


Nancy, and another between Emma and Rachel; L2 = 2), and the

malicious node is still connected to 5 benign nodes (Tom, Duke,

Ryna, Rachel, and Nancy; L3 = 5), our total loss is 2α1 + 2α2 + 5α3.

If we instead only removed the malicious node, our total loss would

have been 0, while removing the malicious node instead of Emma

(but together with Jack) would result in the loss of α1 + 2α2.

As minimizing our loss function is intractable, we resort to its

convex relaxation. We solve the convex relaxation for a globally op-

timal solution, and then convert it to an approximate solution to the

original problem by Euclidean projection. Extensive experiments

demonstrate that our approach is better than the baseline which

treats nodes as independent, and both better and significantly more

scalable than a state of the art approach for a related problem.

In summary, our contributions are:

(1) a model that captures both direct and indirect effects of

mistakes in removing benign and malicious nodes from the

network,

(2) an algorithm based on convex relaxation for computing an

approximately optimal solution to our problem, and

(3) extensive experimental evaluation of our approach on both

synthetic and real-world data.

Related Work. There are several prior efforts dealing with a re-

lated problem of graph scan statistics and hypothesis testing [3,

15, 18]. These approaches focus on the following scenario. We are

given a graph G where each node in the graph is associated with

a random variable. The null hypothesis is that these random vari-

ables are sampled from the standard Gaussian distribution N(0, 1),

while the alternative hypothesis is that there is a fraction of nodes

(malicious nodes) where the random variables associated with them

are sampled from a Gaussian distributionN(µ, 1) with µ other than

0. A scan statisticsT is defined, which can be thought as a function

defined over random variables associated with a subset of nodes.

Then the hypothesis test is equivalent to maximizing T over subset

of nodes, and the null hypothesis is rejected if strong evidence

exists (i.e. large value of T ).

Arias-Castro et al. [3] proposed a scan statistic for special graph

models. Priebe et al. [15] proposed a scan statistic defined over clus-

ters with special geometric structures. These methods do not easily

generalize to arbitrary graph models or arbitrary scan statistics.

Sharpnack et al. [18] employed the generalized log-likelihood ratio

as the scan statistic. By assuming that the set of malicious nodes

has sparse connections with others, the hypothesis test can be con-

verted to solving a graph cut problem, which is further relaxed

into a convex optimization by leveraging the Lovász extension of a

graph cut.

Our problem can be formulated as a hypothesis testing problem.

A random variable associated with each node indicates whether it’s

malicious or not, with associated maliciousness probability. Com-

puting a set of malicious nodes is then equivalent to searching

for a subset of nodes that maximizes the graph scan statistic T ,

which provides the strongest evidence to reject the null hypothesis.

However, there are several problems with this formulation. First, in

our setting we are not solely concerned about direct loss (wrongly

removing benign nodes or wrongly keeping malicious nodes), but

also the indirect loss, for example, the number of edges that have

been cut between benign nodes, which is diffcult to capture using a

single graph scan statistic (i.e. generalized log-likelihood ratio). Sec-

ond, hypothesis testing with graph scan statistics usually requires

one to solve a combinatorial optimization problem that has an expo-

nentially large search space. Consequently, it is typically necessary

to assume special structure about the problem (i.e. Sharpnack et

al. [18] assumed small cut-size). In contrast, our proposed approach

considers direct and indirect loss associated with mistakes, and

makes no assumptions about graph structure.

2 MODEL

We consider a social network that is represented by a graph G =

(V ,E), where V is the set of nodes (|V | = N ) and E the set of edges

connecting them. Each node i ∈ V represents a user and each

edge (i, j) represents an edge (e.g., friendship) between users i and

j. For simplicity, we focus our discussion on undirected graphs,

although this choice is not consequential for our results. We denote

the adjacency matrix of G by A ∈ RN×N . The elements of A are

either 1/0 if the graph is unweighted, or some non-negative real

numbers if the graph is weighted. Again, we simplify exposition by

focusing on unweighted graphs; generalization is direct.

We consider the problem of removing malicious nodes from the

network G. We explain the problem by first considering complete

information about the identity of malicious and benign nodes, and

subsequently describe our actual model in which this information

is unknown (as this in fact is the crux of our problem). Specifically,

let π ∈ {0, 1}N be a configuration of the network, with πi = 1

indicating that a node i is malicious, with πi = 0 when i is benign.

For convenience, we also define π̄i = 1 − πi that indicates whether

i is benign. Consequently, π (and π̄ ) assigns a malicious or benign

label to every node. Let the malicious and benign nodes be denoted

by V + and V −, respectively. Our goal is to identify a subset of

nodes S to remove in order to minimize the impact of the remaining

malicious nodes on the network, while at the same time minimizing

disruptions caused to the benign subnetwork.

To formalize this intuition, we define a loss function associated

with the set S of nodes to remove. This loss function has three

components, each corresponding to a key consideration in the

problem. The first part of the loss function, L1 = |V − ∩ S |, is the

direct loss associated with removing benign nodes; this simply

penalizes every false positive, as one would naturally expect, but

ignores the broken relationships among benign nodes that result

from our decision. That is captured by the second component, L2 =

|{(i, j)|i ∈ (V − ∩ (V \ S)) , j ∈ (V − ∩ S) ,∀i, j ∈ V }|, which imposes

a penalty for cutting connections between benign nodes that are

removed and benign nodes that remain. In other words, the second

loss component captures the indirect consequence of removing be-

nign nodes on the structure of the benign subnetwork. This aspect

is critical to capture in network settings, as relationships and con-

nectivity are what networks are about. The third component of the

loss function, L3 =
�
�{(i, j)|i ∈

(

V + ∩ (V \ S)
)

, j ∈ (V − ∩ (V \ S))}
�
�,

measures the consequence of failing to remove malicious nodes in

terms of connections from these to benign nodes. At the high level,

this part of the loss naturally captures the influence that unremoved

malicious nodes can exert on the benign part of the network.

The total loss combines these three components as a weighted

sum, L = α1L1 + α2L2 + α3L3, with α1 + α2 + α3 = 1. Other than



this constraint, we allow αi s to be arbitrary relative weights of the

different components, specified depending on the domain. For ex-

ample, if we are concerned about false positives, but not very much

about network structure, we would set α1 ≫ α2. Alternatively, we

can set these coefficients to normalize the relative magnitudes of

the loss terms (for example, setting α1 =
1
N and α2 = α3 =

N−1
2N ).

We now rewrite the loss function in a way that will prove more

mathematically convenient. Let s ∈ {0, 1}N , where si = 1 if and

only if node i is removed (i ∈ S), and, for convenience, let s̄ = 1− s ,

where s̄i = 1 if node i remains in the network (i ∈ V \ S). Then, the

loss associated with (s, s̄) is

L(π , s, s̄) :=

α1

N∑

i=1

si π̄i

︸   ︷︷   ︸

L1

+α2

N∑

i, j

Ai, jsi s̄j π̄i π̄j

︸               ︷︷               ︸

L2

+α3

N∑

i, j

s̄i s̄jAi, jπi π̄j

︸               ︷︷               ︸

L3

. (1)

With complete information, it is immediate that the loss is min-

imized if S contains all, and only, the malicious nodes. Our main

challenge is to solve this problem when the identity of malicious

and benign nodes is uncertain, and instead we have a probability

distribution over these. This probability distribution may capture

any prior knowledge, or may be obtained by learning probability

that a node is malicious given its features from past data. To formal-

ize, let π ∼ P, where P captures the joint probability distribution

over node configurations (malicious or benign). For our purposes,

we make no assumptions on the nature of this distribution; a spe-

cial case would be when maliciousness probabilities for nodes are

independent (conditional on a node’s observed features), but our

model also captures natural settings in which configurations of

network neighbors are correlated (e.g., when malicious nodes tend

to have many benign neighbors). Our expected loss that we aim to

minimize then becomes

L(s, s̄) :=

Eπ∼P

[

α1

N∑

i=1

si π̄i + α2

N∑

i, j

Ai, jsi s̄j π̄i π̄j + α3

N∑

i, j

s̄i s̄jAi, jπi π̄j

]

= α1

N∑

i=1

siEπ∼P [π̄i ] + α2

N∑

i, j

Ai, jsi s̄jEπ∼P [π̄i π̄j ]

+ α3

N∑

i, j

s̄i s̄jAi, jEπ∼P [πi π̄j ].

(2)

While we will assume that we know P in the remaining technical

discussion, we relax this assumption in our experimental evaluation,

where we also demonstrate that our approach is quite robust to

errors in our estimation of P.

In order to have a concise representation of our objective, we

convert Eq. (2) to a matrix-vector form. Note that the configuration

π of network is a random variable distributed according to P. We

let µ ∈ RN×1 and Σ ∈ RN×N denote its mean and covariance,

respectively. For convenience we let J (n,m) ∈ Rn×m denote a

matrix with all elements equal to one with dimensions determined

by the arguments n andm. We define a diagonal matrix B ∈ RN×N ,

where the diagonal entries are equal to Eπ∼P [π̄ ] = 1 − µ. Note

that 1 ∈ RN×1 is a vector with all elements equal to one. We define

anothermatrix P := A⊙Eπ∼P [π̄ π̄
T ], where the operator ⊙ denotes

Hadamard product. By replacing π̄ with 1 − π and leveraging the

linearity of expectation we have:

P :=A ⊙ Eπ∼P [π̄ π̄
T ]

=A ⊙ Eπ∼P [(1 − π )(1 − π )T ]

=A ⊙

(

Eπ∼P [11
T ] − Eπ∼P [1π

T ] − Eπ∼P [π1
T ] + Eπ∼P [ππ

T ]

)

=A ⊙

(

J (N ,N ) − J (N , 1) × µT − µ × J (1,N ) + Σ + µ × µT
)

.

(3)

Similarly we defineM := A ⊙ Eπ∼P [ππ̄
T ]. Then we have

M : = A ⊙ Eπ∼P [ππ̄
T ] = A ⊙ Eπ∼P [π (1 − π )T ]

= A ⊙

(

µ × J (1,N ) − Σ − µ × µT
)

.

(4)

We can now rewrite Eq. (2) in a matrix-vector form:

L(s, s̄) := α11
T Bs + α2

(

sT P1 − sT Ps

)

+ α3s̄
TMs̄ . (5)

3 SOLUTION APPROACH

The problem represented by Eq. (5) is a non-convex quadratic inte-

ger optimization problem, which is difficult to solve directly. Indeed,

we show that our problem is NP-Hard. To begin, we re-arrange the

terms in Eq. (5), which results in:

min
s

sTA1s + s
Tb1 + c1

s .t . s ∈ {0, 1}N
(6)

where A1, b and c1 are:

A1 =α3M − α2P

b1 =α1B
T
1 + α2P1 − α3M1 − α3M

T
1

c1 =α31
TM1.

(7)

Since Eq. (6) is equivalent to Eq. (5), we prove the NP-hardness of

minimizing Eq. (6).

Theorem 3.1. Solving Problem (6) is NP-Hard.

Proof. We construct the equivalence between a special case of

the model defined in Eq. (6) and theMaximum Independent Set (MIS)

problem . Given a graph G = (V ,E), the MIS problem is to find an

independent set in G of maximum cardinality, which is NP-hard to

solve. We specify the special case by considering a specific form of

the loss function defined in Eq. (2) where:

(1) α2 = 0,

(2) Eπ∼P [πi ] = Eπ∼P [π̄i ] =
1
2 ,∀i = 1, . . . ,N ,

(3) πi and πj are independent random variables for any i , j,

which means Eπ∼P [πi π̄j ] =
1
4 ,∀i , j.

(4) α3 > 2α1M , whereM is a large positive number.

which leads to the follwing loss:

L†
=

α1

2

N∑

i=1

si

︸    ︷︷    ︸

L
†
1

+

α3

4

N∑

i, j

Ai j s̄i s̄j

︸            ︷︷            ︸

L
†
2

.



Denote the nodes in the maximum independent set of G as K .

We first show that keeping only the nodes in K is the optimal

solution. Note that removing any node fromK increases the loss, by

incurring α1
2 losses added toL†

1 . Next we denoteV
′
= V \K , which

is the set of nodes removed from the graph. we show that putting

any set of nodes inV ′ back toK increases the loss. Suppose we put

a set of nodes B ⊆ V ′ back to K . This must introduce additional

edges to K , otherwise K is not the maximum independent set. Let

the number of additionally introduced edges be C . Putting B back

toK decreases L†
1 . however, it increases L

†
2 . The net change of L

†

is:

−
α1

2
|B| +

α3

2
C,

which is always positive because α3 > 2α1M . Since we cannot

remove or add any set of nodes toK without increasingL†, keeping

only the nodes in K is the optimal solution.

For the other direction, we show that if keeping the nodes in a set

K minimizes the loss, then K is the maximum independent set of

G . First, supposeK is not an independent set, which means there is

at least one edge inK . Then removing one or both of the endpoints

always decrease the loss because α3 > 2α2M . Intuitively, the loss of

removing a benign node fromG is way less than the loss of leaving

a malicious edge in G. So K must be an independent set. Next, we

show K is the maximum independent set. Suppose another set K ′

is the maximum independent set and |K ′ | > |K |. Then keeping

the nodes in K ′ can further decrease L† by decreasing L
†
1 , which

contradicts the fact that keeping the nodes inK minimizes the loss.

Therefore we conclude K is the maximum independent set. □

Our approach to solving Eq. (6) is by means of a convex relax-

ation, as we now describe. Note that the matrix A1 in Eq. (6) is

not symmetric. We substitute A1 withQ :=
A1+A

T

1
2 and b := 1

2b1,

which results in an equivalent problem:

min
s

sTQs + 2sTb + c1

s .t . s ∈ {0, 1}N
(8)

whereQ ∈ SN×N is a real symmetric matrix. Directly minimizing

Eq. (8) is still intractable, and we instead derive its convex relaxation

into a Semidefinite Program (SDP). We solve the convex relaxation

for a global optimum. The objective value associated with the global

optimum gives a lower bound to the objective value of Eq. (8). Next,

we convert the global optimum to a feasible solution of Eq. (8). In

what follows, we first derive an intermediate problem, which is

a relaxation (not necessarily convex) of Eq. (8). This intermediate

problem plays the role of a bridge between Eq. (8) and its convex

relaxation due to several of its nice properties, which we will de-

scribe shortly. Based on the properties of the intermediate problem

we derive its convex relaxation, which is also a convex relaxation

of Eq. (8).

To derive the intermediate problem, we first relax Eq. (8) by

expanding its feasible region. The original feasible region of Eq. (8)

is the set of vertices of a hypercube. We expand the original feasible

region to the entire hypercube, which is defined byC = {s |0 ⪯ s ⪯

1, s ∈ RN }. We further expandC to the circumscribed sphere of the

hypercube, which results in C̃ = {s |(s− 1
21)

T (s− 1
21) ≤

N
4 , s ∈ RN }.

After the successive expansion we have the following Quadratically

Constrained Quadratic Programming (QCQP), which was previously

dubbed as the łintermediate problemž:

min
s

sTQs + 2sTb + c1

s .t . (s −
1

2
1)T (s −

1

2
1) ≤

N

4
.

(9)

The problem Eq. (9) is still non-convex, since in our problem

setting the matrixQ is usually not positive (semi-)definite. How-

ever, Eq. (9) offers several benefits. First, it is a QCQP with only

one inequality constraint, which indicates that it has a convex dual

problem and under mild conditions (Slater’s condition) strong dual-

ity holds [5]. This suggests that we can find the global optimum of

a non-convex problem (when Slater’s conditions hold) by solving

its dual problem. Second, applying duality theory twice on Eq. (9)

results in its own convex relaxation, which is therefore the convex

relaxation of Eq. (8). In what follows we thereby derive the convex

relaxation of Eq. (9).

We first obtain the Lagrangian l(s, λ) of Eq. (9) as follows, where

λ ≥ 0 is a Lagrangian multiplier:

l(s, λ) :=sTQs + 2bT s + c1 + λ
[

(s −
1

2
1)T (s −

1

2
1) −

N

4

]

=sT (Q + λI )s + (2b − λ1)T s + c1.

(10)

The dual function д(λ) is then

д(λ) = inf
s
l(s, λ)

=

{

c1 − (b − λ
2 1)

T (Q + λI )†(b − λ
2 1), cond1

−∞, o.w.

(11)

where (Q + λI )† is the Pseudo-Inverse of (Q + λI ). Note that cond1
consists of two conditions: first, thatQ+λI is positive semi-definite

and second, that b − λ
2 1 lies in the column space ofQ + λI . If the

conditions in cond1 are satisfied, maximizing д(λ) is feasible and the

primal problem is bounded. Otherwise, д(λ) is unbounded below

(−∞), and we have a certificate that the primal problem in Eq. (9)

is also unbounded. With cond1 satisfied, we introduce a variable

γ as the lower bound of д(λ), which indicates c1 − (b − λ
2 1)

T (Q +

λI )†(b− λ
2 1) ≥ γ . Thenmaximizingд(λ) is equivalent tomaximizing

γ . Further, by Schur Complement (and remember (Q + λI ) ⪰ 0), the

inequality c1 − (b − λ
2 1)

T (Q + λI )†(b − λ
2 1) ≥ γ is equivalently

represented by a linear matrix inequality
[

Q + λI b − λ
2 1

(b − λ
2 1)

T c1 − γ

]

⪰ 0,

which enables us to represent the dual problem of Eq. (9) as a

Semidefinite Program (SDP) with two variables, γ and λ:

max
γ ,λ

γ

s .t . λ ≥ 0
[

Q + λI b − λ
2 1

(b − λ
2 1)

T c1 − γ

]

⪰ 0,

(12)

As discussed above, applying duality theory twice to Eq. (9)

results in its own convex relaxation. Consequently, we continue to

derive the dual of Eq. (12). The Lagrangian l(γ , λ, S, s,α) of Eq.(12)



is calculated as follows, where S ∈ SN , s ∈ RN ,

[

S s

sT 1

]

⪰ 0 and

α ≥ 0 are Lagrangian multipliers:

l(γ , λ, S, s,α) =

− γ − λα − tr

( [

Q + λI b − λ
2 1

(b − λ
2 1)

T c1 − γ

] [

S s

sT 1

] )

= −γ − λα−

tr

( [

(Q + λI )S + (b − λ
2 1)s

T · · ·

· · · (b − λ
2 1)

T s + c1 − γ

] )

︸                                                                   ︷︷                                                                   ︸

We only need to keep these block matrices on the diagonal

= λ
[

− α − tr (S) + 1T s
]

−
[

tr (QS) + 2bT s + c1
]

,

(13)

where tr (·) is trace operator. Notice that λ
[

− α − tr (S) + 1T s
]

is a

linear function of λ, so [−α −tr (S)+1T s]must be zero, as otherwise

the linear function can be minimized without bound. In addition,

the Lagrangian multiplier α is greater than or equal to zero, so from

−α − tr (S) + 1
T s = 0 we have tr (S) − 1

T s ≤ 0, which is denoted

by cond2. The dual function д(S, s) is then:

д(S, s) = inf
γ ,λ,α

l(γ , λ, S, s,α)

=

{

−tr (QS) − 2bT s − c1, cond2

−∞, o.w.

(14)

The dual problem of Eq. (12) is the minimization of −д(S, s),

which can be represented as a SDP as follows:

min
S ∈SN ,s ∈RN

tr (QS) + 2bT s + c1

s .t . tr (S) − 1
T s ≤ 0

[

S s

sT 1

]

⪰ 0,

(15)

In order to see the connections between Eq. (15) and Eq. (9), we

first note that by Schur Complement the linear matrix inequality
[

S s

sT 1

]

⪰ 0

is equivalent to S ⪰ ssT . Therefore if we reduce the feasible region

of Eq. (15) by enforcing the equality constraint S = ssT , and then

utilize that

tr (QS) = tr (QssT ) = sTQs

and

tr (S) − 1
T s ≤ 0 ≡ (s −

1

2
1)T (s −

1

2
1) ≤

N

4
,

we have an equivalent problem to Eq. (9). This shows that Eq. (15)

is a convex relaxation of Eq. (9) and, therefore, a convex relaxation

of Eq. (6).

We solve Eq.(15) for a global optimal solution, which is denoted

by (S∗, s∗). Then we apply Euclidean projection to convert s∗ to a

feasible solution of Eq. (6), which is denoted by s̄∗. We remove all

nodes from the network with s̄∗i > 0.5. We call our full algorithm

MINT (Malicious In NeTwork), which is detailed in Algorithm 1:

Next we show with appropriate choice of the trade-off parame-

ters the optimal value of Eq. (8) is upper- and lower-bounded by the

optimal value of Eq. (15), which provides performance guarantee

Algorithm 1 MINT

1: Input:Q , b, c1
2: Compute the global optimal solution s∗ of Eq. (15)

3: Solve s̄∗ = argminŝ ∈C | |ŝ − s∗ | |2
4: Remove all nodes with s̄∗i ≥ 0.5

for the SDP relaxation. We denote the optimal objective value of the

originally intractable optimizatioin by V∗ and the optimal objective

value of the SDP relaxation by P∗
SDP

. Then we have the following

theorem:

Theorem 3.2. When the (i, j)-th element of the matrixQ in Eq. (8)

satisfying qi j ≥ 0,∀i , j , the optimal objective value V∗ is upper- and

lower-bounded by the optimal objective value P∗
SDP

up to a constant

β :

P∗SDP ≤ V∗ ≤ P∗SDP + β

Proof. The proof is deferred to the Appendix. □

To understand the relation between the condition qi j ≥ 0,∀i , j

and the choice of the trade-off parameters, we first note that ∀i , j:

qi j = (α2 + α3)
( µi + µ j

2
− E[µi µ j ]

)

− α2,

where µi is the maliciousness probability of the i-th node. Then

qi j ≥ 0 is equivalent to:

µi + µ j

2
≥ E[µi µ j ] +

α2

α2 + α3
,∀i , j . (16)

The left-hand side of Eq. (16) consists of the maliciousness prob-

abilities estimated from data, which can be thought as constants

when we analyze the the behavior of the inequality. When E[µi µ j ]

is large, the edge (i, j) is more likely to be a connection between a

malicious node and a benign node, which means we would like a

small α2 that encourages cutting connections. Notice that a small

α2 is exactly what we need to make the inequality in Eq. (16) hold.

Therefore the condition qi j ≥ 0,∀i , j indicates that the choice of

the trade-off paramters is important to guarantee the performance

of the SDP relaxation.

4 EXPERIMENTS

In this section we present experiments to show the effectiveness of

our approach.We considered both synthetic and real-world network

structures, but in all cases derived distribution over maliciousness of

nodes P using real data. For synthetic network, we considered two

types of network structures: Barabasi-Albert (BA) [4] and Watts-

Strogatz networks (Small-World) [21]. BA is characterized by its

power-law degree distribution, where the probability that a ran-

domly selected node has k neighbors is proportional to k−r . For

both networks we generated instances with N = 128 nodes. For

real-world networks, we used a network extracted from Facebook

data [10] which consisted of 4039 nodes and 88234 edges. We ex-

perimented with randomly sampled sub-networks with N = 500

nodes.

In our experiments, we consider a simplified case where the

maliciousness probabilities for nodes are independent. In addition,

we assume that a single estimator (e.g., logistic regression) was

trained to estimate the probability that a node is malicious based on



features from past data. Note that these assumptions are reasonable

for the purpose of validating the effectiveness of our model, since

the focus of our model is not how to estimate maliciousness proba-

bilities. For more complex cases, for example, when maliciousness

probabilities for nodes are correlated, more advanced techniques,

such as Markov Random Fields, can be applied to estimate the

maliciousness probabilities, but our general approach would not

change.

In all of our experiments, we derived P from data as follows.

We start with a dataset D which includes malicious and benign

instances (the meaning of these designations is domain specific),

and split it into three subsets: Dtrain (the training set), D1, and D2,

with the ratio of 0.3 : 0.6 : 0.1. Our first step is to learn a probabilis-

tic predictor of maliciousness as a function of a feature vector x ,

p̂(x), on Dtrain . Next, we randomly assign malicious and benign

feature vectors from D2 to the nodes on the network, assigning

10% of nodes with malicious and 90% with benign feature vectors.

For each node, we use its assigned feature vector x to obtain our

estimated probability of this node being malicious, p̂(x); this gives

us the estimated maliciousness probability distribution P̂. This is

the distribution we use in MINT and the baseline approaches. How-

ever, to ensure that our evaluation is fair and reasonably represents

realistic limitations of the knowledge of the true maliciousness dis-

tribution, we train another probabilistic predictor, p(x), now using

Dtrain ∪ D1. Applying this new predictor to the nodes and their

assigned feature vectors, we now obtain a distribution P∗ which

we use to evaluate performance.

We conducted two sets of experiments. In the first set of ex-

periments we used synthetic networks and used data from the

Spam [11] dataset to learn the probabilistic maliciousness model

p(x), and thereby derive P. The Spam dataset D consists of spam

and non-spam instances along with their corresponding labels.

In the second set of experiments we used real-world networks

from Facebook and used Hate Speech data [7] collected from Twit-

ter to obtain P as discussed above. The Hate Speech dataset is a

crowd-sourced dataset that contains three types of tweets: 1. hate

speech tweets that express hatred against a targeted group of peo-

ple; 2. offensive language tweets that appear to be rude, but do not

explicitly promote hatred; and 3. normal tweets that neither pro-

mote hatret nor are offensive. We categorized this dataset into two

classes in terms of whether a tweet represents Hate Speech, with the

offensive language tweets categorized as non-Hate Speech. After

categorization, the total number of tweets is 24783, of which 1430

are Hate Speech. We applied the same feature extraction techniques

as Davidson et al. [7] to process the data.

Note that our second set of experiments makes use of real data

for both the network and the node maliciousness distribution P.

Moreover, as noted by Waseem and Hovy [20], hate speech is wide-

spread among Facebook users, and our second set of experiments

can be viewed as studying the problem of identifying and poten-

tially removing nodes from a social network who egregiously spew

hate.

Baselines. We compared our algorithm (MINT) with LESS, a

state-of-the-art approach for graph hypothesis testing, and a simple

baseline which removes a node i if its maliciousness probability

pi > θ∗, where θ∗ is a specified threshold.

The algorithm LESS was proposed in Sharpnack et al. [18], and

considers a related hypothesis testing problem. The null hypothesis

is that each node in the graph is associated with a random variable

sampled from the standard Gaussian N(0, 1), while the alternative

hypothesis is that there is a fraction of nodes where the random

variables associated with them are sampeld from N(µ, 1) with µ

other that 0 (in our interpretation, these are the malicious nodes).

The algorithm LESS employs the generalized log-likelihood over a

subset of nodes as a test statistic, and the hypothesis test is to find

the subset that has the strongest evidence aginst the null hypothesis.

We remove the subset of nodes found by LESS.

The simple baseline has a trade-off parameter α between false-

positive rate (FPR) and false-negative rate (FNR) (in our experiments

α = 0.5). We select an optimal threshold θ∗ that minimizes αFPR +

(1 − α)FNR on training data.

Experiment Results. The averaged losses for our first set of experi-

ments where P was simulated from Spam data are shown in Table 1.

The top table contains the results on BA networks and the bottom

table contains the results on Small-World networks. Each row cor-

responds to a combination of trade-off parameters (α1,α2,α3); for

example, (0.1, 0.2, 0.7) corresponds to (α1 = 0.1,α2 = 0.2,α3 = 0.7).

We experimented with four combinations of these: (0.1, 0.2, 0.7),

(0.2, 0.7, 0.1), (0.7, 0.2, 0.1), and ( 13 ,
1
3 ,

1
3 ). Each number was ob-

tained by averaging over 50 randomly generated network topolo-

gies. Table 1 shows that MINT has the lowest loss across all settings

except (0.1, 0.2, 0.7).

To delve into the results more, we present the box plots for

the experimental results on BA networks in Figure 2. Note that

as Table 1 indicates that LESS performs considerably worse than

both MINT and, remarkably, even the simple baseline across all

combinations of the trade-off parameters, and we omit its box plots.

Just as we observed in the table, three of the four box plots show a

substantial improvement of MINT over the baseline in three out

of the four cases, with the lone exception being when the trade-

off parameters are (0.1, 0.2, 0.7), that is, when the importance of

preserving links among benign nodes is relatively low. In this case,

it is reasonable to expect that the value of considering the network

topology is dominated by the first-order considerations of removing

malicious nodes and keeping benign, already largely captured by

our simple baseline. Thus, our machinery is unnecessary in such

a case, as its primary value is when overall connectivity of the

benign subnetwork is also a first-order consideration, as we expect

it to be in social network settings. This value is borne out by the

results in the three remaining plots in Figure 2, where the baseline

clearly underperforms MINT. An interesting observation is that in

the upper right and lower left cases the average losses of MINT are

close to 0, which is actually the best value that the loss function in

Eq.(6) can achieve. Considering that minimizing Eq.(6) is a NP-hard

problem, our convex relaxation gives a high quality approximation

in polynomial time. 1

The box plots for the experimental results on Small-World net-

works are shown in Figure 3, where we now include LESS as it is

more competitive in this case. The overall trend is similar to Fig-

ure 2. Moreover, the box plots reveal that, while MINT is better than

the simple baseline that ignores network structure in the three of

1Solving the SDP relaxation Eq. (15) is in polynomial-time with interior-point method







APPENDIX

Proof of Theorem 3.2

Proof. It is direct to show P∗
SDP

≤ V∗, since Eq.(15) is the dual

of Eq.(12) which is the dual of Eq. (9). Our main focus is to prove

V∗ ≤ P∗
SDP
+ β . Notice that we have:

V∗ ≤ E
[

sTQs + 2sTb + c1
]

, (17)

which is true by taking expectations in both sides of V∗ ≤ sTQs +

2sTb+c1 which holds since by definition V
∗ is the optimal objective

value of the right-hand side. Then we apply the randomization

procedure introduced in [9] to sample feasible solutions for Eq. (8).

Specifically, solving Eq. (15) results in a positive-semidefinite matrix

S∗. We define S̄∗ = (S∗ + I ), which is a positive-definite matrix. By

the Cholesky decomposition of S̄∗ we have:

S̄∗ = VTV .

We normalize each column of V to have unit length, which results

in a set of vectorsv1, · · · ,vN :

V =
[

v1, · · · ,vN

]

, | |vi | |2 = 1∀i

Note that S̄∗i j = vTi vj , where S̄
∗
i j is the ij-th element of S̄∗. Now

we randomly sample s ∈ {0, 1}N , where the i-th element of s is

generated as follow:

si =

{

1, vTi z > 0

0, vTi z ≤ 0.

The random vector z ∈ RN is sampled from a Gaussian distribution,

z ∼ N( 121, I ), where I is the identity matrix in RN×N . The expec-

tation of si is 0.5, since the probabilities of v
T
i z ≥ 0 and vTi z < 0

are equal to 0.5, respectively. We let µ denote the expectation of s ,

so µ = 1
21. The covariance matrix Σ of the random vector s is:

Σ = E
[

(s − µ)(s − µ)T
]

= E[ssT ] − µµT

= E[ssT ] −
1

4
J (N ,N ),

where J (N ,N ) ∈ RN×N is a matrix with all elements equal to 1.

Notice that the (i, j)-th element of the expectation E[ssT ] is E[sisj ],

which is equal to the probability that both si and sj are equal to 1:

E[sisj ] = P(si = 1, sj = 1)

= P
(

vTi z > 0,vTj z > 0
)

.
(18)

Following the similar argument as Lemma 2.2 of [9] we know:

P
(

vTi z > 0,vTj z > 0
)

=

π − θ

2π
,

where θ = arccos(vTi vj ). Therefore we have:

E[sisj ] =
1

2
−

θ

2π

=

1

2
−
arccos(vTi vj )

2π

=

1

2
−
arccos(S̄∗i j )

2π
.

Now we expand the Eq. (17) as the following:

V∗ ≤ E
[

sTQs + 2sTb + c1
]

= E
[

(s −
1

2
1)TQ(s −

1

2
1) + 2sT 1 + c1

]

+

1

4
1
TQ1

= E
[

tr
(

Q(s −
1

2
1)(s −

1

2
1)T

) ]

+ 1
Tb + c1 +

1

4
1
TQ1

= tr

(

QE
[

(s −
1

2
1)(s −

1

2
1)T

]
)

+ 1
Tb + c1 +

1

4
1
TQ1

= tr
(

QΣ
)

+ 1
Tb + c1 +

1

4
1
TQ1

=

∑

i, j

qi jΣji + 1
Tb + c1 +

1

4
1
TQ1

=

∑

i, j

qi j
(

E[sisj ] −
1

4

)

+ 1
Tb + c1 +

1

4
1
TQ1

=

∑

i, j

qi j
( 1

4
−
arccos(S̄∗i j )

2π

)

+ 1
Tb + c1 +

1

4
1
TQ1

(∗)
≤

∑

i, j

qi j S̄
∗
i j + 1

Tb + c1 +
1

4
1
TQ1

(the diagonal elements ofQ are zeros)

=

∑

i, j

qi jS
∗
i j + 1

Tb + c1 +
1

4
1
TQ1

= tr
(

QS∗
)

+ 1
Tb + c1 +

1

4
1
TQ1,

where (∗) is true because the inequality:

1

4
−
arccos(x)

2π
≤ x

holds on 0 ≤ x ≤ 1 and qi j ≥ 0,∀i, j. Since:

P∗SDP ≤ V∗ ≤ tr
(

QS∗
)

+ 1
Tb + c1 +

1

4
1
TQ1,

we select a nonnegative constant β such that:

β ≥
[

tr
(

QS∗
)

+ 1
Tb + c1 +

1

4
1
TQ1

]

− P∗SDP

= 1
Tb +

1

4
1
TQ1 − 2bT s∗,

where s∗ is the optimal solution of Eq. (15). Note that since the

elements of b and Q are bounded, we can always find such a β .

With β we have:

V∗ ≤ tr
(

QS∗
)

+ 1
Tb + c1 +

1

4
1
TQ1

≤ tr
(

QS∗
)

+ 2bT s∗ + c1 + β

= P∗SDP + β,

which completes the proof. □

REFERENCES
[1] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016

election. Journal of Economic Perspectives, 31(2):211ś36, 2017.
[2] Vinicius Andrade. Facebook, whatsapp step up efforts in brazil’s fake news

battle. Bloomberg. URL https://www.bloomberg.com/news/articles/2018-10-23/
facebook-whatsapp-step-up-efforts-in-brazil-s-fake-news-battle.

[3] Ery Arias-Castro, Emmanuel J Candes, and Arnaud Durand. Detection of an
anomalous cluster in a network. The Annals of Statistics, pages 278ś304, 2011.



[4] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. science, 286(5439):509ś512, 1999.

[5] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[6] Justin Cheng, Cristian Danescu-Niculescu-Mizil, and Jure Leskovec. Antisocial
behavior in online discussion communities. In ICWSM, pages 61ś70, 2015.

[7] Thomas Davidson, DanaWarmsley, MichaelMacy, and IngmarWeber. Automated
hate speech detection and the problem of offensive language. arXiv preprint
arXiv:1703.04009, 2017.

[8] Charles Elkan. The foundations of cost-sensitive learning. In International joint
conference on artificial intelligence, volume 17, pages 973ś978. Lawrence Erlbaum
Associates Ltd, 2001.

[9] Michel X Goemans and David PWilliamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115ś1145, 1995.

[10] Jure Leskovec and Julian J Mcauley. Learning to discover social circles in ego
networks. In Advances in neural information processing systems, pages 539ś547,
2012.

[11] Moshe Lichman et al. Uci machine learning repository, 2013.
[12] Sofus A. Macskassy and Foster Provost. Classification in networked data: A

toolkit and a univariate case study. Journal of Machine Learning Research, 8:
935ś983, 2007.

[13] Yilin Mo, Tiffany Hyun-Jin Kim, Kenneth Brancik, Dona Dickinson, Heejo Lee,
Adrian Perrig, and Bruno Sinopoli. Cyberśphysical security of a smart grid
infrastructure. Proceedings of the IEEE, 100(1):195ś209, 2012.

[14] Vidya Narayanan, Vlad Barash, John Kelly, Bence Kollanyi, Lisa-Maria Neudert,
and Philip N Howard. Polarization, partisanship and junk news consumption
over social media in the us. arXiv preprint arXiv:1803.01845, 2018.

[15] Carey E Priebe, John M Conroy, David J Marchette, and Youngser Park. Scan
statistics on enron graphs. Computational & Mathematical Organization Theory,
11(3):229ś247, 2005.

[16] Jesus Rodriguez. Facebook suspends 115 accounts for ’inauthentic be-
havior’ as polls open. URL https://www.politico.com/story/2018/11/06/
facebook-suspends-accounts-polls-2018-964325.

[17] Shane Scott and Mike Isaac. Facebook says it’s policing fake accounts. but they’re
still easy to spot. The New York Times. URL https://www.nytimes.com/2017/11/
03/technology/facebook-fake-accounts.html.

[18] James L Sharpnack, Akshay Krishnamurthy, and Aarti Singh. Near-optimal
anomaly detection in graphs using lovasz extended scan statistic. In Advances in
Neural Information Processing Systems, pages 1959ś1967, 2013.

[19] Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning associative markov
networks. In Proceedings of the Twenty-first International Conference on Machine
Learning, 2004.

[20] Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive
features for hate speech detection on twitter. In Proceedings of the NAACL student
research workshop, pages 88ś93, 2016.

[21] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world
networks. nature, 393(6684):440, 1998.

[22] Yang Yang, Takashi Nishikawa, and Adilson E. Motter. Small vulnerable sets
determine large network cascades in power grids. Science, 358(886), 2017.


	Abstract
	1 Introduction
	2 Model
	3 Solution Approach
	4 Experiments
	5 Conclusion
	Proof of Theorem ??

	References

