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ABSTRACT

A fundamental challenge in networked systems is detection and
removal of suspected malicious nodes. In reality, detection is al-
ways imperfect, and the decision about which potentially malicious
nodes to remove must trade off false positives (erroneously remov-
ing benign nodes) and false negatives (mistakenly failing to remove
malicious nodes). However, in network settings this conventional
tradeoff must now account for node connectivity. In particular, ma-
licious nodes may exert malicious influence, so that mistakenly
leaving some of these in the network may cause damage to spread.
On the other hand, removing benign nodes causes direct harm to
these, and indirect harm to their benign neighbors who would wish
to communicate with them. We formalize the problem of remov-
ing potentially malicious nodes from a network under uncertainty
through an objective that takes connectivity into account. We show
that optimally solving the resulting problem is NP-Hard. We then
propose a tractable solution approach based on a convex relaxation
of the objective. Finally, we experimentally demonstrate that our
approach significantly outperforms both a simple baseline that ig-
nores network structure, as well as a state-of-the-art approach for
a related problem, on both synthetic and real-world datasets.
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1 INTRODUCTION

The problem of removing malicious nodes from networks has long
been of considerable importance, and it has attracted a great deal of
recent attention. In social networks, accounts occupied by malicious
parties spread toxic information (e.g., hate speech, fake news, and
spam), stirring up controversy and manipulating political views
among social network users [1, 6]. Major social media entities, such
as Facebook, have devoted considerable effort on identifying and
removing fake or malicious accounts [16, 17]. Despite these efforts,
there is evidence that the problem is as prevalent as ever [2, 14]. A
similar challenge obtains in cyber-physical systems (e.g., smart grid
infrastructure), where computing nodes compromised by malware
can cause catastrophic losses [13], but removing non-malicious
nodes may cause power failure [22].

A common thread in these scenarios is the tradeoff faced in
deciding which nodes to remove: removing a benign node (false
positive) causes damage to this node, which may be inconvenience
or loss of productivity, and potentially also results in indirect losses
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to its neighbors; on the other hand, failing to remove a malicious
node (false negative) can have deliterious effects as malicious influ-
ence spreads to its neighbors. The key observation is that the loss
associated with a decision whether to remove a node depends both
on the node’s likelihood of being malicious and its local network
structure. Consequently, the typical approach in which we simply
classify nodes as malicious or benign using a threshold on the as-
sociated maliciousness probability [8] is inadequate, as it fails to
account for network consequences of such decisions. Rather, the
problem is fundamentally about choosing which subset of nodes
to remove, as decisions about removing individual nodes are no
longer independent.

We consider the problem of choosing which subset of nodes to
remove from a network given an associated probability distribution
over joint realizations of all nodes as either malicious or benign
(that is, we allow probability that node i is malicious to depend on
whether its neighbors are malicious, as in collective classification
and relational learning [12, 19]). We then model the problem as
minimizing expected loss with respect to this distribution, where
the loss function is composed of three parts: the direct loss (£1)
stemming from removed benign nodes, the indirect loss associated
with cutting links between removed and remaining benign nodes
(L2), and the loss associated with malicious nodes that remain,
quantified in terms of links these have to benign nodes (£3).
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Figure 1: An illustration of a decision to remove two nodes,
Jack and Emma, from the network, on our loss function.

To illustrate, consider Figure 1. In this example, we have decided
to remove, Jack and Emma, the two benign nodes on the right of
the vertical dotted line. On the other hand, we chose not to remove
the malicious node in red. Suppose that we pay a penalty of a; for
each benign node we remove, a penalty of ay for each link we cut
between two benign nodes, and a3 for each link between remaining
malicious and benign nodes. Since we removed 2 benign nodes
(L1 = 2), cut 2 links between benign nodes (one between Jack and



Nancy, and another between Emma and Rachel; £, = 2), and the
malicious node is still connected to 5 benign nodes (Tom, Duke,
Ryna, Rachel, and Nancy; £3 = 5), our total loss is 2a1 + 2a + 5a3.
If we instead only removed the malicious node, our total loss would
have been 0, while removing the malicious node instead of Emma
(but together with Jack) would result in the loss of a1 + 2a;.

As minimizing our loss function is intractable, we resort to its
convex relaxation. We solve the convex relaxation for a globally op-
timal solution, and then convert it to an approximate solution to the
original problem by Euclidean projection. Extensive experiments
demonstrate that our approach is better than the baseline which
treats nodes as independent, and both better and significantly more
scalable than a state of the art approach for a related problem.

In summary, our contributions are:

(1) a model that captures both direct and indirect effects of
mistakes in removing benign and malicious nodes from the
network,

(2) an algorithm based on convex relaxation for computing an
approximately optimal solution to our problem, and

(3) extensive experimental evaluation of our approach on both
synthetic and real-world data.

Related Work. There are several prior efforts dealing with a re-
lated problem of graph scan statistics and hypothesis testing [3,
15, 18]. These approaches focus on the following scenario. We are
given a graph G where each node in the graph is associated with
a random variable. The null hypothesis is that these random vari-
ables are sampled from the standard Gaussian distribution N(0, 1),
while the alternative hypothesis is that there is a fraction of nodes
(malicious nodes) where the random variables associated with them
are sampled from a Gaussian distribution N(y, 1) with p other than
0. A scan statistics T is defined, which can be thought as a function
defined over random variables associated with a subset of nodes.
Then the hypothesis test is equivalent to maximizing T over subset
of nodes, and the null hypothesis is rejected if strong evidence
exists (i.e. large value of T).

Arias-Castro et al. [3] proposed a scan statistic for special graph
models. Priebe et al. [15] proposed a scan statistic defined over clus-
ters with special geometric structures. These methods do not easily
generalize to arbitrary graph models or arbitrary scan statistics.
Sharpnack et al. [18] employed the generalized log-likelihood ratio
as the scan statistic. By assuming that the set of malicious nodes
has sparse connections with others, the hypothesis test can be con-
verted to solving a graph cut problem, which is further relaxed
into a convex optimization by leveraging the Lovasz extension of a
graph cut.

Our problem can be formulated as a hypothesis testing problem.
A random variable associated with each node indicates whether it’s
malicious or not, with associated maliciousness probability. Com-
puting a set of malicious nodes is then equivalent to searching
for a subset of nodes that maximizes the graph scan statistic T,
which provides the strongest evidence to reject the null hypothesis.
However, there are several problems with this formulation. First, in
our setting we are not solely concerned about direct loss (wrongly
removing benign nodes or wrongly keeping malicious nodes), but
also the indirect loss, for example, the number of edges that have
been cut between benign nodes, which is diffcult to capture using a

single graph scan statistic (i.e. generalized log-likelihood ratio). Sec-
ond, hypothesis testing with graph scan statistics usually requires
one to solve a combinatorial optimization problem that has an expo-
nentially large search space. Consequently, it is typically necessary
to assume special structure about the problem (i.e. Sharpnack et
al. [18] assumed small cut-size). In contrast, our proposed approach
considers direct and indirect loss associated with mistakes, and
makes no assumptions about graph structure.

2 MODEL

We consider a social network that is represented by a graph G =
(V,E), where V is the set of nodes (|V| = N) and E the set of edges
connecting them. Each node i € V represents a user and each
edge (i, j) represents an edge (e.g., friendship) between users i and
Jj. For simplicity, we focus our discussion on undirected graphs,
although this choice is not consequential for our results. We denote
the adjacency matrix of G by A € RVXN_ The elements of A are
either 1/0 if the graph is unweighted, or some non-negative real
numbers if the graph is weighted. Again, we simplify exposition by
focusing on unweighted graphs; generalization is direct.

We consider the problem of removing malicious nodes from the
network G. We explain the problem by first considering complete
information about the identity of malicious and benign nodes, and
subsequently describe our actual model in which this information
is unknown (as this in fact is the crux of our problem). Specifically,
let £ € {0, l}N be a configuration of the network, with 7; = 1
indicating that a node i is malicious, with 7; = 0 when i is benign.
For convenience, we also define 7; = 1 — 7; that indicates whether
i is benign. Consequently, 7 (and 7) assigns a malicious or benign
label to every node. Let the malicious and benign nodes be denoted
by V* and V7, respectively. Our goal is to identify a subset of
nodes S to remove in order to minimize the impact of the remaining
malicious nodes on the network, while at the same time minimizing
disruptions caused to the benign subnetwork.

To formalize this intuition, we define a loss function associated
with the set S of nodes to remove. This loss function has three
components, each corresponding to a key consideration in the
problem. The first part of the loss function, £; = |V~ N S|, is the
direct loss associated with removing benign nodes; this simply
penalizes every false positive, as one would naturally expect, but
ignores the broken relationships among benign nodes that result
from our decision. That is captured by the second component, £, =
H@GNie (VT N(V\S)),je (V™ NS),Vi,j € V}|, which imposes
a penalty for cutting connections between benign nodes that are
removed and benign nodes that remain. In other words, the second
loss component captures the indirect consequence of removing be-
nign nodes on the structure of the benign subnetwork. This aspect
is critical to capture in network settings, as relationships and con-
nectivity are what networks are about. The third component of the
loss function, £3 = [{(i,j)li € (VT N (V\S)).je (V- n(V\S}
measures the consequence of failing to remove malicious nodes in
terms of connections from these to benign nodes. At the high level,
this part of the loss naturally captures the influence that unremoved
malicious nodes can exert on the benign part of the network.

The total loss combines these three components as a weighted
sum, L = a1.L1 + a2 Ly + as.L3, with a1 + az + a3 = 1. Other than



this constraint, we allow ;s to be arbitrary relative weights of the
different components, specified depending on the domain. For ex-
ample, if we are concerned about false positives, but not very much
about network structure, we would set a1 > ay. Alternatively, we
can set these coefficients to normalize the relative magnitudes of
the loss terms (for example, setting a1 = ﬁ and ay = a3 = %)

We now rewrite the loss function in a way that will prove more
mathematically convenient. Let s € {0, 1}V, where s; = 1 if and
only if node i is removed (i € S), and, for convenience, let § = 1 —s,
where §; = 1if node i remains in the network (i € V' \ S). Then, the
loss associated with (s, §) is

L(m,s,5) =
N N N
o Z SiT; +ap ZAi,jsis_jﬁiﬁj +a3 Z SiSjA; jmiT;j . (1)
i=1 0 iy
———
Ly L L3

With complete information, it is immediate that the loss is min-
imized if S contains all, and only, the malicious nodes. Our main
challenge is to solve this problem when the identity of malicious
and benign nodes is uncertain, and instead we have a probability
distribution over these. This probability distribution may capture
any prior knowledge, or may be obtained by learning probability
that a node is malicious given its features from past data. To formal-
ize, let 7 ~ P, where P captures the joint probability distribution
over node configurations (malicious or benign). For our purposes,
we make no assumptions on the nature of this distribution; a spe-
cial case would be when maliciousness probabilities for nodes are
independent (conditional on a node’s observed features), but our
model also captures natural settings in which configurations of
network neighbors are correlated (e.g., when malicious nodes tend
to have many benign neighbors). Our expected loss that we aim to
minimize then becomes

L(s,s) =

o1 Z SiTi + ap ZAi,jSigjﬁ'iﬁ'j + a3 Z SiSjA; i N;
i=1 i,j i,j
N N
=1 Z SiEﬂ-Np[ﬁ'i] + az ZAi,jSiS_jE,[~¢>[ﬁ'i7_l'j]
i=1 LJj
N
+ a3 Z §,-s_jA,-,jE,,~p [7[,'7_[]'].
L]

N N N
Epvp ]

@
While we will assume that we know # in the remaining technical
discussion, we relax this assumption in our experimental evaluation,
where we also demonstrate that our approach is quite robust to
errors in our estimation of .

In order to have a concise representation of our objective, we
convert Eq. (2) to a matrix-vector form. Note that the configuration
7t of network is a random variable distributed according to . We
let g € RNX1 and & € RV*N denote its mean and covariance,
respectively. For convenience we let J(n,m) € R™™ denote a
matrix with all elements equal to one with dimensions determined
by the arguments n and m. We define a diagonal matrix B € RNXN
where the diagonal entries are equal to E, .p[7] = 1 — pu. Note

that 1 € RN*! is a vector with all elements equal to one. We define
another matrix P := AOE; .p[77! ], where the operator ® denotes
Hadamard product. By replacing & with 1 — & and leveraging the
linearity of expectation we have:

P:=AOE, p[an’]

=AOE, . p[(1-m)(1-m)]

=A0® (EM[HT] ~Ep-pl1n’ ] - By p[n17] +E,,~¢[mrT1)

=A® (](N,N) —JIN, D)X pT —px JA,N) + =+ p x pT).
®3)
Similarly we define M := AO E,_p[na”]. Then we have
M:=AOE, p[ra’]=AOE .p[r(1-m)T]
4)
=A0O (ux](l,N)—Z—pxpT).
We can now rewrite Eq. (2) in a matrix-vector form:

£(s,8) = a117Bs + ay (sTPl - sTPs) + a3sT Ms. (5)

3 SOLUTION APPROACH

The problem represented by Eq. (5) is a non-convex quadratic inte-
ger optimization problem, which is difficult to solve directly. Indeed,
we show that our problem is NP-Hard. To begin, we re-arrange the
terms in Eq. (5), which results in:

min sTAls + sTbl + ¢y
S

N ©
sk, se{0,1}
where A1, b and ¢; are:
A1 =0(3M - 0{2P
by :alBTl + a2 P1 — asM1 — 0(3MT1 (7)

c1 :0(31TM1.

Since Eq. (6) is equivalent to Eq. (5), we prove the NP-hardness of
minimizing Eq. (6).

THEOREM 3.1. Solving Problem (6) is NP-Hard.

Proor. We construct the equivalence between a special case of
the model defined in Eq. (6) and the Maximum Independent Set (MIS)
problem . Given a graph G = (V, E), the MIS problem is to find an
independent set in G of maximum cardinality, which is NP-hard to
solve. We specify the special case by considering a specific form of
the loss function defined in Eq. (2) where:

(1) az =0,

2) Eg-plmil = Epeplmi] = LVi=1,...,N,

(3) m; and x; are independent random variables for any i # j,

which means E, .p[;7t;] = %,Vi #J.
(4) a3 > 201 M, where M is a large positive number.

which leads to the follwing loss:

N N
a1 a3 _
.ET = ?Zsi+ZZAijsiSj.
) ]
—_—
£ £z



Denote the nodes in the maximum independent set of G as K.
We first show that keeping only the nodes in K is the optimal
solution. Note that removing any node from K increases the loss, by
incurring % losses added to Lf. Next we denote V/ = V'\ K, which
is the set of nodes removed from the graph. we show that putting
any set of nodes in V' back to K increases the loss. Suppose we put
a set of nodes 8 C V' back to K. This must introduce additional
edges to K, otherwise K is not the maximum independent set. Let
the number of additionally introduced edges be C. Putting 8 back
to K decreases LI. however, it increases .[:; . The net change of £
is:
g1+ Ze,
2 2

which is always positive because a3 > 2a; M. Since we cannot
remove or add any set of nodes to K without increasing £, keeping
only the nodes in K is the optimal solution.

For the other direction, we show that if keeping the nodes in a set
K minimizes the loss, then %K is the maximum independent set of
G. First, suppose K is not an independent set, which means there is
at least one edge in K. Then removing one or both of the endpoints
always decrease the loss because a3 > 2a M. Intuitively, the loss of
removing a benign node from G is way less than the loss of leaving
a malicious edge in G. So K must be an independent set. Next, we
show % is the maximum independent set. Suppose another set K’
is the maximum independent set and |K’| > |K]. Then keeping
the nodes in K" can further decrease £ by decreasing .CI, which
contradicts the fact that keeping the nodes in K minimizes the loss.
Therefore we conclude K is the maximum independent set. O

Our approach to solving Eq. (6) is by means of a convex relax-

ation, as we now describe. Note that the matrix A; in Eq. (6) is

. . . A+AT
not symmetric. We substitute A; with Q := % and b := %bl,

which results in an equivalent problem:

min sTQs +2sTh+ ¢
: ®)
s.t. s €0, 1}N

where Q € SN*N is a real symmetric matrix. Directly minimizing
Eq. (8) is still intractable, and we instead derive its convex relaxation
into a Semidefinite Program (SDP). We solve the convex relaxation
for a global optimum. The objective value associated with the global
optimum gives a lower bound to the objective value of Eq. (8). Next,
we convert the global optimum to a feasible solution of Eq. (8). In
what follows, we first derive an intermediate problem, which is
a relaxation (not necessarily convex) of Eq. (8). This intermediate
problem plays the role of a bridge between Eq. (8) and its convex
relaxation due to several of its nice properties, which we will de-
scribe shortly. Based on the properties of the intermediate problem
we derive its convex relaxation, which is also a convex relaxation
of Eq. (8).

To derive the intermediate problem, we first relax Eq. (8) by
expanding its feasible region. The original feasible region of Eq. (8)
is the set of vertices of a hypercube. We expand the original feasible
region to the entire hypercube, which is defined by C = {s[0 < s <
1,s € RN}, We further expand C to the circumscribed sphere of the
hypercube, which results in € = {s|(s— % 1T (s— % 1) < %, s e RN}
After the successive expansion we have the following Quadratically

Constrained Quadratic Programming (QCQP), which was previously
dubbed as the “intermediate problem”:

msin sTQs +25Th+ ¢
©)
1. 1 N

s.t. (S_El) (s—al)s T

The problem Eq. (9) is still non-convex, since in our problem
setting the matrix Q is usually not positive (semi-)definite. How-
ever, Eq. (9) offers several benefits. First, it is a QCQP with only
one inequality constraint, which indicates that it has a convex dual
problem and under mild conditions (Slater’s condition) strong dual-
ity holds [5]. This suggests that we can find the global optimum of
a non-convex problem (when Slater’s conditions hold) by solving
its dual problem. Second, applying duality theory twice on Eq. (9)
results in its own convex relaxation, which is therefore the convex
relaxation of Eq. (8). In what follows we thereby derive the convex
relaxation of Eq. (9).

We first obtain the Lagrangian I(s, 1) of Eq. (9) as follows, where
A > 01is a Lagrangian multiplier:

=T T LY P
I(s,0) :=s" Qs +2b" s + ¢1 + A[(s 21) (s 21) 4] (10)

=sT(Q+ADs + (2b— AD)Ts +c1.
The dual function g(1) is then
g(A) =inf (s, A)
S

—00, 0.W.

_ {c1 ~(b-20TQ+AD (b - 21), cond; (1)

where (Q + AI)T is the Pseudo-Inverse of (Q + AI). Note that cond;
consists of two conditions: first, that Q + AI is positive semi-definite
and second, that b — %1 lies in the column space of Q + AI If the
conditions in cond; are satisfied, maximizing g(A) is feasible and the
primal problem is bounded. Otherwise, g(1) is unbounded below
(—o0), and we have a certificate that the primal problem in Eq. (9)
is also unbounded. With cond; satisfied, we introduce a variable
y as the lower bound of g(4), which indicates ¢ — (b — %I)T(Q +
A (b— ’% 1) > y. Then maximizing g(A) is equivalent to maximizing
y. Further, by Schur Complement (and remember (Q + AI) > 0), the
inequality ¢; — (b — %I)T(Q +AD b - %1) > y is equivalently
represented by a linear matrix inequality

_4
Q+/1MT b- 351 >0,
b-51)" a-y
which enables us to represent the dual problem of Eq. (9) as a
Semidefinite Program (SDP) with two variables, y and A:

max
A v
s.t. A>0

12
O+M  b-41 1
27 >0,

b-20T -y

As discussed above, applying duality theory twice to Eq. (9)
results in its own convex relaxation. Consequently, we continue to
derive the dual of Eq. (12). The Lagrangian I(y, A, S, s, a) of Eq.(12)



is calculated as follows, where S € SN ,S € RN R > 0 and

S
ST

a > 0 are Lagrangian multipliers:

Iy, AS,s,a) =
o Q+Al  b-%41][S s
y — Aa tr( (b—%l)T -y sT 1
=-y-Jla—

(Q+AD)S + (b — 21)sT (13)

|

We only need to keep these block matrices on the diagonal

= /1[ —a—tr(S)+ lTs] - [tr(QS) +2bTs + 01],

(b—%l)Ts+C1—y])

where tr(-) is trace operator. Notice that /1[ —a—-tr(S)+ lTs] isa
linear function of A, so [—a—tr(S)+17 s] must be zero, as otherwise
the linear function can be minimized without bound. In addition,
the Lagrangian multiplier « is greater than or equal to zero, so from
—a —tr(S) + 17s = 0 we have #r(S) — 1Ts < 0, which is denoted
by condy. The dual function ¢(S, s) is then:

g9(S,s) = inf I(y,A,S,s, @)
Y. A«

_|-tr(@s)-2bTs —c1, cond; (14)
- —00, 0.W.

The dual problem of Eq. (12) is the minimization of —g(8, s),
which can be represented as a SDP as follows:

min tr(QS) + 2bTs + ¢
SeSN,seRN
s.t. tr(s)-1Ts <o (15)
S s >0
sT 1| =™

In order to see the connections between Eq. (15) and Eq. (9), we
first note that by Schur Complement the linear matrix inequality

is equivalent to S > ss . Therefore if we reduce the feasible region
of Eq. (15) by enforcing the equality constraint S = ss”, and then
utilize that

tr(QS) = tr(stT) = sTQs

and ) . N
tr§)-1Ts<o=G--1)T(s-=-1) < —,
r§)-1's (s=sD(s-2D <

we have an equivalent problem to Eq. (9). This shows that Eq. (15)
is a convex relaxation of Eq. (9) and, therefore, a convex relaxation
of Eq. (6).

We solve Eq.(15) for a global optimal solution, which is denoted
by (8%, s*). Then we apply Euclidean projection to convert s* to a
feasible solution of Eq. (6), which is denoted by §*. We remove all
nodes from the network with §; > 0.5. We call our full algorithm
MINT (Malicious In NeTwork), which is detailed in Algorithm 1:

Next we show with appropriate choice of the trade-off parame-
ters the optimal value of Eq. (8) is upper- and lower-bounded by the
optimal value of Eq. (15), which provides performance guarantee

Algorithm 1 MINT

1: Input: Q, b, ¢1

2: Compute the global optimal solution s* of Eq. (15)
3: Solve §* = argming . ||S — s¥||2

4: Remove all nodes with §7 > 0.5

for the SDP relaxation. We denote the optimal objective value of the
originally intractable optimizatioin by V* and the optimal objective
value of the SDP relaxation by P, ,. Then we have the following
theorem:

THEOREM 3.2. When the (i, j)-th element of the matrix Q in Eq. (8)
satisfying q;j > 0,Vi # j, the optimal objective value V* is upper- and

,l;wer-bounded by the optimal objective value Pgp, , up to a constant

Pspp < V' < Pspp +
Proor. The proof is deferred to the Appendix. O

To understand the relation between the condition g;; > 0,Vi # j
and the choice of the trade-off parameters, we first note that Vi # j:

Hi + fj

qij = (a2 + a3)( - Elpipjl) — az,

where y; is the maliciousness probability of the i-th node. Then
gij > 0 is equivalent to:
4
% ZE[yiyj]+ﬁ,Vi¢j. (16)
The left-hand side of Eq. (16) consists of the maliciousness prob-
abilities estimated from data, which can be thought as constants
when we analyze the the behavior of the inequality. When E[p; ]
is large, the edge (i, j) is more likely to be a connection between a
malicious node and a benign node, which means we would like a
small ay that encourages cutting connections. Notice that a small
ay is exactly what we need to make the inequality in Eq. (16) hold.
Therefore the condition g;; > 0, Vi # j indicates that the choice of
the trade-off paramters is important to guarantee the performance
of the SDP relaxation.

4 EXPERIMENTS

In this section we present experiments to show the effectiveness of
our approach. We considered both synthetic and real-world network
structures, but in all cases derived distribution over maliciousness of
nodes P using real data. For synthetic network, we considered two
types of network structures: Barabasi-Albert (BA) [4] and Watts-
Strogatz networks (Small-World) [21]. BA is characterized by its
power-law degree distribution, where the probability that a ran-
domly selected node has k neighbors is proportional to k~". For
both networks we generated instances with N = 128 nodes. For
real-world networks, we used a network extracted from Facebook
data [10] which consisted of 4039 nodes and 88234 edges. We ex-
perimented with randomly sampled sub-networks with N = 500
nodes.

In our experiments, we consider a simplified case where the
maliciousness probabilities for nodes are independent. In addition,
we assume that a single estimator (e.g., logistic regression) was
trained to estimate the probability that a node is malicious based on



features from past data. Note that these assumptions are reasonable
for the purpose of validating the effectiveness of our model, since
the focus of our model is not how to estimate maliciousness proba-
bilities. For more complex cases, for example, when maliciousness
probabilities for nodes are correlated, more advanced techniques,
such as Markov Random Fields, can be applied to estimate the
maliciousness probabilities, but our general approach would not
change.

In all of our experiments, we derived # from data as follows.
We start with a dataset D which includes malicious and benign
instances (the meaning of these designations is domain specific),
and split it into three subsets: D;,q4ip (the training set), D1, and Dy,
with the ratio of 0.3 : 0.6 : 0.1. Our first step is to learn a probabilis-
tic predictor of maliciousness as a function of a feature vector x,
p(x), on Dyrgin. Next, we randomly assign malicious and benign
feature vectors from D3 to the nodes on the network, assigning
10% of nodes with malicious and 90% with benign feature vectors.
For each node, we use its assigned feature vector x to obtain our
estimated probability of this node being malicious, p(x); this gives
us the estimated maliciousness probability distribution P. This is
the distribution we use in MINT and the baseline approaches. How-
ever, to ensure that our evaluation is fair and reasonably represents
realistic limitations of the knowledge of the true maliciousness dis-
tribution, we train another probabilistic predictor, p(x), now using
D¢rain U D1. Applying this new predictor to the nodes and their
assigned feature vectors, we now obtain a distribution £* which
we use to evaluate performance.

We conducted two sets of experiments. In the first set of ex-
periments we used synthetic networks and used data from the
Spam [11] dataset to learn the probabilistic maliciousness model
p(x), and thereby derive . The Spam dataset D consists of spam
and non-spam instances along with their corresponding labels.

In the second set of experiments we used real-world networks
from Facebook and used Hate Speech data [7] collected from Twit-
ter to obtain # as discussed above. The Hate Speech dataset is a
crowd-sourced dataset that contains three types of tweets: 1. hate
speech tweets that express hatred against a targeted group of peo-
ple; 2. offensive language tweets that appear to be rude, but do not
explicitly promote hatred; and 3. normal tweets that neither pro-
mote hatret nor are offensive. We categorized this dataset into two
classes in terms of whether a tweet represents Hate Speech, with the
offensive language tweets categorized as non-Hate Speech. After
categorization, the total number of tweets is 24783, of which 1430
are Hate Speech. We applied the same feature extraction techniques
as Davidson et al. [7] to process the data.

Note that our second set of experiments makes use of real data
for both the network and the node maliciousness distribution $.
Moreover, as noted by Waseem and Hovy [20], hate speech is wide-
spread among Facebook users, and our second set of experiments
can be viewed as studying the problem of identifying and poten-
tially removing nodes from a social network who egregiously spew
hate.

Baselines. We compared our algorithm (MINT) with LESS, a
state-of-the-art approach for graph hypothesis testing, and a simple
baseline which removes a node i if its maliciousness probability
pi > 0%, where 0* is a specified threshold.

The algorithm LESS was proposed in Sharpnack et al. [18], and
considers a related hypothesis testing problem. The null hypothesis
is that each node in the graph is associated with a random variable
sampled from the standard Gaussian N(0, 1), while the alternative
hypothesis is that there is a fraction of nodes where the random
variables associated with them are sampeld from N(y, 1) with p
other that 0 (in our interpretation, these are the malicious nodes).
The algorithm LESS employs the generalized log-likelihood over a
subset of nodes as a test statistic, and the hypothesis test is to find
the subset that has the strongest evidence aginst the null hypothesis.
We remove the subset of nodes found by LESS.

The simple baseline has a trade-off parameter o between false-
positive rate (FPR) and false-negative rate (FNR) (in our experiments
a = 0.5). We select an optimal threshold 0* that minimizes «FPR +
(1 — @)FNR on training data.

Experiment Results. The averaged losses for our first set of experi-
ments where # was simulated from Spam data are shown in Table 1.
The top table contains the results on BA networks and the bottom
table contains the results on Small-World networks. Each row cor-
responds to a combination of trade-off parameters (a1, a2, a3); for
example, (0.1,0.2,0.7) corresponds to (a1 = 0.1, a2 = 0.2, @3 = 0.7).
We experimented with four combinations of these: (0.1,0.2,0.7),
(0.2,0.7,0.1), (0.7,0.2,0.1), and (%, %, %) Each number was ob-
tained by averaging over 50 randomly generated network topolo-
gies. Table 1 shows that MINT has the lowest loss across all settings
except (0.1,0.2,0.7).

To delve into the results more, we present the box plots for
the experimental results on BA networks in Figure 2. Note that
as Table 1 indicates that LESS performs considerably worse than
both MINT and, remarkably, even the simple baseline across all
combinations of the trade-off parameters, and we omit its box plots.
Just as we observed in the table, three of the four box plots show a
substantial improvement of MINT over the baseline in three out
of the four cases, with the lone exception being when the trade-
off parameters are (0.1,0.2,0.7), that is, when the importance of
preserving links among benign nodes is relatively low. In this case,
it is reasonable to expect that the value of considering the network
topology is dominated by the first-order considerations of removing
malicious nodes and keeping benign, already largely captured by
our simple baseline. Thus, our machinery is unnecessary in such
a case, as its primary value is when overall connectivity of the
benign subnetwork is also a first-order consideration, as we expect
it to be in social network settings. This value is borne out by the
results in the three remaining plots in Figure 2, where the baseline
clearly underperforms MINT. An interesting observation is that in
the upper right and lower left cases the average losses of MINT are
close to 0, which is actually the best value that the loss function in
Eq.(6) can achieve. Considering that minimizing Eq.(6) is a NP-hard
problem, our convex relaxation gives a high quality approximation
in polynomial time. !

The box plots for the experimental results on Small-World net-
works are shown in Figure 3, where we now include LESS as it is
more competitive in this case. The overall trend is similar to Fig-
ure 2. Moreover, the box plots reveal that, while MINT is better than
the simple baseline that ignores network structure in the three of

!Solving the SDP relaxation Eq. (15) is in polynomial-time with interior-point method



BA

Baseline LESS MINT

28.6337  16.9782
82.0922  1.8650
32.2678  1.5342
44.1410  4.3730

0.1,0.2,0.7) 7.8403
0.2,0.7,0.1) 14.6207
0.7,0.2,0.1) 6.7699
1/3,1/3,1/3) 5.8533

Small-World
Baseline LESS MINT

o~~~

(0.1,0.2,0.7) 8.7965 12.5336  24.7706
(0.2,0.7,0.1)  20.0915 4.0273  2.9719
(0.7,0.2,0.1) 8.2982 4.3518 1.8324
(1/3,1/3,1/3) 7.4418 7.4027  4.8369

Table 1: Experiments where # and #* were simulated from
Spam data.

the four cases where network structure matters the most, its pefor-
mance appears comparable to LESS on average, but exhibits much
less variance than LESS. This may be attributed to the fact that
both MINT and LESS are approximately solving hard optimization
problems, and the MINT algorithm consistently arrives at a good
approximation of the optimal solution, while the approximation
quality of LESS is more variable. In any case, this is particularly
noteworthy given the fact that MINT dramatically outperforms
LESS in terms of scalability, as we show below.
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Figure 2: Experimental results on BA networks, where # and
P* were simulated from Spam data. The averaged losses are
reported in Table 1. Upper Left: (0.1,0.2,0.7); Upper Right:
(0.2,0.7,0.1); Lower Left: (0.7,0.2,0.1); Lower Right: (%, %, %)
Each plot was averaged over 50 runs.

Next, we evaluate the performance of MINT in our second set
of experiments which use real data for both the network topol-
ogy and to derive the maliciousness distribution (the latter using
the Hate Speech dataset). In this case, LESS does not scale to the
problem sizes we consider, and we only compare MINT to the sim-
ple baseline. The average losses are shown in Table 2, where each
number was averaged over 50 randomly sampled sub-networks.
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Figure 3: Experimental results on Small-World networks,
where # and P* were simulated from Spam data. The aver-
aged losses are reported in Table 1. Upper Left: (0.1,0.2,0.7);
Upper Right: (0.2,0.7,0.1); Lower Left: (0.7,0.2,0.1); Lower
Right: (%, %, %) Each plot was averaged over 50 runs.

The results demonstrate that MINT again significantly outperforms
the baseline in all but one case in which the importance of cutting
malicious links greatly outweighs other considerations. Note that
when keeping benign nodes connected becomes more important
than removing malicious nodes (e.g., when the trade-off parameters
are (0.2,0.7,0.1) and (0.7, 0.2, 0.1)), MINT surpasses the baseline by
nearly an order of magnitude, which confirms that a simple baseline
that trades off between false-positive rate and false-negative rate is
not enough to take indirect harm into account.

Again, we present the comparison in greater depth using box
plots in Figure 4. The overall trend is similar to other two boxplots.
There is, however, one distinctive obervation that the dispersion of
losses on Facebook networks is larger than the dispersion on BA
networks. This observation likely results from the fact that the SDP
relaxation Eq. (15) for Facebook networks is substantially looser
than that for BA networks in the sense that it has more variables
and constraints, which makes locating the exact optimal solution
of Eq. (15) harder. Indeed, we were using interior-point method
to solve Eq. (15) and there were a few cases where the maximum
number of iterations was reached while the optimal solution had not
been found. In any case, we still consistently observe performance
improvement compared to the baseline even as we take this variance
into account.
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Figure 4: Experimental results on Facebook networks,
where # and P* were simulated from Spam data. The aver-
aged losses are reported in Table 1. Upper Left: (0.1,0.2,0.7);
Upper Right: (0.2,0.7,0.1); Lower Left: (0.7,0.2,0.1); Lower
Right: (%, %, %) Each plot was averaged over 50 runs.

Baseline ~ MINT

(0.1,0.2,0.7) 44.2784 56.1550
(0.2,0.7,0.1) 128.1051 41.7881
(0.7,0.2,0.1)  60.7507  5.9065
(1/3,1/3,1/3)  72.3060 39.5743

Table 2: Experiments where # and P* were simulated from
Hate Speech data, using Facebook network data. All the dif-
ferences are significant.
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Figure 5: Running time averaged over 15 trials. Left: BA,
Right: Small-World.

Next, we compare the running time of LESS and MINT as a
function of the number of nodes on the network in Figure 5 for
the case where a1 = a2 = a3 = %; alternatives generated similar
results. Each point in Figure 5 was averaged over 15 trials. The
experiments were conducted on a desktop (OS: Ubuntu 14.04; CPU:
Intel i7 4GHz 8-core; Memory: 32GB). We can see that MINT is
significantly faster than LESS, with the difference increasing in
the network size. Indeed, LESS becomes impractical for realistic
network sizes, whereas MINT remains quite scalable.

Recall that while MINT assumes knowledge of the distribution
P, our evaluation above used a simulated ground-truth distribution
P*, thereby capturing the realistic consideration that MINT would
be applied using an estimated, rather than actual, distribution. Nev-
ertheless, we now study the sensitivity of MINT to estimation error
more systematically. Specifically, we added Gaussian noise N(0, o)
to each estimated malicious probability p;, which results in P. We
varied o from 0.1 to 0.5. Then we ran MINT on # and evaluated it
on P*. We used Spam data to simulate # and $*, and conducted ex-
periments on BA and Small-World network structures. We focused
on a specific setting where (21 = 0.1,a2 = 0.2,a3 = 0.7). Other
combinations of weight parameters generated similar results.

The results on BA networks (Figure 6 Left) show that perfor-
mance of MINT does not significantly degrade even as we introduce
a substantial amount of noise, which indicats that MINT is robust
against estimation error. The results on Small-World networks, on
the other hand, do show that MINT exhibits some degradation with
increasing 0. However, even in this case degradation is relatively
slow. Altogether, our experiments suggest that MINT is quite robust
to estimation error.
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Figure 6: Sensitivity analysis of MINT. Each bar was aver-
aged over 15 runs. Left: BA. Right: Small-World

5 CONCLUSION

We considered the problem of removing malicious nodes from a
network under uncertainty. We designed a model (loss function)
that considers both the likelihood that a node is malicious, as well
as the network structure. Our key insight is for the loss function to
capture both the direct loss associated with false positives and the
indirect loss associated with cutting connections between benign
nodes, and failing to cut connections from malicious nodes to their
benign network neighbors. We first showed that this optimization
problem is NP-Hard. Nevertheless, we proposed an approach based
on convex relaxation of the loss function, which is quite tractable
in practice. Finally, we experimentally showed that our algorithm
outperforms alternative approaches in terms of loss, including both
a simple baseline that trades off only the direct loss (false positives
and false negatives) and a state-of-the-art approach, LESS, which
uses a graph scan statistic. Moreover, our method is significantly
faster than the LESS algorithm.
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APPENDIX
Proof of Theorem 3.2

Proor. It is direct to show P¢ ), < V*, since Eq.(15) is the dual
of Eq.(12) which is the dual of Eq. (9). Our main focus is to prove

V* < Pgpp + B Notice that we have:

V< E[STQS+28TI)+C1], (17)

which is true by taking expectations in both sides of V* < sT Qs +
2sTb+¢; which holds since by definition V* is the optimal objective
value of the right-hand side. Then we apply the randomization
procedure introduced in [9] to sample feasible solutions for Eq. (8).
Specifically, solving Eq. (15) results in a positive-semidefinite matrix
S*. We define $* = (S* + I), which is a positive-definite matrix. By
the Cholesky decomposition of $* we have:

s =vTv.
We normalize each column of V to have unit length, which results

in a set of vectors vy, -+ ,UN:

V=[vn-on].llville = 1Vi

Note that 5;} = viij, where §;‘j is the ij-th element of §*. Now
we randomly sample s € {0, l}N, where the i-th element of s is
generated as follow:
{1, vsz >0
si =

0, vl.Tz <0.

The random vector z € RN is sampled from a Gaussian distribution,
z~ N (%1, I), where I is the identity matrix in RNV The expec-
tation of s; is 0.5, since the probabilities of vl.Tz > 0and viTz <0
are equal to 0.5, respectively. We let u denote the expectation of s,
sou = %1. The covariance matrix X of the random vector s is:

=E[s-ms-m]
=E[ss"] - pp”
= ElssT] - LJ(N.N),

where J(N,N) € RN*N is a matrix with all elements equal to 1.
Notice that the (i, j)-th element of the expectation E[ss ] is E[sis;],
which is equal to the probability that both s; and s; are equal to 1:

E[sisj] = P(si = 1,55 = 1)

T T (18)
=P(v; z > 0,vjz> 0).

Following the similar argument as Lemma 2.2 of [9] we know:

m—0

21

s

P(v]z>0,0/z>0) =

where 6 = arccos(viT'vj). Therefore we have:

1 0
E[SiSj] = 5 - E
1 arccos(viij)
T2 27
1 arccos(SZ‘j)
T2 2

Now we expand the Eq. (17) as the following:
V< E[sTQs +2sTh+ e
= E[(s - %I)TQ(S - %1) +2sT1+ cl] + ilTQI
=E[tr(Qs - %1)(3 - %1)T)] +1Tb+ ¢ + %ITQI
= tr(QE[(s - %1)(3 - %1)T] +1Th+c1 + ilTQI
=tr(Q%) +1Th +¢; + zlllTQI
= Zqijzﬁ +17h ¢ + ingl
i,j

1 1
= Zqij(E[siSj] - l_l) + lTb +c1 + ZITQI
i,j
1 arccos(S;})

:ZCIU(Z_T)

() s 1
< IZJ: qijSi; +17b+ e+ 1701
(the diagonal elements of Q are zeros)

1
= Z qijS;kj +17b + c + ZITQI
i,j

1
+17h +¢; + ZlTQl

1
=tr(QS*) +1Tb + ¢ + ZITQI,

where (%) is true because the inequality:

1 arccos(x)
-——F <X
4 21

holds on 0 < x < 1and g;j > 0, Vi, j. Since:

‘ 1
Pipp <V <tr(Q8*) +17b +c1 + ZITQI’
we select a nonnegative constant f such that:
1
B> [tr(08*) +17b+c1 + ZlTQ1] - Pipp
1
=1Tp+ ZITQI - 2bTs*,

where s* is the optimal solution of Eq. (15). Note that since the
elements of b and Q are bounded, we can always find such a f.
With f we have:

vV <tr(QS*) +1Th +¢; + ilTQl
< tr(QS*) + 2bTs* + ¢ +p

=Pspp +
which completes the proof. O
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