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ABSTRACT

Constructive election control considers the problem of an adversary
who seeks to sway the outcome of an electoral process in order to
ensure that their favored candidate wins. We consider the compu-
tational problem of constructive election control via issue selection.
In this problem, a party decides which political issues to focus
on to ensure victory for the favored candidate. We also consider a
variation in which the goal is to maximize the number of voters sup-
porting the favored candidate. We present strong negative results,
showing, for example, that the latter problem is inapproximable
for any constant factor. On the positive side, we show that when
issues are binary, the problem becomes tractable in several cases,
and admits a 2-approximation in the two-candidate case. Finally,
we develop integer programming and heuristic methods for these
problems.
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1 INTRODUCTION

The study of the extent to which elections are susceptible to sub-
version by malicious parties has received considerable attention
under the general framework of election control. The computational
complexity of this problem has been formally studied from a num-
ber of perspectives, such as control by adding and deleting can-
didates and voters [5, 17], and in the context of different voting
systems [11, 13, 15, 18, 22]. However, there is an important means
of manipulating election outcomes that has been largely ignored:
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that of determining which issues are discussed and, consequently,
which are most salient for voters when they come to the polls.

To illustrate, take three issues, healthcare, environmental regula-
tion, and immigration, and suppose that all voters want universal
health coverage and environmental regulation, and a slight major-
ity wish to restrict immigration. Suppose that positions are binary
(support or oppose). Now, consider two candidates, one who sup-
ports immigration, environmental regulation, universal healthcare,
and the second who is opposed to all three. Clearly, if all issues are
considered, the former candidate wins in a landslide. However, if
one party is able to skew discourse entirely towards immigration,
the second candidate may narrowly win.

We investigate the problem of election control through manipu-
lating issues (which can also be viewed as a novel variant of the
bribery problem [16, 24, 29]). In this problem, we assume that voters
and candidates can be represented as points in a vector space over
issues, where each vector represents one’s (voter’s or candidate’s)
position on all issues, and the preference ranking of candidates
by a voter is induced by the norm distance between their respec-
tive position on issues in the natural way. We then investigate the
election control problem in the context of a choice of a subset of
issues, whereby the distance between a voter and a candidate in the
resulting restricted issue space determines the relative standing of
this candidate to others. Our study considers several related varia-
tions of this general framework: the decision problem in which the
interested party either aspires to have a candidate of their choice
win, and the optimization problem of maximizing the support (to-
tal number of votes) for a target candidate, all in the context of
plurality elections.

We obtain a series of strong negative results. First, we show that
not only is the general problem of controlling elections through
manipulating issues NP-Hard for both the decision problem and the
variant aiming to maximize support, it is actually inapproximable
for any constant factor for the latter variant. Moreover, the prob-
lem remains hard whether one breaks ties in favor of the target
candidate, or not, and even when there is either a single voter, or
two candidates. Second, we show that the problem remains hard if
we restrict issues to be binary. On the other hand, we observe that
under certain restrictions we can obtain positive results. For exam-
ple, the problem is tractable if there is only a single voter (unlike in
the general case), and maximizing support is 2-approximable when
there are two candidates. Finally, we provide solution approaches
for these problems based on integer linear programming, as well as
a greedy heuristic.
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1.1 Related Work

Our work is related to two areas of research on social choice: the
spatial theory of elections (including lobbying) and election control.

Spatial Theory of Elections and Lobbying Models. Spatial models of
elections were first introduced by Hotelling [19], with extensive
research following in the decades since [1, 2, 9, 10, 21, 23, 27]. A
major focus areas of research in the spatial model of elections is
that of a candidate choosing where to locate in a policy space [7, 28].
A key development in this field is the Median Voter Theorem (MVT)
[7], which characterizes the special case of our model with two
candidates and one issue. In this case, the winning candidate is the
one preferred by the median voter. However, MVT’s assumptions
of absolute candidate mobility and global attraction are unrealistic,
which continues to stimulate research on this model [25, 26]. Algo-
rithmic work in the spatial model has been somewhat more sparse,
although with several recent studies focusing largely on social
choice functions and distortion relative to a natural social choice
function caused by common voting rules, such as plurality [1, 2, 27].

An important research area within the spatial model is lobbying,
whereby an actor wishes to change decisions by voters on issues so
that majority vote on each issue corresponds to this actor’s prefer-
ence [6, 8]. The two clear difference from our proposed research is
that in our case, issue preferences determine which candidate wins,
rather than votes on each issue separately, and that in our case
manipulation targets groups of voters, whereas lobbying research
is typically focused on changing votes for a subset of k voters.
Somewhat related research assumes voters and candidates are fixed
actors in a policy space, and considers the game of convincing
voters of a candidate’s truthfulness [4, 20].

Election Control. Election control research focuses on the problem
of tampering with an election to either ensure that a candidate wins
or loses an election. The spatial theory of elections aims to explain
why voters vote the way they do by modeling an election system
as sets of voters and candidates as positions in an n-dimensional
policy space, in which voters vote for those candidates closest to
them in Euclidean distance.

The computational problem of constructive election control, in
which an adversary manipulates an election to ensure that a can-
didate wins was first studied by Bartholdi et al. [5], while Hemas-
paandra et al. [17] initiated the study of destructive control. Much
work since then has been done in election control under different
voting systems, such as range voting [22], approval voting [12], and
others [11, 13, 15, 18], as well as in bribery [13, 14, 24, 29].

2 CONTROL THROUGH ISSUE SELECTION

We study the problem of election control through issue selection. To
do so, we impose structure on a voting problem by assuming that
voter preferences over candidates are solely based on their relative
stance on the issues. To be more precise, consider a collection of
¢ issues, and a space X C R’ of possible positions on the issues.
Thus, x € X represents a vector of positions on all issues, with x
the position on (opinion about) issue k. In our setting, we have a
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m

i=1’
where each candidate i and voter j is characterized by a position
vector (representing their respective positions on all £ issues), which
we denote by c¢; and v}, respectively, with ¢;, v; € X. We use c;jx
(vjk) to denote the position of candidate i (voter j) on issue k, and
we refer to the vector of a candidate’s or voter’s beliefs as their belief
vector. Denote by [a : b] the interval of all natural numbers from a
to b, and suppose that voters consider a nonempty subset of issues,
S C[1:n],S # 0, in deciding which candidate to vote for. This set
S captures those issues which are salient to voters, for example, due
to a focus on these during campaigning. We assume that a voter v;
will rank candidates in order of their relative agreement on issues,
as captured by an I, norm for integral p > 1 with respect to the set
of issues S. Henceforth, we focus on plurality elections, so that a
voter v; would vote for a candidate i which minimizes ||U}9 - cl.s llp

collection of m candidates, C = {c; and n voters, V = {v; }J'.’:l,

where x5 denotes a restriction of x to issues in S.

We consider two constructive control problems within this frame-
work: control through issue selection (IsSUE SELECTION CONTROL
(ISC)), and maximizing support (MAx SupPPORT), which we now
define formally.

Definition 2.1 (Issue SELECTION CoNTROL (ISC)). Given a set of can-
didates C, voters V, and ¢ issues, is there a nonempty subset of
issues S C [1 : £] such that a target candidate c¢; wins the plurality
election?

Definition 2.2 (MAx SupporT). Given a set of candidates C, voters
V, and ¢ issues, find a nonempty subset of issues S C [1 : £] which
maximizes the number of voters who vote for a target candidate c;.

For both problems, we must define a rule by which to break ties. We
consider both the best-case of undecided voters choosing the target
candidate c1, and the worst-case of undecided voters choosing
another candidate. We use the same tie-breaking rule when several
candidates are tied.

3 REAL-VALUED ISSUES

We begin our study of election control by analyzing its algorithmic
hardness when issue positions are unrestricted, i.e., X = RY. We
show that the problem is computationally intractable, even for a
single voter or with only two candidates. However, the problem is
tractable when the number of issues is bounded by a constant.

3.1 Issue Selection with a Single Voter

Consider election control through issue selection with only a single
voter, v, which we term SINGLE-VOTER IsSUE SELECTION (SVIS).
We start by assuming that ties are broken in candidate ¢;’s favor
(best-case tie breaking). Note that in this setting, ISSUE SELECTION
and MAX SUPPORT are essentially equivalent: in either case, we
ask whether there exists a nonempty subset of issues S C [1 : £]
such that when restricted to these issues, candidate ¢; wins the
voter v (with a maximum support of 1 if ¢; wins, and 0 if it loses).
Equivalently, we ask if there exists a nonempty subset S such that

D lek — ol < Y lee —wl? Vielziml (1)

keS keS
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where vy, is the sole voter’s position on issue k. Observe that con-
dition (1) holds if and only if

Z leik —vkl? = leie —vlP 20 Vie[2:m]
keS
Thus, setting the entries of an auxiliary (m — 1) X £ matrix M

leik —vrlPiie[2:mlke1:€] (2)

we can equivalently ask whether there exists a nonempty subset
S of the columns of M such that the restriction of M to these has
nonnegative row sums. We will refer to such a restriction of an
election as "highlighting” a set of issues.

M;_q ke = lejr — vplP =

THEOREM 3.1. SVIS with best-case tie breaking is NP-complete for
anyl, norm.

Proor. First observe that SVIS is in NP. Indeed, given an instance
of SVIS and a proposed subset S, it is trivial to verify whether S
satisfies condition (1) in polynomial time.

We now show that SVIS is NP-hard via reduction from 0-1 INTEGER
LINEAR PROGRAMMING, which is well-known to be NP-complete. In
this problem, we are given a matrix A € Z™<¢ and a vector b € Z¢,
and we ask if there exists a vector x € {0,1}¢ such that Ax > b
componentwise.

Given an arbitrary instance (A, b) of 0-1 INTEGER LINEAR PROGRAM-
MING (ILP), we construct an (m + 1) X (€ + 1) matrix M as follows:

Mi,k::Ai,k i:1,...,€ kzl,...,f
Ml"[+1 = —bi i=1,...,m
1
Mm+l,k ::—m kzl,...,[

Mmi1,641 = 1.

This construction is motivated by the observation that choosing a
subset S of columns of M so that ¢; wins the election is analogous
to choosing the positions of ones in a vector x that satisfies Ax > b.
Each row of M corresponds to a candidate belief vector with the
constraint vector b included as an added issue. We force this issue
to be considered by creating a dummy candidate whose beliefs
coincide with ¢q on all but that issue.

We now construct an instance of SVIS by setting the voter belief vec-
tor v to be the zero vector and constructing a sequence of candidate
belief vectors C = {¢;}]2, from M.

cip = 4 miinM,—k‘ kel[1:€+1]
Civnk = { My + b, e[l:m+1lke[1:0+1]

We do this because we want to arrange that M;; = |c;x|P — |c1|P,
using positive values of c;j. for simplicity. It is then straightforward
to see that the original instance of 0-1 INTEGER LINEAR PROGRAM-
MING is satisfiable if and only if our constructed instance of SVIS
is satisfiable, by constructing a 0-1 vector x with ones at precisely
the indices in S \ {€ + 1}, or vice versa. O

THEOREM 3.2. The worst-case version of SVIS is at least as hard as
the best-case version of SVIS.
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ProoF SKETCH. Consider an m X ¢ matrix M representing an arbi-
trary instance of the best-case version of SVIS and define

> Miw)

k’€R(k)

1
16[1m kE 1:£] 2

where the set R(k) = {(,2), r € [1..£]}. We can create a new (m +
2) X (€ + 1) matrix M’ as follows:

My = M g i=1,...,m =1...,¢
’ o _
Mm+1,k'_0 k=1,...,¢
’ ._6 —
Mi,k+1'_§ i=1,....m+1
’ — —
Mm+2,k'_€ k=1,...,¢
4 — €
Mm+2,€+1 Ty

Recall that in the worst-case version of SVIS, a voter will default to
other candidates in cases of a tie. So, we are forced to include issue
€+ 11n S in order to win against candidate m + 1. Once we include
issue £ + 1, we bias the voter towards the target candidate and
against each candidate by a small amount. Because of our choice
of ¢, this bias will only affect the election in instances where the
candidates are tied. However, we still have to include at least one
other issue from [1 : €] to win against candidate m + 2.

This construction then turns into the best-case version of SVIS once
we begin to consider combinations of issues from [1 : €] with issue
m+ 1. ]

3.2 Issue Selection with Two Candidates

While issue selection is hard even with a single voter, we now
ask whether it remains hard if we have only two candidates. We
term the resulting restricted problem Two-CANDIDATE ISSUE SELEC-
TION (TCIS). We show that both of the considered problem variants
remain NP-hard. Furthermore, MAx SUPPORT is actually inapprox-
imable to any constant factor even in this restricted setting.

THEOREM 3.3. TCIS with best-case tie breaking is NP-complete.

Proor. First, observe that TCIS is in NP because, given a set S of
issues to highlight, we can easily check if ¢; wins the election in
polynomial time. We use a reduction from 0-1 INTEGER LINEAR
PROGRAMMING to prove it’s NP-Hard.

Next, consider the issue selection problem with two candidates and
a set of voters V. Note that we successfully control the election
iff the following condition holds for at least half of the voters v;
(remember that ties are broken in ¢;’s favor):

Z lewe —vpl” < Z leak = vjk] ®3)
keS keS
We now construct a matrix M with entries
Mk = leak ol e —vjlPjeltnlkef1: €. (4

We can equivalently ask for a nonempty subset S of columns of
M such that the restriction of M to those columns maximizes the
number of indices j s.t. Y xes Mjx = 0.
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Let A be our ILP matrix, and b - the ILP constraints. Then, we can
reduce ILP to TCIS by creating the following (2n+1) X (£ + 1) matrix
M:

M = Aj €[1:n] kelt:£]
M;j = -1 eln+1:2n+1] kell:£]
Mj p41 = —bj €[1:n]
Mj 11 =0 je[n+1:2n]
Mons1,e41 =€ +1

As in our reduction of SVIS, we represent the constraint vector b
as an issue that must be put in S in order for S to win. We also
create n dummy voters with all negative entries. This will force us
to look for assignments of S that satisfy all rows that correspond to
constraints of ILP. If ¢; can win the given election, we return yes
for ILP, and no if ¢; cannot win.

Finally, we show that for any M we can derive voter preferences
consistent with it. Since definition of M is independent for different
issues k, it will suffice to do this for an arbitrary issue k (kth column
of M, which we denote by My). Consequently, consider a column
MK, and define My = max; |M; k| (the value of My with the largest

magnitude). Define ¢;; = 0 and ¢y = M}C/ . Additionally, define
a function f(z) = |cz — z|P — |c¢1 — z|P for z € [0, c3]. Clearly, this
function is continuous, and f(0) = My, while f(cz) = —M}.. Then
by the intermediate value theorem, for any M, we can find a vj
such that f(vjr) = Mji. Repeating the process for each issue k
gives us the construction. O

Next, we turn to the MAx SUPPORT version of the issue selection
problem with two candidates; we term this Two-CANDIDATE MAX
SuppoRrT (TCMS). We show that not only is it NP-hard, it is inap-
proximable.

THEOREM 3.4. TCMS with best-case tie breaking is NP-hard for any
lp norm. Moreover, it cannot be approximated to any constant factor
unless P = NP.

Proor. We can now show that TCMS is NP-hard by restricting ¢
to 2 and reducing from MAXIMUM INDEPENDENT SET (MIS). Given
an undirected graph G = (V, E) on |V| vertices, MIS asks to select a
maximal subset of vertices S C V so that S is an independent set
(i-e., no pair of vertices in S is connected by an edge).

Given any instance of MIS, we can represent that instance as an
instance of TCMS by first creating a |V| X |V| matrix with every
value along the diagonal equal to |V| — 1. For every pair of vertices
u,v, set My, = My, = —|V|if u and v are connected in G, and
—1 otherwise. Now, if we were to select an issue corresponding
to vertex u with neighbor v, then we cannot hope to select any
other subset of issues such that row v sums to greater than or equal
to 0. Thus, the action of selecting columns of M to include in S
corresponds to selecting vertices of G to be in our independent set,
and maximizing the number of rows in this manner corresponds to
finding a maximum independent set.
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To complete the reduction, what remains to prove is that we can de-
rive voter belief and candidate belief vectors for any M constructed
in this manner. The associated lemma is provided in the supplement.

Inapproximability follows directly from our reduction of MIS to
TCMS: we know that MIS is NP-hard to approximate within any con-
stant factor ¢ > 0 [3], and our reduction from MIS is approximation-
preserving. m]

The next results show that the worst-case tie breaking setting is no
easier than when ties are broken in ¢1’s favor.

THEOREM 3.5. The worst-case version of TCIS is at least as hard as
the best-case version of TCIS for the two-candidate case.

Proor SKETCH. Given an n X ¢ matrix M associated with a two-
candidate instance of best-case issue selection, define € as in the
proof of Theorem 3.2. Further, we let x := |

]e[ln kelf
create a 3n X (€ + 1) matrix M’ as follows:
M]’.,k =M, jel:n] kel1:¢]
M]’.k:x je[n+1:2n] ke[1:€] (5
M]’.k::—x je[2n+1:3n] ke[1:€] (o)
6 .
M]{,€+1 = jel:n]
6 .
;,€+1 ::—5 je[n+1:3n]

Once again, we choose a value of ¢ > 0 such that e will affect
the election only if a voter is undecided. The proper assignment is
shown in the supplement.

Recall that in the worst-case version of TCIS, undecided voters
(rows of M’ with a net zero value) will default to a candidate other
than c¢;. With the addition of column ¢ + 1, any undecided voters
will now be “nudged” in the direction of ¢; instead. Also, since the
values of column n + 1 are smaller than the difference of any two
values of M, the issue affects the election only if a voter is actually
undecided. So, issue £ + 1 appropriately mimics the weak inequality
used in the best-case version of TCIS, and if a candidate wins an
election in the worst-case reduction, they win the election in the
best-case version, and vice versa.

Note: we add 2n extra voters to the problem to set things up such
that including issue n + 1 would not be sufficient for winning
the election. We also choose 2n voters specifically so that we can
be guaranteed to split voters evenly between c; and ¢z with our
assignments in Equations 5 and 6. m]

COROLLARY 3.6. The worst-case version of TCMS is NP-hard.

4 BINARY ISSUES

We have shown that election control through issue selection is hard
in general. However, real world opinions may have a variety of
restrictions. For example, legislative issues can be viewed as binary
issues, where a voter opinion can take only two values: support or
oppose.
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Formally, in binary versions of the issue selection problems, X =
{0, 1}¢. Voters vote for the candidate with whom they agree on
most issues. Let BINARY ISSUE SELECTION CONTROL (BISC) be the
variant of ISSUE SELECTIONover a binary domain and, similarly, let
BiNARY Max SupPoORT (BMS) be the corresponding variant of the
Max SUPPORT problem.

4.1 Binary Issue Selection with 1, 2 and 3 Voters

We start by considering again the problem of issue selection with a
single voter, which we showed to be NP-Hard in the general case
of real-valued issues. We show that this problem is now in P.

As before, it suffices to consider solely SINGLE-VOTER BISC . We
start with the case when ties are broken in ¢;’s favor (best-case
tie-breaking). Consider the following SINGLE IssUE WIN algorithm:

Check if there is an issue such that either (a) c; agrees with the
voter v, or (b) no other candidate c; agrees with v. If it exists,
return YES. Otherwise, return NO.

THEOREM 4.1. The SINGLE IsSSUE WIN algorithm solves SINGLE-VOTER
BISC with best-case tie-breaking.

Proor. It suffices to show that whenever SINGLE IsSUE WIN returns
NO, c; cannot win the election. Consider an arbitrary subset of
issues S. Since the answer is NO, it must be that for each issue k € S,
c1 disagrees with v on k. Consequently, ||v — c1|| = |S|. Choose a c;
which agrees with v on some issue k € S. Then [[v — ¢j|| < |S| -1,
that is, ¢; cannot win for issues restricted to S. Since S is arbitrary,
the result follows. |

In fact, we can easily generalize the algorithm for a single voter
to a setting with two voters by simply applying the algorithm for
each voter.

COROLLARY 4.2. 2-VOTER BISC problem with best-case tie-breaking
is poly-time solvable.

Next, we show that the problem is in P for one and two voters
even with worst-case tie-breaking, although the algorithmic ap-
proach is quite different. For worst-case tie-breaking, we propose
the following AGREE ON IssuEs algorithm:

Let Sagree be the set of all issues on which ¢ agrees with v. If ¢
wins over each other candidate c; when issues are restricted to
Sagree, return YES. Otherwise, return NO.

THEOREM 4.3. The AGREE ON IssUEs algorithm solves SINGLE-VOTER
BISC with worst-case tie-breaking.

Proor. It suffices to consider the case when we return NO. Suppose
there is some c; that wins when we restrict to Sggree. Then it
must be that c; also agrees with v on all issues in Sggree (and any
subset thereof). Consider an arbitrary subset of issues S, and let
xjk = 1if j agrees with v on issue k. ¢;’s difference from v is then
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Zkesnsagr” Xjk + ZkeS—SﬂSagree Xjk = IS N Sagree|. Since the
difference between c; and v is |S N Sggreel, the result follows. O

The same approach is also applicable to 2-VoTER BIS.

COROLLARY 4.4. 2-VOTER BISC with the wost-case tie-breaking is
poly-time solvable.

Proor. For the candidate ¢; to win, both voters must support her.
Without loss of generality, we can assume that c; opinion on all
isues is 1. Let Sggree be the set of all issues on which ¢; agrees with
both voter v; and v;. Similarly to Theorem 4.3, if ¢; does not win
against each other candidate c; over the set Sggree, then no other
subset of issues will achieve c1’s win. O

Remarkably, while BSIC with 1 and 2 voters are efficiently solvable
for both best-case and worst-case tie-breaking, with 3 voters we
see a qualitative difference in complexity, depending on how ties
are broken. First, we observe that the 3-voter case with worst-case
tie-breaking is tractable.

COROLLARY 4.5. 3-VOTER BINARY ISSUE SELECTION with the worst-
case tie-breaking is poly-time solvable.

Proor. By Corollary 4.2 we can test in poly-time whether any
given pair of voters can be won over by c;. Applying this to each
of the three possible pairs of voters, we can determine in poly-time
whether the support of any two voters can be obtained simultane-
ously. If so, then c¢; can be made to win. Otherwise no subset of
issues will make c; the winner. m]

Now, we show that the problem becomes hard with best-case tie-
breaking even with only 3 voters.

THEOREM 4.6. 3-VOTER BINARY ISSUE SELECTION with the best-case
tie-breaking is NP-hard.

Proor. The proof relies on a reduction from the Exact 3-CovER
(X3C) problem. An instance of X3C is governed by t — number of
elements, s — the number of sets. In the reduced instance we will
denote by w the preferred candidate (and assume that his opinion
on all issues is 1), ¢ — the candidate whose opinion on every issue
is 0 (zero), v3 — the voter whose opinion on every issue is 0. This
implies that to win the election w should gain the support of both
voters v; and vy. In addition we will denote by r the number of
issues in the reduced instance, setting it to r = s + ¢ + 2. Finally,
we will set the number of candidates to m = t + 4 and name them
Cly e ey Cty Xy Uy C, W.

The preferences of v; and vy over the r issues are as follows:
vp: 1...1 0...0 1 0

vy: 0...0 1...1 0 1
~—— =
s t

Preferences of candidates take a more complex form
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o For issues from 1 through s. These preferences will encode the
X3C instance. In particular, candidates c;, ¢j, ce will have opin-
ion 1 on the k" issue if and only if the k'* set in the X3C
instance is {i, j, e} = Sg. Otherwise the opinion of these three
candidates on the k*" issue will be 0 (zero).

e On issues s + 1 through s + t all candidates ¢, ..., c; have 0

(zero) opinion.

e On thes+t + 1 issue all candidates cq, . .
(zero)

., ¢; have opinion 0

e Ons+t+ 2 issue all candidates ¢y, . . ., ¢; have opinion 1

e Candidate y has opinion 1 on issues 1,...,s + t and opinion 0
(zero) on the issues s+t + land s+t + 2

e Candidates x has opinions in the complete opposion to candi-
date y

Let us now show that if we have a solution to the resulting ISSUE
SeLECTION CONTROL problem, we can recover a solution for the
original X3C instance.

Candidate c, with all his opinions set to 0 (zero), serves as a kind of
reference for voters. Thus, given a selection S of issues, the preferred
candidate w will gain the support of a voter only if they agree on
at least as many issues in S as they disagree. As a result, ISSUE
SELECTIONSsolution should contain equal number, g, of issues from
theset {1,...,s,s+t+1}and fromtheset {s+1,...,s+¢t,s+t+2}.
Consequently, candidate w will agree with any voter on exactly g
issues.

Notice that both the issue s + ¢ + 1 and s + ¢ + 2 must be selected in
a solution to the IssUE SELECTION CONTROL. To see this consider
the follwoing two cases

o Neithers+t+1, nors+t+2 are in the solution set, S of issues. Still,
an equal number of elements (denoted earlier by g) must be
selected from the sets of issues {1,...,s}and {s+1,...,s + t}
for the solution set S. Wlog., issue 1 € S. Then voter v; agreed
with the candidate ¢;, on g + 1 issues (g issues from the set
{s+1,...,s +t} and issue 1). As a result, voter v; would not
vote for candidate w. Thus S, that does not contain neither
s+t +1nors+t+ 2, can not be a valid solution to our BISC
instance.

e Only one among issuess+t+1 and s+t +2 is selected as a part of
the solution set of issues S. If it is the issue s + ¢ + 1, then voter v;
agreed with the candidate x on g + 1 issues and with candidate
w on q issues only. Thus, v1 would not vote for w, and S is not a
valid soluion. Similarly, if s + t + 2 was selected, then candidate
y will win the support of vy, once again preventing w from
winning.

Now, with both issues s+¢+1 and s+¢+2 chosen, let us show how we
can obtain a solution to the original X3C problem from the solution
set of issues S to the reduced BISC problem. The set of issues S
makes candidate w the winner of the election. Let {iy, . .., iq_l} =
SN{1,...,s}. We will show that the collection S, ..., S"qfl is the
solution to the original X3C instance.
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(1) If there is an element j that belongs to two different sets in the
collection Sj,, .. ., S,-q_l, then v; agrees with ¢; on 2 issues from
i1,...,ig-1 and on g — 1issues from {s +1, ..., s +t}. Totalling
q + 1 agreements between v; and c¢;. Which implies that v will
not vote for w, and contradicts w being the winner.

(2) If there exists an element j that does not belong to any set in
the collection S;,, . . . ’Siq—l’ then ¢; € C\ {cj;, ck;» ce; } for all
i €{i1,...,ig-1}. As a consequence vy agrees with c; on g — 1
issues from the set of issues {1, ..., s} and on both issues s+¢+1
and s + t + 2. This totals g + 1 agreements between v and cj,
entailing that v, will not vote for w, contradicting w being the

winner.

As a result, the collection Sj,, ..., S; g1 constructed from the BISC
solution S is a proper solution to the original X3C instance, i.e.
every element belong to 1 and only 1 set.

Let us now show that a solution to the X3C instance can be trans-
lated into a solution to the BISC reduction instance.

Let S;,,...,S;, be alegal solution to the X3C instance. Then set
the selection of issues S = {i1,..., it} U{s+1,....,s +k} U {s+
t+1,s +t + 2}. Notice that k is the number of elements in the X3C
instance, and therefore k = % ands+k <s+t.

By the choice of iy, . . ., if, it must hold that v; agrees with every
candidate c¢; once on issues if, ..., i, and % times on issues s +
L...,s+ks+t+1s+t+2 Overall v; and c; agree on § + 1
issues. Candidate x agrees with v; onissuess+1,...,s+k,s+t+1
only, totalling % + 1 agreements as well. Similarly, candidates c and
y rake in % + 1 agreements. Thus, by the tie-breaking rule, v; votes
for w.

Similarly, v, is matched with the opinion of ¢; over £ — 1 issues
from the set {ij, ..., ir} and 2 more matches are produced over
issues s+t +1, s+t +2. This totals % +1 matches between c; and v;.
Similarly to vy, vy also agrees with x, y and ¢ on % + 1 issues. Again,
tie-breaking will decide in favour of w. Thus w has the support of
both v and vy and becomes the winner.

We conclude that the original X3C instance has a solution if and
only if the reduction instance of BISC has a solution. O

4.2 Binary Issue Selection with Two Candidates

With an arbitrary number of voters and only two candidates, even
the BISC problem with best-case tie-breaking is hard.

THEOREM 4.7. With two candidates, BISC with best-case tie-breaking
is NP-complete.

Proor. It is evident that BISC problem is in NP, so we only need to
show that it is NP-hard. We will do so by a reduction from HiTTING
SET, where p denotes the number of elements, s — the number of
sets, and k — the number of elements which should be chosen as
the hitting set. We construct a profile for BISC problem with 2
candidates, ¢ issues and n voters, where ¢ is such that £ = p + k and
n = 2ks + 4.
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We assume that the preferred candidate is ¢; and set his opinion to
1 on all issues. All opinions of his rival, c, are set to 0 (zero). We
then arrange voters into 3 blocks, as follows:

e [Block 1.] Two voters. The first one has opinion 0 (zero) for
issues from 1 through issue £ — k, and opinion 1 for issues from
¢ —k + 1 to £. The second voter has an opposite opinion wrt all
issues.

e [Block 2.] Second block consists of ks voters divided into k
sub-blocks. For every sub-block, opinions of voters on issues
from 1 to £ — k encode the hitting set problem instance. That is,
voter (f — 1)s + i has opinion 1 on issue j if and only if element
jesiforall f e[1:k].Forissues from ¢ —k+1to ¢, all voters
of the sub-block f € [1 : k] will have the same 0 (zero) opinion
onissue { — k + f and 1 on all other issues.

e [Block 3.] This block consists of ks + 2 voters whose opinion
on all issues is 0.

Let us now show the correctness of this reduction. Let {iy, ..., i;}
be a set issues chosen to make c¢; the winner. Consider voters who
support c1. Evidently, nobody from Block 3 is among them — no
matter which issues were chosen, voters from Block 3 will support
co. As a result, ¢y has at least ks + 2 votes. Hence, all voters from
Blocks 1&2 should vote for ¢ to make him the winner.

Consider voters in Block 1. They both vote for ¢y, therefore, {iy, ..., i;}
consists of equal number of elements from both issue sets [1 : £ —k]
and [£ — k + 1 : £]. Otherwise, there are (w.l.o.g.) more issues from
[1:¢— k] than from [¢ — k + 1 : £]. Which implies that the second
voter from Block-1 has more negative (0) opinions than positive (1),
and he will vote for the candidate cp. Additionally that means at
most k issues were picked from both sets. Denote this number by
r<k.

Wlo.g. issue £ — k + 1 is chosen from the set [£ — k + 1 : £]. Thus,
voters from the first sub-block of Block-2 have r — 1 1’s and one
0 as an opinion on issues in [£ — k + 1 : £]. Therefore, all voters
from this sub-block should have at least one positive (1) opinion
on issues chosen from the issues set [1 : £ — k]. That is, these issues
represent a hitting set with r elements where r < k.

Similarly a solution for the BISC can be constructed from a given
HiTTING SET solution.

This proof is easy to adapt to worst-case tie-breaking. O

COROLLARY 4.8. The BMS problem is NP-hard.

Although BINARY MAX SUPPORT is NP-hard, we now show that
it is easy to achieve a %—approximation using the following BEsT-
SINGLE-ISSUE algorithm: choose one issue that maximizes the net
number of voters c; captures.

THEOREM 4.9. The BEST-SINGLE-ISSUE algorithm approximates 2-
candidate BINARY MAx SUPPORT to within a factor of%, for best-case
and worst-case tie-breaking.

ProOF. Let’s denote number of voters by n and the number of
issues by £. Among two candidates c¢; and ¢ the promoted one is
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c1. Without loss of generality, we can assume that candidate c; has
opinion 1 on every issue. We will provide proof for the case of best-
case tie-breaking and will describe changes needed to transform
this proof into proof for worst-case tie-breaking.

o [Case 0.] There is an issue s.t. candidate c also has opinion 1
about this issue. Therefore, if we highlight only this issue all
voters will vote for ¢; because of tie-breaking. Thus, that is an
optimal solution (and as such approximation within factor 2 of
optimal solution). It is also the issue that captured the greatest
number of voters for ¢; if highlighted. From now on we can
assume that opinion of candidate c; is 0 for all issues.

e [Case 1.] There exists an issue s.t. at at least § voters have
same opinion as c;. If highlighted such issue will capture for ¢;
at least & voters. That s, for issue that causes c; to capture the
greatest number of voters it is at least % voters too. Thus, it is
provide %—approximation, because optimal solution is at most
n.

e [Case 2.] Now we can assume that for all issues less then
% voters have opinion 1. Denote the largest such number by
h and show that h is %-approximation of optimum. Assume
the contrary. W.lo.g. issues s, . . ., s maximizes support for
candidate c;. By choice of h the number of opinions which
equals to 1 over all issues s, . . ., sg is at most kh. On the other
hand voter supports candidate c; if and only if he has opinion 1
for at least % issues among s, . . ., k. By assumption there are
strictly more than 2h such issues. That is, on issues sy, . . ., Sg
opinion 1 shared strictly more than §2h = kh times. Obtained
contradiction proves the theorem.

This proof can be easily adopted for the case of worst-case tie
breaking. It is easy to see that if candidate c3 has opinion 1 on all
issues then for every highlighted set of issues support of candidate
c1 will be 0. Thus, any single issue provides %-approximation of
optimum. Therefore, we may assume that there exist issue on which
candidate c has opinion 0.

Evidently, if there is optimum s;,,...,s; such that on some of
highlighted issues candidate c; has opinion 1. W.Lo.g. this issue s;,
then s; , ..., sj,_, is also optimum. Therefore, we may assume that
candidates have different opinions on all issues. Thus, it is enough to
consider cases 1 and 2. The proof for case 1 remains unchanged. For
case 2 we should change the counting of number of points needed
to obtain at least 2k votes in favor of candidate c¢;. A voter would

only vote for c; if he has opinion 1 for l%J + 1 issues sq,. .., Sk.

Therefore, the number of opinions 1 is ( {%J +1)2h > kh+h, yielding

same contradiction as in best-case tie-breaking. O

5 ALGORITHMIC APPROACHES

We now present several general algorithmic approaches for Max
SUPPORT: 1) exact approaches based on integer linear programming
(ILP), and 2) a heuristic approach which works well in practice.
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Integer Linear Programming: Define A as follows:

P Vie[2:m],jeV,ke[l:1]

7
Define a = 3;j |A,~ jk|~ The following ILP computes an optimal
solution for (best-case) MAX SUPPORT:

Ajjke = leik — Ujk|P —lewk —vjk

m
max ) yi (82)
1
ZAijkxk+(1—yj)azo Vie[2:m]jeV (8b)
k
Xk, yj €{0,1} Vke[l:£],jeV. (8¢)

Constraint (8b), ensures that y; = 1iff ¢; is the most favored by
voter j. A similar approach can be used to develop a ILP approach
for the Issue SELECTION CONTROL problem.

Greedy Heuristic: Finally, we present a simple greedy algorithm
for the Max SUPPORT problem, where we iteratively add one issue
at a time that maximizes the net gain in voters. We stop by adding
any single issue would decrease the number of voters captured.

6 EXPERIMENTS

We now compare the performance of our exact and heuristic solu-
tion algorithms for the binary and continuous versions of the issue
selection problem. We consider the greedy heuristics described
above, as well as BEST-SINGLE-ISSUE.

We run all of our experiments assuming a worst-case tie-breaking
rule and generate random synthetic test cases. For continuous test
problems, we sample candidate and voter belief vectors from the
multivariate normal distribution with a mean of 0 and a random
covariance matrix. A similar generative model for Boolean issues,
tends to produce problem instances in which BEST-SINGLE-ISSUE is
nearly always optimal. Consequently, we generate a more special-
ized distribution of these instances as follows. We first construct
a vertex-weighted complete binary tree T on 2¢ — 1 vertices. Each
vertex v is assigned an independent random weight p,, drawn from
the uniform distribution on [0, 1]. To produce a sample from T, we
perform a directed random walk from its root to one of its leaves.
The sequence (0 for left movements, and 1 for right) emitted by this
process is then the desired sample from {0, 1}¢.

We default to 3 candidates, 100 voters, and 10 issues. To generate
each plot, we fix 2 of these parameters and vary the 3rd. We generate
100 instances of Max SUPPORT for each set of parameter values,
and run the heuristics on the instances. The plotted values are
averages of the ratio of the number of voters captured and the
optimal solution.

We find that for most instances of Max SuPPORT with binary issues,
our greedy heuristic does not significantly outperform BEST-SINGLE-
IssUE in the two-candidate setting as number of issues and voters
increase. This is because the number of instances in which a com-
bination of issues can get us more voters than a single best issue is
increasingly unlikely. However, the greedy algorithm outperforms
BEST-SINGLE-ISSUE on instances of BINARY MaX SUPPORT with
greater than 2 candidates. We can also observe that on the specific
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Figure 1: Plots of experimentally observed approximation
ratios as functions of the numbers of candidates, voters, and
issues in synthetic test cases for binary (left) and continuous
(right) versions of MAX SUPPORT.

distribution of binary issue instances we generate, the quality of
heuristic solutions degrades rapidly with the number of candidates.

We find that for Max SupPoRT with real-valued issues, the greedy
algorithm significantly outperforms BEST-SINGLE-ISSUE. For a small
number of candidates (< 5), the greedy algorithm seems to perform
within 0.8 of optimal. Interestingly, as the number of voters in-
creases, the greedy algorithm improves in quality on our randomly
generated problem instances. In all cases, we can also observe that
the heuristics tend to be close to optimal.

7 CONCLUSION

When candidates participate in an election, they must choose poli-
cies and issues to stress in their campaigns. We introduce and study
the problem of election control through issue selection. We find a
number of strong negative results for the problem, and show that,
even though we cannot provide formal approximation guarantees
for a continuous instance of MAx SUPPORT, a simple greedy heuris-
tic performs well. Moreover, restricting issues to be binary admits
further positive results, including a 1/2-approximation.
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