ¢+ ) IS an e-approximate stationary point of
(1), where t* = arg min; <, 0;.

Remark 4. Theorem 4 shows that given b = |n3{,

n = 7QJT;“L(G) (0 < a>1)and p = 2v2031”GL, the

non-convex SAGA-ADMM has the optimal IF 0 of [ (n+
nie" L) for finding an e-approximate stationary point.
Remark 5. Our contributions on convergence analysis of
both the non-convex SVRG-ADMM and SAGA-ADMM are
given as follows:

< We extend both the existing non-convex SVRG-ADMM
and SAGA-ADMM to the multi-block setting for solv-
ing the problem (1);

< We not only give its optimal IFO complexity of [ (n+
nge_l), but also provide the specific and simple
choice on step-size n and penalty parameter p.

All related proofs are provided in the supplementary docu-
ment.

Table 2. Real datasets

datasets #samples | # features | #classes
aYa 32,561 123 2
w8a 64,700 300 2
ijennl 126,702 22 2
covtype.binary 581,012 54 2
letter 15,000 16 26
sensorless 58,509 48 11
mnist 60,000 780 10
covtype 581,012 54 7

6. Experiments

In this section, we will compare the proposed algorith-
m (SPIDER-ADMM) with the existing non-convex algo-
rithms nc-ADMM (Jiang et al., 2019), nc-SVRG-ADMM
(Huang et al., 2016; Zheng & Kwok, 2016b), nc-SAGA-
ADMM (Huang et al., 2016) and nc-SADMM (Huang &
Chen, 2018) [ on two applications: 1) Graph-guided bi-
nary classification; 2) Multi-task learning. In the experi-
ment, we use some publicly available datasets', which are
summarized in Table 2. All algorithms are implemented in
MATLAB, and all experiments are performed on a PC with
an Intel 17-4790 CPU and 16GB memory.

6.1. Graph-Guided Binary Classification

In the subsection, we focus on the binary classification task.
Specifically, given a set of training samples (a;,b;)" ;.
where a; V R, b; V '} 1,1(, then we solve the follow-
ing nonconvex empirical loss minimization problem:

n

irelg}l - . fi(@) + )\\/Ax\}7 9)

where f;(z) = m is the nonconvex sigmoid loss
function. We use the nonsmooth regularizer i.e., graph-
guided fused lasso (Kim et al., 2009), and A decodes the
sparsity pattern of graph, which is obtained by sparse pre-
cision matrix estimation (Friedman et al., 2008). To solve
the problem (9), we give an auxiliary variable y with the
constraint y = Ax. In the experiment, we fix the parameter
A = 1072, and use the same initial solution z from the
standard normal distribution for all algorithms.

Figure 1 shows that the objective values of our SPIDER-
ADMM method faster decrease than those of other meth-
ods, as CPU time consumed increases. Thus, these results
demonstrate that our method has a relatively faster conver-

gence rate than other methods.

' These data are from the LIBSVM website
(www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/).
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Figure 1. Objective value versus CPU time of the nonconvex
graph-guided binary classification model on some real datasets.

6.2. Multi-Task Learning

In this subsection, we focus on the multi-task learning task
with sparse and low-rank structures. Specifically, given a
set of training samples (a;, b;)™_,, where a; V R? and b; V
11,2, 3¢, ¢(, then let D V R"*¢ with D;; = 1if j =
b;, and D;; = 0 otherwise. This multi-task learning is
equivalent to solving the following nonconvex problem:

n

Xgﬁ?xdgm filX)+ XM . H(|P(ij|D+>\2\/X\7, (10)
where  f;(X) = log (Y- exp(Xj a;))

i=1DijXj.a; is a multinomial logistic loss func-

tion, r(|IXy[) = PBlog(l + %) is the nonconvex
log-sum penalty function (Candes et al., 2008). Next, we
change the above problem into the following form:

n

1
in — (X)) 4+ A + A 11
RETIRC AV AN ANV

K2

s.t. AX + B1Y] + BoYs =0,

where f;(X) = fi(X)+M S5, w(IXil) Ko X [, and
ko = «'(0). Here A = [IC;J% R2ex¢ By :\/[ \ZC;O] v
R2¢*¢ and By = [0; I]. By the Proposition 2.3 in Yao
& Kwok (2016), f;(X) is nonconvex and smooth. In the
experiment, we fix the parameters A\; = 107° and Ay =
10~4, and use the same initial solution z from the standard
normal distribution for all algorithms.

Figure 2 shows that objective values of our SPIDER-
ADMM faster decrease than those of the other methods,

as CPU time consumed increases. Similarly, these result-
s also demonstrate that our method has a relatively faster
convergence rate than other methods.

o

—+—nc-ADMM
—b—nc-SADMM
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—6—SPIDER-ADMM

=+ nc-ADMM

—P— nc-SADMM
—4—nc-SAGA-ADMM
—&— nc-SVRG-ADMM
DER-ADMM

Objective minus best

Objective minus best

16 0 5 10 15 20 25 30

CPU time (seconds)

0 2 4 6 8 10 12 14

CPU time (seconds)

(a) letter (b) sensorless

=+ nc-ADMM
—P—nc-SADMM

10° | | —sk=—nc-SAGA-ADMM
—&—nc-SVRG-ADMM
—e— SPIDER-ADMM

~+—nc-ADMM
—P— nc-SADMM
—k— nc-SAGA-ADMM
~—#&— nc-SVRG-ADMM
—6— SPIDER-ADMM

Objective minus best
Objective minus best

0 10 20 30 40 5 60 70 8 90 0 50 100 150 200

CPU time (seconds) CPU time (seconds)
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Figure 2. Objective value versus CPU time of the nonconvex

multi-task learning on some real datasets.

7. Conclusion

In the paper, we propose a faster stochastic ADMM method
(i.e., SPIDER-ADMM) for nonconvex optimization. More-
over, we prove that the SPIDER-ADMM achieves a record-
breaking IFO complexity of [ (n 4 n'/2e~1). Further, we
extend the SPIDER-ADMM to the online setting, and pro-
pose a faster online ADMM method (i.e., online SPIDER-
ADMM). As one of major contribution of this paper, we
give a new theoretical analysis framework for the noncon-
vex stochastic ADMM methods with providing the opti-
mal IFO complexity. Based on our new theoretical analysis
framework, we study the unsolved optimal IFO complexi-
ty of the existing non-convex SVRG-ADMM and SAGA-
ADMM methods, and prove they have the optimal IFO
complexity of [ (n 4+ n?/3e1). In the future work, we
will apply the stage-wise stochastic momentum technique
(Chen et al., 2018) to our methods.
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