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Abstract

Regular model compression methods focus on RGB in-
put. While cross domain tasks demand more DNN models,
each domain often needs its own model. Consequently, for
such tasks, the storage cost, memory footprint and compu-
tation cost increase dramatically compared to single RGB
input. Moreover, the distinct appearance and special struc-
ture in cross domain tasks make it difficult to directly ap-
ply regular compression methods on it. In this paper, thus,
we propose a new robust cross domain model compression
method. Specifically, the proposed method compress cross
domain models by structurally weight sharing, which is
achieved by regularizing the models with graph embedding
at training time. Due to the channel wise weights sharing,
the proposed method can reduce computation cost without
specially designed algorithm. In the experiments, the pro-
posed method achieves state-of-the-art results on two di-
verse tasks: action recognition and RGB-D scene recogni-
tion.

1. Introduction

In recent years, Convolution Neural Networks (CNNs)
have become very popular in many related fields, for in-
stance, image classification [3, 23], action recognition [37,
4], self-driving cars [1], and so on. However, as CNNs go
deeper and deeper [10, 14], the memory footprint and com-
putational cost have increased dramatically, making it im-
practical to deploy on platform with limited resources such
as mobile phone and embedded device. To resolve such
problem, countless efforts have been made [8, 43, 7, 17].
These methods for CNN model compression can be sepa-
rated to four categories: pruning [8], sparsity induced reg-
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Figure 1: A demonstration of difference between our
method and single domain compression method. Upper fig-
ure shows that when it comes to cross domain compression,
simply using regular compression method won’t achieve
satisfactory trade-off between performance and compres-
sion rate. Lower figure shows that sharing weights across
domain can achieve good result.

ularization [43], weight quantization [7], and low rank fac-
torization [17].

Although compression techniques have been widely de-
veloped for RGB input. Cross domain applications are sel-
dom considered for applying compression algorithms. De-
spite little attention is given on cross domain tasks, the
memory cost and computation demand are even higher than
single RGB domain. Popular cross domain applications
like RGB-D scenes recognition [6], action recognition [37],
cross domain retrieval [20, 25] etc, usually use two or more
DNN models to collect domain specific information from
different sources. Thus the storage cost, memory footprint
and computation cost are at least two times higher than sin-
gle RGB task. As aresult, it is worthy to explore how to get
compact models for cross domain tasks.



In cross domain tasks, the distinct spatial structure and
appearance among different data sources often prohibit di-
rectly using mainstream compression methods. Indeed,
when applied on cross domain tasks, mainstream compres-
sion methods have many drawbacks. Cross domain models
are extremely sensitive to channel wise pruning. The hyper-
parameter search is more difficult for sparsity induced meth-
ods. Furthermore, mainstream compression methods can’t
utilize underlying cross domain relationships to achieve bet-
ter compression rate.

To tackle above problems, we propose a new cross do-
main compression method which is robust to hyperparame-
ter settings and can utilize cross domain relationships for
better model compression. In the proposed method, the
weights are structurally shared across domains. To achieve
structured weight sharing, cross domain models are trained
with graph embedding regularization. After training com-
plete, the weights are clustered based on intermediate fea-
ture similarity graph. In the end, the cross domain models
are fine-tuned to get final result.

The main contribution of this paper can be summarized
to three aspects:

1. We identified the difficulties of cross domain compres-
sion when using regular sparsity induced methods as
well as pruning algorithms.

2. We proposed a new method specially tailored for cross
domain compression by using graph embedding as a
constraint at training time. Proposed method is robust
to hyperparameter tuning and it can naturally achieve
computation cost reduction.

3. Proposed method can achieve the best results on two
diverse tasks (action recognition and scene recogni-
tion) compared to other methods.

2. Related Works

The related work for this paper can be separated into two
different perspectives, the first part is related to model com-
pression, and the second part is about cross domain tasks.

2.1. Model Compression

Pruning and weight sharing methods are most related to
our method. Thus, we mainly focused on these algorithms.

For weight sharing, there is a group of algorithms [33,
7, 16, 34, 50] studying how to clustering the scalar values
of weights into several clusters. This kind of algorithms is
also known as quantization. One of the earliest works [7]
which combines quantization and hamming coding comes
from this category. With weight quantization, the weights
can be reduced to at most 1 bit binary value [15] from 32-
bits float point numbers. Many works show that quantizing
weights to 8-bits [49] often won’t hurt the performance. A

(a) visualization of weights cor-
relation

(b) visualization of features cor-
relation

Figure 2: (a) is the weights correlation of cross domain
MNIST experiment. (b) is the feature correlation of cross
domain MNIST experiment. From (a), (b), we can see that
model trained with GrOWL can’t capture the cross domain
information in inputs.

series of less popular approaches is about structured weight
sharing. Unlike quantization, structured weight sharing fo-
cus on finding the structure level similarity across chan-
nels or filters. Learning to share [47] belongs to this cat-
egory, which aims to find similarities across input chan-
nels by using a regularization term called group weighted
order lasso (GrOWL) [31]. WSNet [21] tries to create a
shared filter bank instead of finding similarities. In audio
classification tasks, WSNet can achieve state-of-the-art re-
sult. Our method for cross domain compression is close re-
lated to these methods. Despite the similarity between our
method and structured weight sharing methods, our method
is a fully weight-sharing approach unlike Learning to Share,
and the shared filter banks is learned during training, which
is also different with the pre-designed filter bank in WSNet.

For pruning weights, numerous researches [51, 26, 8, 13,
11] have shown that removing a large portion of connec-
tions or neurons won'’t cause significant performance drop.
Pruning algorithms often seek certain ways to introduce a
criterion for evaluating the relative importance of channel,
filter or individual weight. Then, such criterion is used
for pruning, where least important weights can be pruned.
Sparsity induced methods [43, 47, 28] can be regarded as
a similar methods compared to pruning. In [43], group
lasso are used as a regularization at training time. After the
weights are close to zero, it can be safely pruned from the
network. But using sparsity constraints often results in near
zero solutions, some works [44] argue that small weights
are in fact important for preserving performance. Some
data-driven pruning methods [13] can avoid this problem
by designing the criterion based on the intermediate feature
maps. Other than data-driven approaches, certain optimiza-
tion methods [47] for sparsity constraints can alleviate this
problem too. From another perspective, the goal of pruning
algorithm is to reduce the unique weights in the model and
remove the others. Our method have the same goal here,
however, we don’t remove other weights, we make them



share the same channel.

Besides weight pruning and sharing, other popular meth-
ods include matrix factorization [35], knowledge distilla-
tion [12, 45, 22], and variational inference approaches [29,
27].

2.2. Cross Domain Applications

In this paper, we focus on two types of cross domain
tasks, the first one is two-stream action recognition, the sec-
ond is RGB-D scene classification.

One of the most popular methods regarding action recog-
nition is two-stream CNNs. After [37] proposed a method
that uses RGB and stacked optical flow frames as ap-
pearance and motion information respectively, this kind of
methods gets more and more attentions [42, 5]. Our cross
domain compression framework is based on this series of
works, because the architecture of these kind of methods
are close to image classification task, which makes it possi-
ble to apply numerous compression methods on such meth-
ods. Another reason to choose two-stream methods is that
RNN based algorithms [4] for action recognition rely on
the features or outputs from corresponding RGB or flow
CNN models and most memory usage and computation cost
come from CNN part. Other action recognition methods
like C3D [19], 3D-resnet [9] use 3-D convolution kernels to
learn spatial and temporal information together. But exist-
ing compression techniques are harder to be applied on 3D
CNN.

Scene classification is one of the basic problems in com-
puter vision research. With cost affordable depth senor,
Kinect, depth images can be used in scene classification
task. Compared to RGB images, depth images can provide
additional strong illumination and color invariant geometric
cues. RGB and depth images fusion then become a promis-
ing way for scene classification. In this paper, we consider
score level RGB-D fusion [6, 18], leave the intermediate
feature maps untouched. RGB-D models are also suitable
to apply compression techniques.

3. Method

In this section, we first show that previous weight sharing
methods like Learning to Share [47] can’t utilize underlying
cross domain relationships. Then, we will introduce our
method.

3.1. Learning to Share Revisit

In learning to share [47], they formulate the compression
problem as a regularization problem. Group Lasso related
methods have similar formulation, the regularization term
is different. The formulation can be represented as:

min £(fo(z)) + R(6). 1)

Here, in most classification task L is a cross entropy loss
and R is the regularization term, fy is a neural network pa-
rameterized by 6. For learning to share, the regularization

term is:
L N1

RO =D Nallowll, 2
=1 i=1

where 6; is the weight of [th layer, and 60, €
RwiXhixNi—axNe -y b N;_1, N; are the width, height,
number of input channels and number of output channels
in [th layer. The group is predefined along channel dimen-
sion. As we mentioned in section 2, ZéV:le Aiil|6i|| is a
special regularization term called Group Ordered Weighted
Lasso (GrOWL), which can force sparsity and learn under-
lying correlations among inputs at the same time.

A natural way to extend Learning to Share is to add
GrOWL regularization to cross domain models. We only
consider two domains in our experiments. To verify
whether Learning to Share can learn cross domain corre-
lation within the inputs, we designed a simple task. In this
simple task, some modification are done on MNIST and two
datasets MNIST-Rot (rotation by 45 degrees) and MNIST-
Blur (motion blurred) are created as two toy domains. The
weight correlation is calculated by:

160, l12110451l2

The feature correlation is calculated in Eq. 5.

We use LeNet-5 on each domain. GrOWL is applied
except the first layer and the last layer. In Fig. 2, it
clearly shows that after GrOWL regularization the correla-
tion across weights from different domain model is close to
zero, which indicates that GrOWL can’t utilize underlying
cross domain relationships.

Besides such drawback, hyper-parameter tuning is diffi-
cult and each layer has its own J;.

S(i, j) = 3)

3.2. Cross Domain Task

To better explain our method, a formal definition of cross
domain task is given. We use same network architecture
on two domains except for the first layer, since inputs may
have different number of channels. A typically DNN layer
can be defined as a function parameterized by its weights,
which can be expressed as: y; = fg,(x;). Without loss
of generality, the model in first domain can be defined as
YAl = foa,(ray). The second model can be defined by
replacing A with B. Suppose the dataset D have m sam-
ples: D = {(za,,zB,,¥1)s---,(Ta,,,TB,,,Ym)}. Then
the objective function has the form:

911119% L(f9A('rAi)7f913 (xBi)) +R(0A703)7 (4)

where L is cross domain task loss, and R is regularization
loss.
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Figure 3: Left figure shows weight sharing in fully connected layers. Right figure shows weight sharing in convolution

layers.

3.3. Graph Embedding as a Regularization

In section 3.1, we argue that Learning to Share is not
sufficient for cross domain tasks not only because they
can’t discover cross domain correlation but also the hyper-
parameter tuning is too time-consuming. Similar argument
can be applied to Group Lasso method. When training
model with GrOWL and Group Lasso, all weights in a layer
often become zeros. If this happens, one have to adjust the
hyper-parameter to train it again.

Hence, to solve these two problems, we aim to compress
model by structured weight sharing. During training, the
model is regularized with graph embedding constraint. Af-
ter the model is fully trained, we cluster the weights ac-
cording to transformed features. If we use fully shared ap-
proach, we won’t suffer from the problem of training insta-
bility mentioned above. Fully shared approach won’t turn
all the weights in a layer to zero.

Algorithm 1 Graph Embedding Regularization

1: input: Middle layer output, xf or IF,Z =1,...,L;
Data set D with (z, 22 y;),i=1,...,m

2: initialization : f4, /B, Rspectral

3: for epoch = 1to V

4: a:;‘}l = Trim(z{)

5: xf}l = Trim(z;")

6: RSpectral = RSpect'ral(Concate(xtf}lv xfl)a 05)

7:

Gmién E(fGA (ZEA), fQB (IB)) + RSpectral

AUB
end for

9: output: fA: fBa RSpectral

®

Before introducing graph embedding constraint, we first

show how we represent intermediate features. A naive way
to represent similarity between input channels is to calcu-
late the correlation between input features. Given an input
of Ith layer z; € RW*HixCi ¥, is the width of feature
map and H; is the height of feature map, Cj is the num-
ber of input channels. Suppose the number of data points
in D is m, the inputs cross all samples can be represented
as X; € RWixHixCixm this X, can be reshaped to a 2D
representation X722 € R >mWiHi We can represent the
similarity between input channels as below:

__ XPPGOTXRPG)
X2 1572 Gy )l

In Eq.5, if input channel ¢ and j is similar, then the inner
product between x; from all samples should be large too.
However, the computation cost is expensive if x; is large.
For example, if [ is the 13th layer of VGG-16, and we have
5x10% samples, then XlzD € RP12:49x5x10" , each vector in
X?P will have 2.45 million dimensions. The computation
cost will prohibit us to update input feature similarity matrix
when training.

To make the update of input feature similarity matrix af-
fordable, we apply average pooling to the feature map to re-
duce the size of it. If the feature map has size W x H x C,
then the reduced feature map has size w x h x C, where
wh is much less than W H. The size of feature map can
be further reduced by random sample part of it. By doing
s0, the computation of similarity matrix is largely decreased
and we call this operation Trim. For each input z;, trimmed
input feature map x ; is:

Sai (3, 7) ®)

xp g = Trim(z;). 6)

The similarity calculation is same in Eq. 5 with z; replaced
by x;;. During training, we replace m with the batch size



b for forward and backward calculation. After we have the
similarity matrix between input channels of a layer, we try
to cluster the weights according to the similarity map. Di-
rectly clustering weights on similarity map can result in per-
formance drop. For this reason, graph embedding can be
used as a constraint. Another reason we can use graph em-
bedding [30, 41] is that it’s well known for clustering on
similarity graph which we already have.

Within the scope of graph embedding, similar formula-
tion from SpectralNet [36], a recent proposed deep spec-
tral clustering method, is used. Spectral clustering can be
inserted into R in Eq. 3 and regularize the complexity of
the model. In below, the detail of graph embedding reg-
ularization is given. As above mentioned, we use trun-
cated input feature map to enable affordable intermediate
layer similarity calculation. The intermediate similarity ma-
trix calculation for cross domains uses Eq.5 by replacing
X2P(i,:) = concate(X, ;P (i,:), X*P (i,:)). “concate’
is a simple operation to jéin two vectors into one vector.

Then, the spectral clustering can be applied on interme-
diate similarity graph. Given a specific layer [, the graph
embedding constraint has such form:

> Sili )z — 255, (D)

L
1
RS’pectral = E 402
=1 ! qj=1:20

where S; € R2C1%2C s the similarity matrix of Ith layer
inputs across two domains, C; is the number of channels
in input z;* or 8. 2 € R2C>* s the output of spectral
clustering, k; is the target number of clusters for layer [. For
spectral clustering, there is an additional constraint on z;:

%QZITZZ = (8)
And it requires to compute eigendecomposition on S; to get
z;. However, the eigendecomposition is time-consuming
to compute. Similar to SpectralNet, we use a neural net-
work f; with a orthogonal layer to approximate the eigen-
decomposition. The orthogonal output is achieved by using
Cholesky decomposition, interested readers can refer to Ap-
pendix B in [36]. By inserting f;:

2, = fa(XPP(3,2)). 9)

As aforementioned, X?P(i,:) = concate(Xfl’QD (i,:
),Xﬁ’2D (4,:)). Simply use standard spectral clustering
may cause the unbalance of clusters, which will limit the
capacity of the model. Alternatively, we use normalized
spectral clustering to impose balanced clusters.

L
1 .o Rli o Ry
RSpectral = Z @ Z Sl(lv])” d. - dj ”%7
=1 L jj=1:20, g J
(10)
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Figure 4: Illustration of how to reduce computation cost
for our proposed method. It can be understood as reducing
the number of input channels in feature maps and weights.
Original and reduced version can both produce the same
output.

where d; = Z?C’ Si(4, 7). The final objective function for
our method can be expressed as:

min E(GA,GB) +RSpect’r’ala (11)
04,08
where Rgpectrai and L(04,65) are defined in Eq.10 and
Eq.4 separately.

3.4. Weight Sharing

After training the model with objective function Eq. 11,
we are ready to cluster the features according to the z; €
R?Ci ¥k for each layer. As normal spectral clustering pro-
cess, we use K-means to cluster the features based on z;.
Since we have the clusters of features, it can be used to
guide the clustering of weights. If channels ¢, j from inter-
mediate features are in the same cluster, weights of channels
1,7 will also have the same cluster. The detailed sharing
process is depicted in Fig. 3. Once weight clustering fin-
ished, we fine-tune the model according to clustering result.
Suppose the ith group of weights in layer [ have n; ; input
channels, the weights in ith group is replaced by the centers
g1,; of this group. The gradient computation of centers is:

oL 1 OL

—_— = , 12
8gl,i (12)

ny a0, ;
Li 0:,;€G1,; L

where G, ; is the set containing all instances in this group.

3.5. Improve Inference Speed

In this work, we mainly focus on compressing the model
instead of reduce computation cost, but we still can achieve



(b) RGB and depth images

(a) RGB and optical flow frames

Figure 5: Example of dataset images, (a) is the RGB and
optical flow images within UCF-101 dataset, (b) is the RGB
and depth images from SUN RGB-D dataset

moderate improvement concerning computation cost. It can
be shown that we can reduce the number of channels by a
fraction of % Unlike WSNet, we don’t need a special de-
signed algorithm to reduce computation cost. The weight
channels in the same group can be replaced by one chan-
nel, and corresponding feature maps can be replaced by one
feature map averaging all feature maps in the group. Such
replacement won’t change the outputs. Details are shown in
Fig. 4.

3.6. Benefit of Cross Domain Sharing

As we described above, one of the benefits of weight
sharing is that it provides a natural way to speed up at in-
ference time. Another advantage of cross domain weight
sharing is it allows larger model capacity compared to any
other single domain compression method. For a specific
layer with input size 7y, if We want a 20X compres-
sion rate, for single model compression, we can only keep
5% of the weights for each model, but for cross domain
weight sharing, we can have 0.11;y,p: clusters, which is
two times more than single domain compression method.
Notice that weight sharing is key to achieve such result.
The relative larger model capacity is especially important
if required compression rate is extreme.

4. Experiment

We assess the proposed method on three different
datasets with two tasks. We compare our method with a
series of pruning and sparsity induced methods. The prun-
ing algorithms including structured weight pruning [13, 26]
and individual weight pruning [51, 8]. The reason why we
only compare pruning and sparsity induced method is that
these methods are the majority of model compression al-
gorithms. Moreover, quantization methods focus on sin-
gle weight value sharing and can be applied on the basis of
pruning algorithms and the proposed method.

4.1. Implementation Details

Our method and related comparison methods are all im-
plemented in pytorch [32], some of the comparison methods

are based on the implementation of [52]. Sparsity induced
methods are only applied on scene classification task, since
in action recognition task, we can’t find suitable hyper-
parameters for GrOWL or Group Lasso, some of layers
always become zero whether we use proximal gradient or
soft-thresholding as optimization method.

For SUN-RGBD dataset, we train model with graph em-
bedding constraint for 100 epochs with batch size of 128.
SGD with momentum is used as optimizer, momentum is
set to 0.9 and start learning rate is 0.03. Learning rate is de-
cayed by a factor of 0.1 for every 30 epochs. After training
completely, weights sharing are performed as described in
section 3.4. In weight sharing stage, the model is fine-tuned
for 60 epochs with the same optimizer and learning rate is
set as 3 x 1073 with the same scheduler.

For action recognition dataset, the models are trained on
each domain separately with the settings in [42] and five-
crops data augmentation. The models are put together and
trained with graph embedding constraints for 80 epochs
with SGD and momentum 0.9, the start learning rate is
1 x 10~% and batch size is 32. After clustering, models
are fine-tuned with the same learning rate for 60 epochs.

4.2. Datasets

SUN-RGBD Dataset [39] contains 10,355 RGB and
Depth image pairs captured from different cameras. We
follow the experimental settings in [18]. 19 categories are
kept for our experiments with 4,845 images for training and
4,659 images for testing.

UCF-101 Dataset [40] comprises of realistic videos col-
lected from Youtube. It contains 101 action categories, with
13,320 videos in total (9,537 videos for training, the rest for
testing). UCF-101 split-1 is used for training and testing.

HMDB-51 Dataset [24] contains a total of about 7,000
video clips distributed in a large set of 51 action categories.
Each category contains a minimum of 101 video clips. We
use split-1 in official release of HMDB-51 dataset.

4.3. RGB-D Scene Classification

For SUN-RGBD dataset. we follow the same experiment
setting in [18]. HHA images are extracted follows [6]. As
we discussed in Section 3, we calculate average score fu-
sion across two domains. Also class weighted cross entropy
is used as a common practice, the weight for each class is

given by w(t) = W, where N () is the number
of examples in t¢th class,mé;ax is the class with most sam-
ples, cimin is the class with least samples. For both domains,
we use AlexNet pre-trained on Placed365 dataset [48].

In Table 1, we list the network settings for Sun RGB-
D dataset. k4 and kp are two different settings for our
method. The setting for GrOWL is the result after train-
ing with GrOWL regularization. The number in the list is
the unique input channels for cross domain models.



Table 1: Network settings for AlexNet [23] on SUN RGB-D
dataset.

Layer | original \ ka \ kp \ GrOWL
convl 6 6 6 6
conv2 128 32 16 12
conv3 384 96 48 12
conv4 784 192 96 21
conv5s 512 128 64 72

fcl 18432 | 1024 | 512 1037
fc2 8192 512 | 512 423
fc3 8192 | 8192 | 8192 8192

Table 2: Results of SUN RGB-D dataset.

Method \ Performance \ Rate
Original 47.32% 1
GrOWL [47] 44.28% 17.6
Ours ko 47.21% 14.8
Ours kp 47.01% 22.8

comparison we set the pruning rate (p-rate in Table 4) equal
to 0.3, 0.5 or 0.75 separately.

Table 3: Network settings for VGG-16 [38] of action recog-
nition dataset for proposed method

Layer original \ ka \ kp \ ko
convl 23 23 23 23
conv2,3 128 32 32 16
conv4,5 256 64 64 16

conv6 to 8 512 128 128 64
conv9 to 13 1024 256 128 64

fcl 50176 | 1024 | 512 | 256
fc2 8192 512 | 512 | 256
fc3 8192 | 8192 | 8192 | 8192

Table 4: Network settings for VGG-16 [38] on action recog-
nition dataset for comparison methods.

In Table 2, it can be shown that the performance of
GrOWL is lower than our proposed method by near 3%.
Even though the compression rate of GrOWL is similar to
setting kp of our method. This shows that, for cross do-
main models, sparsity induced method usually gives sub-
optimal solutions for cross domain compression. Further-
more, our method can be regarded as GrOWL without spar-
sity. In this experiment, we give two settings k 4 and kp for
our method. Though, the compression rate is variant, only
little difference is observed for performance, which shows
that our method is robust against hyper-parameter tuning.
On the other hand, GrOWL is sensitive to hyper-parameter,
the result in Table 2 is achieved by more than ten rounds
of experiments given different hyper-parameter settings in
GrOWL.

4.4. Action Recognition Dataset

For action recognition tasks, during training we combine
two popular methods TSN [42] and two-stream [5]. VGG-
16 is used for action recognition task. As in [5], we use
5-crops data augmentation in training. The optical flow im-
ages are extracted based on [46]. Following TSN, we split a
video into three segments, and random samples RGB frame
for each segment. Once we have the index of RGB frame,
we sample the same index and following 10 frames in hori-
zontal and vertical optical optical flow. The horizontal and
vertical flow images are stacked to a 224 x 224 x 20 cubic
to feed into optical flow DNN model.

For our method, we set hyperparameter k; = 25L. r

T
is set to 2, 4 or 8 for different settings. For a relative fair

Layer original | p-rate 0.3 | p-rate 0.5 [ p-rate 0.75

convl 3 3 3 3
conv2,3 64 44 32 16
conv4,5 128 90 64 32
conv6 to 8 256 180 128 64

conv9 to 13 512 358 256 128

fcl 25088 17561 12544 6272

fc2 4096 2867 2048 1024

fc3 4096 4096 4096 4096

In Tables 3 and 4 we list the detail of target network
structure of our method and comparison methods. The ma-
jor difference between Table 3 and Table 4 is that in Table
3, all the settings are for both domains, on the contrary,
4 are only for single domain. For example, in conv2 of
k4, we have 32 unique channels for 128 channels in both
RGB and optical flow models. In conv2 of p-rate 0.5, 32 is
also given here, this is only for RGB or optical flow model,
for both models, at p-rate 0.5, there are 64 unique chan-
nels in weight matrix. Table 5 shows the results for UCF-
101 dataset and HMDB-51 dataset. The number follow-
ing comparison methods is the pruning rate (p-rate) for the
method. For example, ‘prune or not prune 0.5’ means prune
or not prune method at pruning rate of 0.5. Clearly, our
method can achieve the best results (trade off between per-
formance and compression rate) compared two all the other
methods. Morever, individual weight pruning algorithms is
significant better than group weight pruning algorithms (al-
most 10% absolute improvement). Group weight sharing
methods like Apoz [13] and Efficient Network [26] often
suffer from large performance drop (6% to 10% compared
to original) even only with a small fraction of pruning-rate



Table 5: Overall results for action recognition dataset

Method \ Performance \ Rate
UCF-101 Dataset
Original 88.52% 1
Prune or not prune 0.5 [51] 87.7% 2
Sensitity [8] 0.5 87.9% 2
Efficient convnet[26] 0.5 78.3% 2
Apoz 0.5 [13] 79.6% 2
Prune or not prune 0.75 [51] 83.8% 4
Sensitity 0.75[8] 77.9% 4
Efficient convnet [26] 0.75 58.9% 4
Apoz 0.75 [13] 69.6% 4
Ours ko 88.21% 12
Ours kg 88.9% 23
Ours k¢ 87.7% 46
Original 5-crops 90.8% 1
Ours kg 5-crops 91% 23
HMDB51 Dataset
Original 57.51% 1
Apoz 0.3 [13] 53.6% 1.42
Efficient convnet 0.3 [26] 51.8% 1.42
Apoz 0.5 [13] 47.7% 2
Efficient convnet 0.5 [26] 20.8% 2
Ours kg 57.4% 23
Ours k¢ 56.9% 46
Original 5-crops 59.9% 1
Ours kp 5-crops 59.8% 23

(0.3 or 0.5). These observations are inconsistent with single
RGB model pruning results. At least, at pruning rate 0.3 or
0.5, many algorithms can maintain the performance. There
might be many reasons for this phenomena, the model ca-
pacity required for non-RGB domain might be larger than
RGB domain, thus, pruning some channels may hurt the
performance severely. Another possibility is the difficulty
of the dataset, HMDB-51 is believed to be more difficult
than UCF-101. As a result, it’s not easy to keep perfor-
mance on HMDB-51 dataset.

Another interesting phenomena is that our method are
robust to a set of different hyperparameters. The perfor-
mance starts to drop (less than 1% absolute performance
lost) after a relative high compression rate (46 times). For
5 different settings across three datasets, the largest differ-
ence before and after compression is 0.8%. In setting kg of
UCF-101, our method is better than original by 0.4%. Over-
all speaking, our method is much easier for hyperparameter
searching compared to sparsity induced method, and it can
achieve better trade-off compared to pruning algorithms.

2 3 4 5 6 T2 03 4 5 6

(a) setting A (b) simple constraint

Figure 6: Group size of largest 10 groups in layer conv13
of VGG-16. Setting A, in figure (a), can achieve 88.2%.
Simple constraint in figure (b) can achieve 87.5%. Random
group can achieve 87.3%.

4.5. Study of group size

Our method are further compared with random sharing
and simple similarity constraint. Naively, given a similarity
map Simy at layer [, we define:

. {1 — Si(i,5), if Si(4,5) < t,

13
otherwise. (13)

Si(i, )

This indicates that we push the feature maps and weights
closer if their channel similarity is greater than ¢. ¢ is set as
0.3. Using such constraint will result in highly unbalanced
group in the compressed model. From Fig. 6, it is obvi-
ous that large and unbalanced group hurt the performance
and make the results close to random sharing. This shows
that one key ingredient for our method is to have balanced
groups.

There are some groups with group size 1 in both do-
mains. This can be regarded as domain private parts which
only captures domain specific information. In domain sepa-
ration networks [2], one can find similar arguments. Result-
ing compressed model can be separate into two parts, do-
main common parts and domain separate parts. Following
this argument, our method can be viewed as an approach to
identify domain common part within cross domain models.
Domain common part is essential for cross domain model
compression, since it can be reused across different domain.

5. Conclusion

In this paper, we solve the problem of model compres-
sion in cross domain settings. To achieve such goal, we use
graph embedding as a regularization for cross domain mod-
els. The weights are structurally shared according to the re-
sults of clustered features. Our method can achieve the state
of the art result on compression rate with little performance
loss on two different tasks. Group size within each layer is
identified to be one of the key elements to the success of our
method.
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