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Abstract

Proximal gradient method has been playing an important role
to solve many machine learning tasks, especially for the non-
smooth problems. However, in some machine learning prob-
lems such as the bandit model and the black-box learning
problem, proximal gradient method could fail because the ex-
plicit gradients of these problems are difficult or infeasible to
obtain. The gradient-free (zeroth-order) method can address
these problems because only the objective function values are
required in the optimization. Recently, the first zeroth-order
proximal stochastic algorithm was proposed to solve the non-
convex nonsmooth problems. However, its convergence rate
is O(ﬁ) for the nonconvex problems, which is significantly

slower than the best convergence rate O(%) of the zeroth-
order stochastic algorithm, where 7" is the iteration number.
To fill this gap, in the paper, we propose a class of faster
zeroth-order proximal stochastic methods with the variance
reduction techniques of SVRG and SAGA, which are denoted
as ZO-ProxSVRG and ZO-ProxSAGA, respectively. In theo-
retical analysis, we address the main challenge that an unbi-
ased estimate of the true gradient does not hold in the zeroth-
order case, which was required in previous theoretical analy-
sis of both SVRG and SAGA. Moreover, we prove that both
ZO-ProxSVRG and ZO-ProxSAGA algorithms have O( )
convergence rates. Finally, the experimental results verify
that our algorithms have a faster convergence rate than the
existing zeroth-order proximal stochastic algorithm.

Introduction

Proximal gradient (PG) methods (Mine and Fukushima,
1981; Nesterov, 2004; Parikh, Boyd, and others, 2014) are
a class of powerful optimization tools in machine learning,
data mining, and computer vision, especially for solving the
nonsmooth problems. In general, it considers the following
optimization problem:

min f(z) 4+ ¥(x). (H
zER?
In nonsmooth problems, f(x) usually is the loss function
such as hinge loss and logistic loss, and v (z) is the struc-
ture regularizer such as ¢;-norm regularization. In recent
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research, Beck and Teboulle (2009); Nesterov (2013) pro-
posed the accelerate PG methods to solve convex problems
by using the Nesterov’s accelerated technique. After that, Li
and Lin (2015) presented a class of accelerated PG meth-
ods for nonconvex optimization. More recently, Gu, Huo,
and Huang (2018) introduced inexact PG methods for non-
convex nonsmooth optimization. To solve the big data prob-
lems, the incremental or stochastic PG methods (Bertsekas,
2011; Xiao and Zhang, 2014) were developed for large-scale
convex optimization. Correspondingly, Ghadimi, Lan, and
Zhang (2016); Reddi et al. (2016) proposed the stochastic
PG methods for large-scale nonconvex optimization.

However, in many machine learning problems, the ex-
plicit expressions of gradients are difficult or infeasible to
obtain. For example, in some complex graphical model in-
ference (Wainwright, Jordan, and others, 2008) and struc-
ture prediction problems (Sokolov, Hitschler, and Riezler,
2018), it is difficult to compute the explicit gradients of
the objective functions. Even worse, in bandit (Shamir,
2017) and black-box learning (Chen et al., 2017) problem-
s, only the objective function values are available (the ex-
plicit gradients cannot be calculated). Clearly, the above
PG methods will fail in dealing with these scenarios. The
gradient-free (zeroth-order) optimization method (Nesterov
and Spokoiny, 2017) is a promising choice to address these
problems because it only uses the function values in opti-
mization process. Thus, the gradient-free optimization meth-
ods have been increasingly embraced for solving many ma-
chine learning problems (Conn, Scheinberg, and Vicente,
2009).

Although many gradient-free methods have recently been
developed and studied (Agarwal, Dekel, and Xiao, 2010;
Nesterov and Spokoiny, 2017; Liu et al., 2018b), they often
suffer from the high variances of zeroth-order gradient esti-
mates. In addition, these algorithms are mainly designed for
smooth or convex settings, which will be discussed in the be-
low related works, thus limiting their applicability in a wide
range of nonconvex nonsmooth machine learning problems
such as involving the nonconvex loss functions and nons-
mooth regularization.

In this paper, thus, we propose a class of faster gradient-
free proximal stochastic methods for solving the nonconvex



Table 1:

Comparison of representative nonconvex zeroth-order stochastic algorithms for finding E||V f(x)

> < €or

Ellg,(x)||* < e (S, NS, C and NC are the abbreviations of smooth, nonsmooth, convex and nonconvex, respectively. 7" is
the whole iteration number, d is the dimension of data and n denotes the sample size.) Note that the GauSGE and CooSGE are
abbreviations of Gaussian and coordinate-wise smoothing gradient estimators, respectively ( Please refer to the below section

). B(< n) is a mini-batch size.

Algorithm Reference Gradient estimator Problem Convergence rate
RSGF Ghadimi and Lan (2013) GauSGE S(NC) O( %)
ZO-SVRG Liu et al. (2018¢) CooSGE S(NC) o(2)
SZVR-G Liu et al. (2018a) GauSGE SINC) O(max(ds B, d: B1)/T)
GauSGE NS(NC) O(dvs BV JTVTr)
RSPGF Ghadimi, Lan, and Zhang (2016) GauSGE S(NC) + NS(C) O( %)
CooSGE S(NC) + NS(C) 0(L)
Z0-ProxSVRG o) T
rox urs GauSGE S(NC) + NS(C) O(Z + do?)
CooSGE S(NC) + NS(C) O(2)
ZO-ProxSAGA 0 T
o o GauSGE S(NC) + NS(C) O(Z 1 do?)

nonsmooth problem as follows:

min ; ; fil®) + ¥ (@), @
where f(z) = L37" | fi(z), each fi(x) is a nonconvex

and smooth loss function, and () is a convex and nons-
mooth regularization term. Until now, there are few zeroth-
order stochastic methods for solving the problem (2) excep-
t a recent attempt proposed in (Ghadimi, Lan, and Zhang,
2016). Specifically, Ghadimi, Lan, and Zhang (2016) have
proposed a randomized stochastic projected gradient-free
method (RSPGF), i.e., a zeroth-order proximal stochastic
gradient method. However, due to the large variance of
zeroth-order estimated gradient generated from randomly s-
electing the sample and the direction of derivative, the R-
SPGE only has a convergence rate O(ﬁ) , which is signif-

icantly slower than O(%), the best convergence rate of the

zeroth-order stochastic algorithm. To accelerate the RSPGF
algorithm, we use the variance reduction strategies in the
first-order methods, i.e., SVRG (Xiao and Zhang, 2014) and
SAGA (Defazio, Bach, and Lacoste-Julien, 2014), to reduce
the variance of estimated gradient.

Although SVRG and SAGA have shown good perfor-
mances, applying these strategies to the zeroth-order method
is not a trivial task. The main challenge arises due to that
both SVRG and SAGA rely on the assumption that a s-
tochastic gradient is an unbiased estimate of the true ful-
1 gradient. However, it does not hold in the zeroth-order
algorithms. In the paper, thus, we will fill this gap be-
tween zeroth-order proximal stochastic method and the clas-
sic variance reduction approaches (SVRG and SAGA).

Main Contributions

In summary, our main contributions are summarized as fol-
lows:

e We propose a class of faster gradient-free proximal s-
tochastic methods (ZO-ProxSVRG and ZO-ProxSAGA),

based on the variance reduction techniques of SVRG and
SAGA. Our new algorithms only use the objective func-
tion values in the optimization process.

e Moreover, we provide the theoretical analysis on the con-
vergence properties of both new ZO-ProxSVRG and ZO-
ProxSAGA methods. Table 1 shows the specifical conver-
gence rates of the proposed algorithms and other relat-
ed ones. In particular, our algorithms have faster conver-
gence rate O(+£) than O(ﬁ) of the RSPGF (Ghadimi,

Lan, and Zhang, 2016) (the existing stochastic PG algo-
rithm for solving nonconvex nonsmoothing problems).

e Extensive experimental results and theoretical analysis
demonstrate the effectiveness of our algorithms.

Related Works

Gradient-free (zeroth-order) methods have been effective-
ly used to solve many machine learning problems, where
the explicit gradient is difficult or infeasible to obtain,
and have also been widely studied. For example, Nesterov
and Spokoiny (2017) proposed several random gradient-free
methods by using Gaussian smoothing technique. Duchi et
al. (2015) proposed a zeroth-order mirror descent algorith-
m. More recently, Yu et al. (2018); Dvurechensky, Gasnikov,
and Gorbunov (2018) presented the accelerated zeroth-order
methods for the convex optimization. To solve the nons-
mooth problems, the zeroth-order online or stochastic AD-
MM methods (Liu et al., 2018b; Gao, Jiang, and Zhang,
2018) have been introduced.

The above zeroth-order methods mainly focus on the
(strongly) convex problems. In fact, there exist many non-
convex machine learning tasks, whose explicit gradients are
not available, such as the nonconvex black-box learning
problems (Chen et al., 2017; Liu et al., 2018c¢). Thus, several
recent works have begun to study the zeroth-order stochas-
tic methods for the nonconvex optimization. For example,
Ghadimi and Lan (2013) proposed the randomized stochas-
tic gradient-free (RSGF) method, i.e., a zeroth-order s-



tochastic gradient method. To accelerate optimization, more
recently, Liu et al. (2018c,a) proposed the zeroth-order s-
tochastic variance reduction gradient (ZO-SVRG) methods.
Moreover, to solve the large-scale machine learning prob-
lems, some asynchronous parallel stochastic zeroth-order al-
gorithms have been proposed in (Gu, Huo, and Huang, 2016;
Lian et al., 2016; Gu et al., 2018).

Although the above zeroth-order stochastic methods can
effectively solve the nonconvex optimization, there are few
zeroth-order stochastic methods for the nonconvex nons-
mooth composite optimization except the RSPGF method
presented in (Ghadimi, Lan, and Zhang, 2016). In addition,
Liu et al. (2018a) have also studied the zeroth-order algo-
rithm for solving the nonconvex nonsmooth problem, which
is different from problem (2).

Zeroth-Order Proximal Stochastic Method
Revisit
In this section, we briefly review the zeroth-order proxi-
mal stochastic gradient (ZO-ProxSGD) method to solve the
problem (2). Before that, we first revisit the proximal gradi-
ent descent (ProxGD) method (Mine and Fukushima, 1981).
ProxGD is an effective method to solve the problem (2)
via the following iteration:

Ze41 = Prox,, (xt — an(xt)), t=0,1,---, (3

where 7 > 0 is a step size, and Prox,(-) is a proximal
operator defined as:

Proxy(r) = argmin {u(y) + 5 [ly — al?}. @)
y€ERd n

As discussed above, because ProxGD needs to compute
the gradient at each iteration, it cannot be applied to solve
the problems, where the explicit gradient of function f(x) is
not available. For example, in the black-box machine learn-
ing model, only function values (e.g., prediction results) are
available Chen et al. (2017). To avoid computing explicit
gradient, we use the zeroth-order gradient estimators (Nes-
terov and Spokoiny, 2017; Liu et al., 2018c) to estimate the
gradient only by function values.

e Specifically, we use the Gaussian Smoothing Gradient
Estimator (GauSGE) (Nesterov and Spokoiny, 2017;
Ghadimi, Lan, and Zhang, 2016) to estimate the gradients

as follows:
iz = filx + lﬂz) — fi(x)

where (1 is a smoothing parameter, and {u;} denotes i.i.d.
random directions drawn from a zero-mean isotropic mul-
tivariate Gaussian distribution A/(0, T).

e Moreover, to obtain better estimated gradient, we
can use the Coordinate Smoothing Gradient Estimator
(CooSGE) (Gu, Huo, and Huang, 2016; Gu et al., 2018;
Liu et al., 2018c¢) to estimate the gradients as follows:

u;, 1 €[n], ()

ej, 1€ [n],

d
Vi) = 3 L) — Ji@ )

j=1 213

(6)

where 115 is a coordinate-wise smoothing parameter, and
e; is a standard basis vector with 1 at its j-th coordinate,
and 0 otherwise. Although the CooSGE need more func-
tion queries than the GauSGE, it can get better estimated
gradient, and even can make the algorithms to obtain a
faster convergence rate.

Finally, based on these estimated gradients, we give
a zeroth-order proximal gradient descent (ZO-ProxGD)
method, which performs the following iteration:

Tpp1 = Proxyy (v =V f(e)), t=0,1,---, (7

where V f(z) = IS Vfi(x).
Since ZO-ProxGD needs to estimate full gradien-

tVf(z) = L3 Vfi(z), when n is large in the prob-
lem (2), its high cost per iteration is prohibitive. As a result,
Ghadimi, Lan, and Zhang (2016) proposed the RSPGF (i.e.,

Z0-ProxSGD) with performing the following iteration:
Ze41 = Prox,y (xt — n@fzt (xt)), t=0,1,---, (8

where @fl't(xt) = %Ziel} @fz(x), It € {1,2, s ,n}
and b = |Z;| is the mini-batch size.

New Faster Zeroth-Order Proximal Stochastic
Methods

In this section, to efficiently solve the large-scale nonconvex
nonsmooth problems, we propose a class of faster zeroth-
order proximal stochastic methods with the variance reduc-
tion (VR) techniques of SVRG and SAGA, respectively.

Z0O-ProxSVRG

In the subsection, we propose the zeroth-order proximal
SVRG (ZO-ProxSVRG) method by using VR technique of
SVRG in (Xiao and Zhang, 2014; Reddi et al., 2016).

The corresponding algorithmic framework is described
in Algorithm 1, where we use a mixture stochastic gra-
dient o = Vfz,(x) — Vfz,(2%) + Vf(&*). Note that
Ez,[0f] = Vf(x$) # Vf(x}), ie., this stochastic gradi-
ent is a biased estimate of the true full gradient. Although
the SVRG has shown a great promise, it relies upon the
assumption that the stochastic gradient is an unbiased es-
timate of the true full gradient. Thus, adapting the similar
ideas of SVRG to zeroth-order optimization is not a trivial
task. To address this issue, we analyze the upper bound for
the variance of the estimated gradient ¢y, and choose the ap-
propriate step size ) and smoothing parameter y to control
this variance, which will be in detail discussed in the below
theorems.

Next, we derive the upper bounds for the variance of es-
timated gradient 0y based on the CooSGE and the GauSGE,
respectively.

Lemma 1. In Algorithm 1 using the CooSGE, given the

mixture estimated gradient 0} = V fz,(x5) — V fz,(Z°) +

V f(&*), then the following inequality holds

26, L%d
b

L2 d2/1*2
2 b
9)

E||of — Vf(af)|I* < Ellzy — 2°|* +



where 0 < §,, < 1.

Remark 1. Lemma 1 shows that variance of v; has an up-
per bound. As the number of iterations increases, both x;
and z° will approach the same stationary point x*, then the
variance of stochastic gradient decreases, but does not van-
ishes, due to using the zeroth-order estimated gradient.

Lemma 2. In Algorithm 1 using the GauSGE, given the es-

timated gradient o = V fz,(x5) — Vfz,(@°) + Vf(Z°),
then the following inequality holds

» 126,
El|o] — V f(z0)]|* < ( 5 )(d + 6)°L*p?

66, L2 3 245,
+ E|lzf — %% + ( ; )(2d +9)a®.  (10)

Remark 2. Lemma 2 shows that variance of v; has an up-
per bound. As the number of iterations increases, both x;
and x° will approach the same stationary point x*, then the
variance of stochastic gradient decreases.

Algorithm 1 ZO-ProxSVRG for Nonconvex Optimization
1: Input: S, m, and step size n > 0;
2: Inmitialize: x{ = 7! € RP;
3: fors=1,2,---,Sdo

& VIGE) = LY VAGE:

5 fort=0,1,--- ,m—1do

6: Uniformly randomly pick a mini-batch Z; C
{1,2,--- ,n} such that |Z;| = b;

7: Using (5) or (6) to estimate mixture stochastic gra-
dient 0 =V fz, () — V fz,(2°) + Vf(&*);

8: xi, = Prox,y (z7 —no7);

9: end for

10 75t =22 and 25T = 23 ;

11: end for

12: Output: Iterate x chosen uniformly random from

{(5’3?)?:1}5:1-

Z.0O-ProxSAGA

In the subsection, we propose the zeroth-order proximal
SAGA (ZO-ProxSAGA) method via using VR technique of
SAGA in (Defazio, Bach, and Lacoste-Julien, 2014; Reddi
et al., 2016).

The corresponding algorithmic description is given in Al-
gorithm 2, where we use a mixture stochatic gradient 0, =
3 ez, (Vi (@) =V fi,(2,)) + ¢ Similarly, E, [6] =
Vf(x§) # Vf(x5), ie., this stochastic gradient is a biased
estimate of the true full gradient. Note that in Algorithm 2,
due to Zv t €Lt Vflf( t+1) = ZitEIt vflt (mt)’ the Step 8
can use directly the term ), .7, (@f“ (z:) — Vfi, (z£)),
which is computed in the step 5, to avoid unnecessary calcu-
lations. Next, we give the upper bounds for the variance of
stochastic gradient 9; based on the CooSGE and the GauS-
GE, respectively.

Lemma 3. In Algorithm 2 using the CooSGE, given the esti-
% D e, (vfit (w¢) =V fi, (tht)) + ¢t

mated gradient v, =

with ¢, = DD Vfi(2!), then the following inequality
holds
1,2 d2u2
5
(11)

Remark 3. Lemma 3 shows that variance of Uy has an upper
bound. As the number of iterations increases, both x; and
{28}, will approach the same stationary point, then the
variance of stochastic gradient decreases.

2U2d &
El[o, — Vf(a)|* < ZEH e — 213 +

Lemma 4. In Algorithm 2 using GauSGE, given the esti-
mated gradient b, = 7 D et (Vfi(z) =V fi, (Zf,)) + ¢
with ¢y = I Vfi(20), then the following inequality
holds

|6y =V f ()] <& ZEHJ% - #]?

+(4+ A

b
Remark 4. Lemma 4 shows that variance of Uy has an upper
bound As the number of iterations increases, both x; and
{zt}n “1 will approach the same stationary point x*, then
the varlance of stochastic gradient decreases.

)(2d 4+ 9)o% + (2 + %)(d +6)3L%u%  (12)

Algorithm 2 ZO-ProxSAGA for Nonconvex Optimization

1: Input: T', step size n > 0, zg € R4, and z? = x¢ for
i€{1,2,---,n}

2: Initialize: ¢y = %z;;l Vi(29);

3: fort=0,1,--- , T —1do

4: Unlforrnly randomly pick a mini-batch Z; C
{1,2,--- ,n} (with replacement) such that |Z;| = b;

5: Using (5) or (6) to estimate mixture stochastic gra-
dient 0; = %Zitezt (Vfit (x¢) — Vfs, (zft)) + b3
Ti1 = Proxyy (ze — nie);

21 = g, fori € 7, and zf“ =zl fori ¢ Iy;

t %Zitel} (ﬁfit (Zzt,) an( tﬂ)),

6
7
8 Gry1 =t —
9: end for

0: Output: Iterate = chosen uniformly random from
{ze 1

Convergence Analysis

In this section, we conduct the convergence analysis of both
Z0-ProxSVRG and ZO-ProxSAGA. First, we give some
mild assumptions regarding problem (2) as follows:

Assumption 1. For Vi € {1,2,--- ,n}, gradient of the
Sfunction f; is Lipschitz continuous with a Lipschitz constant
L > 0, such that

IVfi(z) = Vi)l < Lllz —yl, Yo,y € RY,

which implies

fi(@) < fily) + Vi) (z —y) +

L
Sl =yl



Assumption 2. The gradient is bounded as ||V fi(x)|?* <
o foralli=1,2,--- ,n.

The first assumption is standard for the convergence anal-
ysis of the zeroth-order algorithms (Ghadimi, Lan, and
Zhang, 2016; Nesterov and Spokoiny, 2017; Liu et al.,
2018c¢). The second assumption gives the bounded gradient
used in (Nesterov and Spokoiny, 2017; Liu et al., 2018b),
which is relatively stricter than the bounded variance of gra-
dient in (Lian et al., 2016; Liu et al., 2018c,a), due to that
we need to analyze more complex problem (2) including a
non-smooth part. Next, we introduce the gradient mapping
(Parikh, Boyd, and others, 2014) used in the convergence
analysis as follows:

gn(x) = %(x — Prox,y(z — nV f(2))). (13)

For the nonconvex problems, if g,(x) = 0, the point x is a
critical point (Parikh, Boyd, and others, 2014). Thus, we can
use the following definition as the convergence metric.

Definition 1. (Reddi et al., 2016) A solution x is called e-
accurate, if E||g,, (z)||* < € for some n > 0.

Convergence Analysis of ZO-ProxSVRG

In the subsection, we show the convergence analysis of
the ZO-ProxSVRG with the CooSGE (ZO-ProxSVRG-
Co00SGE) and the GauSGE (ZO-ProxSVRG-GauSGE),
respectively.

Theorem 1. Assume the sequence {(x)7™,}5_, generated
from Algorithm 1 using the CooSGE, and given a sequence
{ct} 7, as follows: for s =1,2,--- S

S, L2d
o — 5 n+ct+1(1+ﬁ),t:1,--~,m—1;
. =

0, t=m

(14)

where 3> 0. Let T = mS, n = £ (0 < p < 3) and p
satisfies the following

4p°m?

+p<1, (15)

then we have

E[F(z5) — F(x.)] N L2d?1n

E N <
Hgn(wt)H > T I

(16)

where v = 1 — Ln? and x* is an optimal solution of the
problem (2). Further let b = [n%] m = [n%] p = % and
w= O(\/%), then we have

18dLE[F(z}) —
T

Fla)] | O(%). 17)

Ellgn(z)Il <

Remark 5. Theorem 1 shows that, given |1 = O(\/%), b=

[n§] and m = [n%] the ZO-ProxSVRG-CooSGE has O(%)
convergence rate.

Theorem 2. Assume the sequence {(x)7,}5_, generated
from Algorithm I using the GauSGE, and given a sequence
{et}12, as follows: for s =1,2,--- S

36, L%n

+Ct+1(1+ﬁ)7 t:172, ,’I’)’L—].7

0,t=m

Ct =
(18)

where 3 > 0. Let 1 = £ (0 < p < 3) and p satisfies the
following

L?u?n

24 2,2
% tp<1 (19)
Then we have
svii o EIF(x5) — F(z.)] 60,,
Ellgn (=) <=7 +(1+ =5)(d+6)°
126, 2
+(2+ )(2d+9)%, (20)

where v = 3 — 2L and x* is an optimal solution of the

problem (2). Further let b = [n3], m = [n3], p = & and
u= O(ﬁ), then we have
18LE[F(x) — F(z.)] d

T + O(T)
+ O(do?). (1)
Remark 6. Theorem 2 shows that given ji = O(ﬁ), b=

[n3]and m = [n3), the ZO-ProxSVRG-GauSGE has O(4+
do?) convergence rate, in which the part O(do?) generates
from the GauSGE.

Ellgn(z7)]l <

Convergence Analysis of ZO-ProxSAGA
In this subsection, we provide the convergence analysis
of the ZO-ProxSAGA with the CooSGE (ZO-ProxSAGA-
Co00SGE) and the GauSGE (ZO-ProxSAGA-GauSGE),
respectively.
Theorem 3. Assume the sequence {x;}]_, generated from
Algorithm 2 using the CooSGE, and given a positive se-
quence {ci}1_, as follows:
L2dn
C+ =
T
where 3 > 0. Let cp = 0, = £ (0 < p < 1), and p
satisfies the following

(I —p)(1+5) (22)

32p%n?
<L, (23)
then we have
E[F(so) — F(z.)] | P&y
E )| < 24
lonan) | < =Tk 2O
where v = 3 — Ln? and x* is an optimal solution of the

problem (2). Further let b = [n3], p = L and p = O(\/%),
then we have

64dLE[F(x0) — F(z.)]
Ellgn(z)]l <

3T

d
+0(z)- (25)



Remark 7. Theorem 3 shows that given i = ( ) and
b = [n3], the ZO-ProxSAGA-CooSGE has O(%) conver-
gence rate.

Theorem 4. Assume the sequence {x;}1_, generated from

Algorithm 2 using the GauSGE, and given a positive se-

quence {c;}1_, as follows:

3L2%n
b -p)(1+5), (26)

where 3> 0. Let cr = 0, = £(0 < p < ) and p satisfies

the following

ct = +ci(1

96p°n?
e Tr< L, 27)
then we have
E[F(z0) = F(z,)] | (44 %)(2d +9)o®
Elgn )| < b
v v
2+ 2)(d+6)3L2p?
NCEE SR o8
gl
where v = % — Ln? and x* is an optimal solution of
the problem (2). Further let b = [n3], p = L 5 and | =

O(d\ﬁ) then we have
144LE[F (z0) — F(z)]

d
Elg, ()] < o +O(4) + 0ldo).
(29)
Remark 8. Theorem 4 shows that given ju = O( \F) and

b = [n3), the ZO-ProxSAGA-GauSGE has O(%+do?) con-
vergence rate, in which the part O(do?) generates from the
GauSGE.

All related proofs are in the supplementary document.

Experiments

In this section, we will compare the proposed algorithm-
s (ZO-ProxSVRG-CooSGE, ZO-ProxSVRG-GauSGE, ZO-
ProxSAGA-CooSGE, ZO-ProxSAGA-GauSGE) with the R-
SPGF method (Ghadimi, Lan, and Zhang, 2016) on two ap-
plications: black-box binary classification and adversar-
ial attacks on black-box deep neural networks (DNNs).
Note that the RSPGF uses the GauSGE to estimate gradient.

Black-Box Binary Classification

Experimental Setup In this experiment, we apply our al-
gorithms to learn the black-box binary classification prob-
lem. Specifically, given a set of training samples {a;, [; }}_,,
where a; € R% and I; € {—1,1}, we find the optimal pre-
dictor z € R? by solving the following problem:

min — Z filz
z€RI N

where f;(x) is the black-box loss function, that only return-
s the function value given an input. Here, we use the non-

convex sigmoid loss function f;(x) = m in the
i

)+ Xall@]|® + Al (30)

black-box setting.

Table 2: Real data for black-box binary classification

datasets #samples | #features | #classes
20news 16,242 100 2
a9a 32,561 123 2
w8a 64,700 300 2
covtype.binary 581,012 54 2

In the experiment, we use the publicly available real
datasets', which are summarized in Table 2. In the algo-
rithms, we fix the m1n1 -batch size b = 20, the smoothing

parameters p = W in the GauSGE and 1 = ﬁ in the

GooSGE. Meanwhile, we fix Ay = Ay = 1072, and use the
same initial solution x from the standard normal distribu-
tion in each experiment. For each dataset, we use half of the
samples as training data, and the rest as testing data.

Experimental Results Figures 1 and 2 show that both ob-
jective values and test losses of the proposed methods faster
decrease than the RSPGF method, as the time increases.
In particular, both the ZO-ProxSVRG and ZO-ProxSAGA
using the CooSGE show the better performances than the
counterparts using the GauSGE. From these results, we find
that the CooSGE shows the better performances than the
CauSGE in estimating gradients. Moreover, these result-
s also demonstrate that both the ZO-ProxSVRG and ZO-
ProxSAGA using the CooSGE have a relatively faster con-
vergence rate than the counterparts using the GauSGE. S-
ince the ZO-ProxSAGA has less function query complexity
than the ZO-ProxSVRG, it shows the better performances
than the ZO-ProxSVRG. For example, the ZO-ProxSVRG-
CooSGE needs O(ndS + bdT") function queries, while ZO-
SAGA-Co0SGE needs O(bdT') function queries.

Adversarial Attacks on Black-Box DNNs

In this experiment, we apply our methods to generate adver-
sarial examples to attack a pre-trained neural network mod-
el. According to (Chen et al., 2017; Liu et al., 2018c), the
parameters of given model are hidden from us and only it-
s outputs are accessible. In this case, we can not compute
the gradients by using back-propagation algorithm. Thus,
we apply the zeroth-order algorithms to find a universal ad-
versarial perturbation x € R? that could fool the samples
{al € R9, I; € N}, which can be regarded as the follow-
ing problem

min Zmax {Fl a; + )

F i 0
min — max (a; +z),0}

+ Az [l” + A el 3D

where A\; and A\, are nonnegative parameters to balance at-
tack success rate, distortion, and sparsity. Here F'(a) =

120news is from the website https://cs.nyu.edu/
~roweis/data.html; a9a, w8a and covtype.binary are
from the website www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/.
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Figure 2: Test loss versus CPU time on black-box binary classification.

[Fi(a),- -, Fk(a)] € [0,1]¥ represents the final layer out-
put of neural network, which is the probabilities of K class-
es.

Following (Liu et al., 2018c), we use a pre-trained DNN?2
on the MNIST dataset as the target black-box model, which
achieves 99.4% test accuracy. In the experiment, we select
n 10 examples from the same class, and set the batch
size b = 5 and a constant step size 7 = 1/d for the zeroth-
order algorithms, where d = 28 x 28. In addition, we set
A1 = 1073 and )\, = 1 in the experiment.

Figure 3 shows that both objective values and black-
box attack losses (i.e. the first part of the problem (31))
of the proposed algorithms faster decrease than the RSPGF
method, as the number of iteration increases. Here, we add
the ZO-ProxSGD-CooSGE method for comparison, which
is obtained by combining the ZO-ProxSGD method with the
CooSGE. Interestingly, the ZO-ProxSGD-CooSGE shows
better performance than both the ZO-ProxSVRG-GauSGE
and ZO-ProxSAGA-GauSGE, which further demonstrates
that the CooSGE can have better performance than the
CauSGE in estimating gradient. Although having a relative-
ly good performance in generating the adversarial samples,
the ZO-ProxSGD still shows worse performance than both
the ZO-ProxSVRG-CooSGE and ZO-ProxSAGA-CooSGE,
due to not using the VR technique.

Conclusions

In this paper, we proposed a class of faster gradient-free
proximal stochastic methods based on the zeroth-order gra-
dient estimators, i.e., the GauSGE and the CooSGE, which

“https://github.com/carlini/nn_robust_attacks.
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Figure 3: Objective value and attack loss on generating ad-
versarial samples from black-box DNNs.

only use the objective function values in the optimiza-
tion. Moreover, we provided the theoretical analysis on the
convergence properties of the proposed algorithms (ZO-
ProxSVRG and ZO-ProxSAGA) based on the CooSGE
and the GauSGE, respectively. In particular, both the ZO-
ProxSVRG and ZO-ProxSAGA using the CooSGE have rel-
atively faster convergence rates than the counterparts using
the GauSGE, since the CooSGE has better performance than
the CauSGE in estimating gradients.
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