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Abstract

Pairwise learning is an important learning topic in the ma-
chine learning community, where the loss function involves
pairs of samples (e.g., AUC maximization and metric learn-
ing). Existing pairwise learning algorithms do not perform
well in the generality, scalability and efficiency simultane-
ously. To address these challenging problems, in this paper,
we first analyze the relationship between the statistical accu-
racy and the regularized empire risk for pairwise loss. Based
on the relationship, we propose a scalable and efficient adap-
tive doubly stochastic gradient algorithm (AdaDSG) for gen-
eralized regularized pairwise learning problems. More im-
portantly, we prove that the overall computational cost of
AdaDSG is O(n) to achieve the statistical accuracy on the
full training set with the size of n, which is the best theoreti-
cal result for pairwise learning to the best of our knowledge.
The experimental results on a variety of real-world datasets
not only confirm the effectiveness of our AdaDSG algorithm,
but also show that AdaDSG has significantly better scalability
and efficiency than the existing pairwise learning algorithms.

Introduction

Many machine learning problems, such as AUC maxi-
mization (Zhao et al., 2011; Gao et al., 2013) or equiv-
alently bipartite ranking (Agarwal and Niyogi, 2009; Re-
jchel, 2012), metric learning (Jin, Wang, and Zhou, 2009;
Weinberger and Saul, 2009; Ying and Li, 2012) and multi-
ple kernel learning (Kumar et al., 2012), consider the pair-
wise loss function on a pair of samples (z,y) and (z/,y’)
of the form of L(f, (z,y),(«',y")). For example, Gao et
al. (2013) considered the least square pairwise loss function
(1 — (f(z) — f(2")))? for AUC maximization, where y and
1y’ are with different labels. This important learning scenario
is called as pairwise learning. The aim of pairwise learning
is to find a hypothesis function minimizing the expected risk
E(w,y)E(z’,y’)L(fa (‘T7 y)v (xlv y,))

The scalability and efficiency have been the notorious
bottlenecks of pairwise learning. Traditional univariate loss
functions only depend on one sample. The problem size for
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traditional machine learning problems grows linearly in the
size of samples. However, as mentioned above, pairwise loss
functions depend on pair of samples. Thus, the pairwise
learning algorithms need to handle the challenge raised by
the big volume of data samples in the sense that, the size
of pairs of samples grows quadratically in term of the size
of samples. If the training set has n samples, we will have
n? possible pairs of samples which make it challenging to
design a scalable and efficient pairwise learning algorithm.

Existing pairwise learning algorithms have mainly uti-
lized the techniques of online learning and stochastic opti-
mization to address the challenge of the quadratic growth
of the size of sample pairs. Specifically, Lin et al. (2017)
used the typical online learning framework (Cesa-Bianchi,
Conconi, and Gentile, 2004) to implement pairwise learning
whose space and time complexities are O(T'd) and O(T?2d)
respectively, where d is the dimensionality and 7" is the it-
eration number. Kar et al. (2013) proposed an improved on-
line algorithm for pairwise learning by utilizing a buffer of
a fixed size s to update the gradients, whose space and time
complexities are O(sd) and O(sdT’) respectively. Boissier
et al. (2016) introduced an improved online algorithm for
linear pairwise learning with the space and time complex-
ities as O(d?) and O(T'd?) respectively, by incrementally
updating the gradients. Gao et al. (2013) used the similar
strategy to implement AUC maximization. Ying, Wen, and
Lyu (2016) reformulated the AUC maximization problem as
a saddle point problem, and proposed a stochastic optimiza-
tion algorithm with the space and time complexities as O(d)
and O(T'd) respectively. We summarize these representative
pairwise learning algorithms in Table 1.

We compare the pairwise learning algorithms from three
points of view, i.e., generality, complexity, and convergence
rate. For generality, we consider the generalities w.zt. solved
problems, pairwise loss functions, and hypothesis functions.
For complexity, we consider the complexities w.r.z. space and
time. From Table 1, we find that the online algorithm of
(Kar et al., 2013) has the best generality and convergence
rate in the existing pairwise learning algorithms. However,
its space and time complexities are related to a buffer size
s and achieving better generalization performance requires
a larger s. Thus, the online algorithm of (Kar et al., 2013)
is still not scalable and efficient enough. Although the SO-
LAM algorithm (Ying, Wen, and Lyu, 2016) has the best



Table 1: Representative pairwise learning algorithms. (PL and FCN are the abbreviations of pairwise loss and function, respec-
tively. 7" is the iteration number, d is the dimensionality and s is the buffer size.)

. Generalization Complexity
Algorithm Reference Problems | Loss FCN | Hypothesis FCN | Space | Time Convergence rate

Online Linetal. (2017) |General PL| Square Kernel O(Td) | O(T?d)| O(T~iInT)

Online Karetal. (2013) | General PL | General General O(sd) | O(sTd) O(%)

Online | Boissier et al. (2016) | General PL | Square Linear O(d?) | O(Td?) O( long L
OPAUC Gao et al. (2013) AUC Square Linear O(d?) | O(Td?) O(=)

\/71 5

SOLAM | YingandLi(2012) | AUC Square Linear o@d) | o(rd) | o(™TL-)
AdaDSG Our General PL | General General O(d) | O(Td) | Atleast O(%)

space and time complexities, it works only for AUC max-
imization, and has a poor convergence rate. To the best of
our knowledge, the existing pairwise learning algorithms do
not perform well in the generality, complexities, and conver-
gence rate simultaneously. The scalability and efficiency are
still the bottlenecks of existing pairwise learning algorithms.
To address these challenges, in this paper, we first an-
alyze the relationship between the statistical accuracy and
the regularized empire risk for pairwise loss. Based on the
relationship, we propose a scalable and efficient adaptive
doubly stochastic gradient algorithm (AdaDSG) for regu-
larized pairwise learning problems following the adaptive
sample size scheme. More importantly, we prove that the
overall computational cost of AdaDSG is O(n) to achieve
the statistical accuracy on the training set with the size of
n, which is the best theoretical result for pairwise learning
to the best of our knowledge. The experiments on the appli-
cation of the AUC maximization are conducted to validate
our AdaDSG algorithm. The experimental results on a vari-
ety of real-world datasets not only confirm the effectiveness
of our AdaDSG algorithm, but also show that AdaDSG has
significantly better scalability and efficiency than the exist-
ing pairwise learning algorithms.
Contributions. The main contributions of this paper are
summarized as follows:

1. The existing adaptive sample size algorithms only focus
on the full or singly stochastic gradient algorithms for
univariate loss functions. Differently, our AdaDSG algo-
rithm is the first adaptive sample size algorithm working
on the doubly stochastic gradient algorithm for pairwise
loss functions.

2. The existing adaptive sample size algorithms require
a strong assumption of convergence rate (i.e., linear
or quadratic) w.rt. the full or stochastic gradient al-
gorithms. However, to the best of our knowledge, our
AdaDSG is the first adaptive sample size algorithm
working on a weaker assumption of convergence rate
(i.e. sublinear) for the doubly stochastic gradient algo-
rithm.

3. The convergence rate of our AdaDSG algorithm is at
least O(%) More importantly, we prove that the over-
all computational cost of AdaDSG is O(n) to achieve
the statistical accuracy on the full training set with the
size of n, which is the best theoretical result for pairwise

learning to the best of our knowledge.

Organization. We organize the rest of paper as follows.
Firstly, we present several related works. Secondly, we
present the generalized pairwise learning problem consid-
ered in this paper. Thirdly, we analyze the statistical accu-
racy in pairwise learning problems. Fourthly, we propose our
AdaDSG algorithm and give its complexity analysis. Fifthly,
we show the experimental results of AUC maximization on
a variety of datasets. Finally, we conclude the paper.

Related Work

Essentially, our AdaDSG algorithm is an adaptive doubly
stochastic gradient algorithm following the adaptive sample
size scheme. In this section, we first give a brief review of
doubly stochastic optimization algorithms, and then give a
brief review of adaptive sample size algorithms.

Doubly Stochastic Optimization

According to how many random events occur per iteration,
stochastic optimization algorithms can be divided into the
singly stochastic approach, the doubly stochastic approach
and others. Normally the sample space (i.e., the union of
all possible random events) of stochastic optimization al-
gorithms could be the set of samples or the set of coordi-
nates. For example, the sample space of stochastic gradi-
ent descent algorithms (Defazio, Bach, and Lacoste-Julien,
2014; Johnson and Zhang, 2013) on the univariate loss func-
tions is the set of samples. The sample space of stochas-
tic coordinate descent algorithms (Bradley et al., 2011; Liu
and Wright, 2015) is the set of coordinates. For traditional
doubly stochastic optimization algorithms (Dai et al., 2014;
Zhao et al., 2014; Gu, Huo, and Huang, 2018; Gu et al.,
2018), the sample spaces are both the set of samples and
the set of coordinates. Our AdaDSG algorithm considers the
pairwise loss functions and repeats the two random events on
the same sample space (i.e., the set of samples). Thus, dif-
ferent to the traditional doubly stochastic optimization algo-
rithms which have two different sample spaces, our adaptive
doubly stochastic gradient algorithm has one sample space,
i.e., the set of samples.

Adaptive Sample Size Algorithms

There have been several adaptive sample size algorithms
proposed to solve the (regularized) empirical risk prob-



lems of traditional univariate loss. Specifically, Danesh-
mand, Lucchi, and Hofmann (2016) proposed the adaptive
sample size scheme for the empirical risk problems of tra-
ditional univariate loss on SAGA algorithm (DynaSAGA)
(Defazio, Bach, and Lacoste-Julien, 2014). Later, Mokhtari
et al. (2016); Eisen, Mokhtari, and Ribeiro (2018) con-
sidered the regularized empirical risk problems of tradi-
tional univariate loss, and extended the adaptive sample
size scheme to Newton’s method (Boyd and Vandenberghe,
2004). Mokhtari and Ribeiro (2017) also considered the reg-
ularized empirical risk problems of traditional univariate
loss, and extended the adaptive sample size scheme to ac-
celerated gradient descent (Yu, 2013) and SVRG (Johnson
and Zhang, 2013) algorithms. All these works proved that

the computational complexities can be reduced to O(n%)
or O(n) to reach the statistical accuracy on the full training
set. We also summarize these representative adaptive sample
size algorithms in Table 2. To sum up, existing adaptive sam-
ple size framework works only for the traditional univari-
ate loss functions, where the (stochastic) gradient algorithms
are with linear or quadratic convergence rate. However, our
AdaDSG algorithm works for pairwise loss functions on a
weaker assumption of convergence rate (i.e. sublinear) for
the doubly stochastic gradient algorithm.

Generalized Pairwise Learning Problem

As mentioned previously, the ultimate goal of pairwise
learning in theory is to find an optimal argument that mini-
mizes the expected risk £(w) w.rt. a pairwise loss function
of the form of:

*

w* = argminL(w) (1)
weR?
= argminE(z,y)E(z’,y’)L(flm (xay)a (:C/ay/))
weRd
where f,, is a hypothesis function with parameter w. How-
ever, due to the fact that the distribution of samples is un-
known, it is challenging to minimize the expected risk £(w).
In the real world applications of pairwise learning, instead
of minimizing the expected risk £(w), we usually consider
the empirical risk of pairwise loss function on a training set
S = {(24,y:) }1, as follows.

£n(w):ﬁ Z L(fuw, (xiyyi)s (z5,95))  (2)

1,J€8,i#]

Obviously, the problem (2) covers various pairwise learning
problems, including AUC maximization (Gao et al., 2013)
(equivalently called bipartite ranking (Rejchel, 2012)), met-
ric learning (Jin, Wang, and Zhou, 2009), and multiple ker-
nel learning (Kumar et al., 2012). Note that the pairwise loss
function L(fu, (2, i), (x;,y;)) is equal to zero for AUC
maximization if y; = y;.

Although the sample size of the set S could be huge in the
era of big data, it is still possible to overfit the training set if
directly minimizing the empirical risk objective (2). To pre-
vent overfitting, we add a regularization term A||w||? to the
empirical risk £,, (w), Thus, in this paper, we find an optimal

argument that optimizes a regularized empire risk R, (w) as
mentioned in (3), instead of the empirical risk £,, (w).

wh = argmin R,(w) = argmin £, (w) + \|w]|?
weRd weRY

To build the relationship between statistical accuracy and
regularized empirical risk, we rewrite the regularization pa-
rameter \ in the formulation (3) as form of A = 6‘2/" , where

1 .

Vo, =0 (ﬁ) and c is a constant to control the regular-
cVn

ization parameter

. Thus, the formulation of regularized

2
empire risk R, (w) can be reformulated as follows.
Ry (w) 3)
cVy, 9 1
() + Gl = oy

cVy,
Z L(fw, (xi,v:), (x5,95)) + 7““’”2
§,jE€S,i#]

Fij(w)

: RY — R is a smooth convex
cVin
2

where each function F; ;
function. Note that, the regularization term w||? not
only avoids overfitting, but also ensures that the problem is
strongly convex.

Statistical Accuracy in Pairwise Learning
Problems

In this section, we first analyze the relationship between
statistical accuracy and empirical risk £, (w), then analyze
the relationship between statistical accuracy and regularized
empirical risk R, (w).

Statistical Accuracy and Empirical Risk

There have been several works to give the upper bounds of
the difference between the expected risk £ and the empiri-
cal risk £,, for AUC maximization (Agarwal et al., 2005),
bipartite ranking (Agarwal and Niyogi, 2009), and metric
learning (Cao, Guo, and Ying, 2016). Recently, Lei, Lin, and
Tang (2018) provided a unified upper bound on the differ-
ence between the expected and empirical risks for pairwise
learning. To make this paper self-contained, we provide this
generalized upper bound as follows.

Theorem 1. (Lei, Lin, and Tang, 2018) Given an i.i.d. train-
ing set S = {(xi, )} for pairwise learning, we have an
upper bound on the difference between the expected risk L
and the empirical risk L,, for all w € R? as follows:

B | sup [£,(0) - £w)l| Vi, @)

weR?

where V,, = O (ﬁ)

According to Theorem 1, we have that the optimal values
of the expected loss and empirical loss are within a V,, dis-
tance at least of each other. Based on Theorem 1, we con-
clude that there is no gain in improving the optimization



Table 2: Representative adaptive sample size algorithms. (CRS is the abbreviation of convergence rate of subsolver.)

Algorithm Reference Loss function CRS Complexity
DynaSAGA Daneshmand, Lucchi, and Hofmann (2016) Univariate Linear O(n)
AdaNewton Mokhtari et al. (2016) Univariate Quadratic O(n)
AdaAGD Mokhtari and Ribeiro (2017) Univariate Linear O(nt)
AdaSVRG Mokhtari and Ribeiro (2017) Univariate Linear O(n)
AdaDSG Our Pairwise Sublinear O(n)

error of minimizing £,, beyond the constant V,,. In other
words, if we find an approximate solution w,, such that the
optimization error is bounded by L, (wy,) — L, (w}) < V,,,
where w, = argmin, cgs £, (w), finding a more accurate
solution to reduce the optimization error is not beneficial.
This conclusion is confirmed by Theorem 2 (the detailed
proof to Theorem 2 can be found in our Appendix).

Theorem 2. Given an i.i.d. training set S = {(x;,y;)}7 ;.
Define w,, as a 8,, optimal solution of the risk L,, in expec-
tation, i.e., B [Ly,(wyn) — Ly (w],)] < 8, We have that

Thus, it is easy to see that V,, is an important theoretical
quantity. In this paper, we define V,, as the statistical accu-
racy as follows.

Definition 1 (Statistical accuracy). The statistical accuracy
onan i.id. training set S = {(x;,y;) }_, is defined as V,, =

1
o (%)
Remark 1 (Relationship between V,, and L£,,). According
to Theorem 2 and Definition 1, we say that w,, solves the

empirical risk problem in (2) within its statistical accuracy

if it satisfies L, (wy) — L, (wl) < V,.

Statistical Accuracy and Regularized Empirical
Risk

Now, let’s consider the training set S, with m samples as
a subset of the full i.i.d. training dataset S, i.e., S;, C S.
First, we solve the problem corresponding to the set S,
such that the approximate solution w,, satisfies the condi-
tion E[R,, (wy,) — Ry (w,)] < dp,. Next, we consider an-
other training subset S,/ such that S,,,/ contains the set S,,,
i.e., Sy, C Sy € 8. Thirdly, we use w,,, as an initial solu-
tion of the problem R,/ and solve the subproblem related to
the set S,,,/.

A key question for the above procedure is that how much
accuracy is enough for solving the subproblem S,;,. To an-
swer this question, we derive an upper bound on the ex-
pected suboptimality of the variable w,,, w.r.t. the problem
R,/ in Theorem 3, which is built on the accuracy of w,,
w.r.t. the previous problem R,, associated to the training set
Sy The detailed proof can be found in our Appendix. Based
on Theorem 3 and Remark 2, we conclude that there is no
gain in solving the subproblem R,,, beyond its statistical ac-
curacy Vi, if m’ = 2m.

Theorem 3. Let L, and L, denote the empirical risks on
the sets Sy, and S/, respectively, where they are chosen

such that S,, C S,/. Further, define w,,, as an 0, optimal
solution of the risk Ry, in expectation, i.e., E[R,(wy,) —
Ry (wi)] < 8. Moreover; recall w* as the optimal solu-

tion of the expected risk L as defined in (1). We have that:
E [Ry (W) — R (w),))] (6)

V;n - Vm’ 4 %
< bt 2V 4 Vi + LT ()

Remark 2 (Relationship between V,,, and R,,,). According
to Theorem 3, if setting m’ = 2m, we have that

E [Rom (wm) — Rom(w3,,)] @)
1— L
s%+@+d2ﬁﬂmﬁm

The inequality (7) shows that there is no need to solve the
subproblem R, beyond its statistical accuracy V,,. Specif-
ically, even if d,, is zero, the expected sub-optimality will
be of the order O(Vy,), i.e., E[Ram (Wm) — Rom (w3,,)] <
O(Vin). Based on the inequality (7), the required preci-
sion &, for solving the subproblem R,, should be order of
O(Vim).

Adaptive Doubly Stochastic Gradient
Algorithm

In this section, we follow the the relationship between sta-
tistical accuracy and regularized empirical risk R, (w) re-
vealed in Remark 2 to propose our adaptive doubly stochas-
tic gradient (i.e., AdaDSG) algorithm. Next, we also provide
the complexity analysis of AdaDSG algorithm.

AdaDSG Algorithm

As mentioned in Remark 2, we consider two subsets S,,, and
Sop, of the full i.i.d. training set such that S,;, C Sa,,. The
conclusion suggests that there is no benefit to solve the sub-
problem R, beyond its statistical accuracy. Thus, we start
by a small number of samples and use an inner solver to
solve the corresponding problem with its statistical accu-
racy. After that, we double the size of the training set and
use the solution of the previous problem with half samples
as a warm start for the new problem. We repeat this proce-
dure until the selected training set becomes identical to the
given training set S which contains n samples. We summa-
rize our AdaDSG algorithm in Algorithm 1.

In this paper, we use the vanilla doubly stochastic gradient
descent (DSGD) algorithm to solve multiple subproblems
R,,,(w) which is summarized in Algorithm 2. Specifically,



we randomly select a pair of samples (x;, ;) and (z;,y;) at
the ¢-th iteration, and compute the stochastic gradient on the
pair of samples (x;, y;) and (x;, y;) as follows:

VE;j(w') = VL(fur, (xi,9:), (25, 95)) + cVinw"  (8)

Given the learning rate 4* = ﬁﬂ) where 4 is the strong
convexity parameter defined in Assumption 2, we update the
solution as w'™ « w! — 4'VE; ;(w?).

Remark 3 (Difference to the existing algorithms). AdaDSG
is different to the existing adaptive sample size algorithms
(Mokhtari et al., 2016; Mokhtari and Ribeiro, 2017) in
checking the termination condition of the inner solver. The-
orem 4 suggests that running DSGD only with O(m) steps
can reach the statistical accuracy V,, for the subproblem
R, Our AdaDSG runs a fixed number (i.e., O(m)) of iter-
ations instead of explicitly checking the termination condi-
tion ||V Ry, (wn) || < V/2¢Viy, as did in the existing adaptive
sample size algorithms.

Algorithm 1 Adaptive doubly stochastic gradient algorithm
(AdaDSG)

Input: Initial sample size m, and initial solution w° such
that Ry, (w?) — Ry (w)h,) < Vi -
Output: w?.
1: Initialize w® = w® and m = my.
2: while m < n do
3:  Increase the samples sizes m = min{2 x m,n}.
4:  Call DSGD to solve R,,(w) with the initial solution
w?® and an inner loop number O(m).
5. Set w®t! = @, where @ is the solution returned by
DSGD on the training set with the size of m.
6: end while

Algorithm 2 DSGD algorithm

Input: Learning rﬁte vt = m, loop number 7', and ini-

tial solution w".
Output: w’.
1: fort =0,1,2,--- , T —1do
2:  Pick (;,y;) and (z;,y;) uniformly at random from
the set S,,,.
3:  Update w't! + w! — y'VE; ;(wh).
4: end for

Complexity Analysis
We first give the assumptions of Lipschitz smoothness (As-
sumption 1), strong convexity (Assumption 2) and bounded

variance (Assumption 3), which are critical to the analysis
of our AdaDSG.

Assumption 1 (Lipschitz smoothness). The function F; ;
(Vi € SandVj € S) in (3) is Lipschitz smooth with the
Lipschitz constant L > cV,,, which means that Yw € R4
and Yw' € R?, we have:

IVE;j(w) = VFi j(w)]| < Lljw —w'l| ®

As shown in the formulation (3), F; ; includes a regu-
larization term <Y [|w||2. If the pairwise loss function L is
smooth, we have that F; ; is at least cV,,-Lipschitz smooth.
Assumption 2 (Strong convexity). The differentiable func-
tion R, (w) in (3) is strongly convex with parameter |1 >
eV, which means that Yw € R¢ and Yw' € R?, we have

Ra(w) 2 Ra(w') + (VR(w), 0 = w') + 5w = w/|* (10)

If the pairwise loss function L is convex, we have that
R, (w) is at least cV},-strongly convex.

Assumption 3 (Bounded variance). We assume that the
second moment of the stochastic gradient generated from
DSGD algorithm is upper bounded. Specifically, given an
initial solution w°, there exists a constant ¢ such that

E|VF,;(w)|]* < (Rn(w®) — Rn(w},)) (11)

Based on Assumptions 1, 2 and 3, we prove the follow-
ing conclusions. The detailed proof can be found in our Ap-
pendix.

1. The inner loop number for DSGD is O(m') which can
guarantee E R,/ (W) — R (w3,)] < Vi (ice., The-
orem 4).

2. The overall computational complexity of AdaDSG is
O(n) which can guarantee AdaDSG to achieve the sta-
tistical accuracy on the full training set (i.e., Theorem 5).

Before proving Theorem 4, we provide Lemma 1 which
shows that DSGD algorithm has a sublinear convergence
rate.

Lemma 1. Suppose Assumptions 1, 2 and 3 hold. For the
DSGD Algorithm, we have

ER,(w”) — R, (w*) (12)
Lmax{|[w® — w*|?, & (Ru(w’) — Rn(w*))}

n?
- 2T

Remark 4. Lemma 1 provides a sublinear linear conver-
gence rate to DSGD algorithm which is similar to the
one of traditional SGD algorithm. Further, according to
Lemma 1, we have that the overall computational com-
plexity of DSGD is O(n+/n) ! to make the solution satisfy
E R, (wy) — Ry (w})] < Vi To highly reduce the overall
computational cost of achieving the statistical accuracy on
the whole samples, we propose an adaptive sample size ver-
sion to DSGD (i.e., AdaDSG).

Theorem 4. Consider the variable w,, as a Vp,-
suboptimal solution of the risk R,, in expectation, i.e.,
E [Rp(wm) — R (w)] < V. Consider the sets S,, C
S, € 8 such that m' = 2m, and suppose Assumptions
1, 2 and 3 hold. To make the solution of DSGD satisfy
E Ry (W) — Ry (w},))] < Vi, the inner loop number
T of DSGD at the stage of Sy, should satisfy:

mas {27, =L L (54 (1 - J) )

T, > c

> NP

'This conclusion can be easily derived from Lemma 1.




Remark 5. Let w,, (a Vp,-suboptimal solution of
R,,) be the initial solution of the problem R,,.
Theorem 4 clearly shows that, if we want to have
E [Ry (W) — Ry (wE,))] < Vi, we only need to run the
DSGD algorithm with O(m') inner loops.

Based on Theorem 4, we provide the complexity analysis
of AdaDSG in Theorem 5.

Theorem 5. Suppose Assumptions 1, 2 and 3 hold. To reach
the statistical accuracy V,, on the full training set S, the
overall computational complexity of AdaDSG is given by

23 gcn}L(5+<1—;§>;||w*||2)

(14)

V2-1 ¢ V2

Remark 6. Theorem 5 shows that, the overall com-
putational complexity of AdaDSG is O(n) to make
the solution satisfy the statistical accuracy (i.e.,
E[R,(wyp) — Rp(w})] < V,). Compared with the
overall computational complexity O(n+/n) of DSGD, our
AdaDSG algorithm is much more efficient. To the best of
our knowledge, the overall computational complexity O(n)
is the best theoretical result for pairwise learning to achieve

the statistical accuracy.

max {\/ﬁ

Experimental Results
Experimental Setup

Design of Experiments: Because there has been great in-
terest in AUC maximization in recent data science research,
we consider the pairwise learning on the AUC maximization
problem in this paper. We conduct experiments not only to
verify the effectiveness of our AdaDSG algorithm, but also
to show that our AdaDSG algorithm has significantly better
scalability and efficiency than the existing pairwise learning
algorithms.

To verify the effectiveness of AdaDSG, we compare the
convergence speeds of DSGD and AdaDSG by observing
the AUC on the testing set vs. iteration number curves. To
verify the superiority of our AdaDSG algorithm on the scal-
ability and efficiency, we compare the AUC on the testing
set vs. training time for different AUC maximization algo-
rithms. The state-of-the-art AUC maximization algorithms
compared in the experiments are the online pairwise (OLP)
algorithm (Kar et al., 2013), the OPAUC algorithm (Gao
et al., 2013), the SOLAM algorithm (Ying, Wen, and Lyu,
2016) and our AdaDSG algorithms which are summarized
in Table 1.

Implementation Details: Our experiments were per-
formed on an 8-core Intel Xeon E3-1240 machine.
We implemented our AdaDSG algorithm in MAT-
LAB. We used the MATLAB code from http://
lamda.nju.edu.cn/files/OPAUC.zip as the im-
plementation of the OPAUC algorithm. We used the
MATLAB code from https://www.albany.edu/
~yy298919/nipsl6_solam.zip as the implementa-
tion of the SOLAM algorithm. We used the MATLAB and C
mixed code from https://www.cse.iitk.ac.in/
users/purushot/code.php as the implementation of

Table 3: The real-world dasetsets used in the experiments.

Dataset Feature size Sample size
A9a 123 32,561
Covtype 54 581,012
Ijcnnl 22 49,990
Phishing 68 11,055
Usps 256 7,291
Mnist 780 60,000
Revl 47,236 20,242
Real-sim 20,958 72,309

the OLP algorithm (Kar et al., 2013), where the core func-
tion was implemented by C. Note that, even though C imple-
mentation is significantly more efficient than a pure MAT-
LAB implementation, the experimental results still show
that our AdaDSG with MATLAB code is much faster than
OLP with C code.

For the OLP algorithm, we set the parameter s = 500
in the experiments. For the OPAUC algorithm on high di-
mensional datasets (feature size larger than 10,000), we used
the low-rank version, and set the rank parameter 7 = 100.
For our AdaDSG algorithm, the initial learning rate v° was
tuned from 1 to 10~%, and the outer loop number was set
as 20. In each experiment, the AUC value is the average
of 25 trials. We randomly partitioned each dataset into 75%
for training and 25% for testing. Regularization parameters
were used in (Gao et al., 2013) and our model. We fixed the
regularization parameters as 1 in our experiments. In the im-
plementation of our AdaDSG algorithm, we set V,, = ﬁ,

and set the inner loop number of DSGD for the subproblem
R,, asm.

Datasets: Table 3 summarizes the eight real-world bench-
mark datasets used in our experiments. They are the A9a,
Covtype, Ijcnnl, Phishing, Usps, Mnist, Rcvl and Real-
sim datasets from the LIBSVM repository?. For multi-class
datasets (i.e., Usps and Mnist), we transformed them into
binary classification problems by randomly partitioning the
data into two groups, where each group includes the same
number of classes. Please note that, to test the scalability of
different algorithms, all the datasets used in the experiments
are with large sample size or large feature size.

Results and Discussions

Figure 1 provides the convergence results of testing AUC
vs. iteration number of our AdaDSG algorithm and DSGD
algorithm on the Covtype, Ijcnnl, Mnist and Rcv1 datasets.
The results show that AdaDSG can converge to a good AUC
value with less time compared with DSGD. The results ver-
ify the effectiveness of AdaDSG, i.e., AdaDSG reduces a
lot of computing time to achieve the statistical accuracy on
the whole samples, which supports the theoretical result in
Remark 6.

>The LIBSVM repository is available at https:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.


http://lamda.nju.edu.cn/files/OPAUC.zip
http://lamda.nju.edu.cn/files/OPAUC.zip
https://www.albany.edu/~yy298919/nips16_solam.zip
https://www.albany.edu/~yy298919/nips16_solam.zip
https://www.cse.iitk.ac.in/users/purushot/code.php
https://www.cse.iitk.ac.in/users/purushot/code.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Testing AUC vs. iteration number curves of our AdaDSG algorithm and DSGD algorithm.
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Figure 2: Testing AUC vs. training time curves of AdaDSG algorithm and three state-of-the-art AUC maximization algorithms,
i.e., the OLP (Kar et al., 2013), OPAUC (Gao et al., 2013) and SOLAM (Ying, Wen, and Lyu, 2016) algorithms. Note that the
OLP curves are missing on the Rcv1 and Real-sim datasets because the program of OLP crashes on these large-scale datasets.

Figure 2 provides the convergence results of testing AUC
vs. training time of AdaDSG algorithm and three state-of-
the-art AUC maximization algorithms, i.e., the OLP (Kar
et al., 2013), OPAUC (Gao et al.,, 2013), and SOLAM
(Ying, Wen, and Lyu, 2016) algorithms on the A9a, Covtype,
Ijcnnl, Phishing, Usps, Mnist, Rcvl and Real-sim datasets.
Please note that the OLP curves are missing on the Rcvl
and Real-sim datasets because the program of OLP crashes
on these large-scale datasets. Although the OLP (Kar et
al., 2013) and SOLAM (Ying, Wen, and Lyu, 2016) algo-
rithms solve the empirical risk (2) and the OPAUC (Gao
et al., 2013) and our AdaDSG algorithms solve the regular-
ized empirical risk (3), the results still clearly show that our
AdaDSG has significantly better scalability and efficiency
than the existing pairwise learning algorithms.

Conclusion

In this paper, we first analyzed the relationship between the
statistical accuracy and the regularized empire risk for pair-

wise loss. Based on the relationship, we proposed a scalable
and efficient adaptive doubly stochastic gradient algorithm
(i.e., AdaDSG) for regularized pairwise learning problems.
We believe AdaDSG is a breakthrough to pairwise learn-
ing for the following four reasons. First, AdaDSG works
for general forms of pairwise learning problems, loss func-
tions and hypothesis functions. Second, the pivotal step of
AdaDSG is computing doubly stochastic gradients on a pair
of samples which make the computation of AdaDSG much
scalable and efficient. Third and most importantly, we prove
that the overall computational cost of AdaDSG is O(n) to
reach the statistical accuracy O(ﬁ) on the training set with

the size of n, which is the best theoretical result for pair-
wise learning to the best of our knowledge. At last, we con-
ducted the experiments on the application of the AUC maxi-
mization. The experimental results on real-world benchmark
datasets not only confirm the effectiveness of AdaDSG, but
also show that AdaDSG has significantly better scalability
and efficiency than existing pairwise learning algorithms.
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