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ABSTRACT

Extensive literature exists studying decentralized coordination and

consensus, with considerable attention devoted to ensuring robust-

ness to faults and attacks. However, most of the latter literature

assumes that non-malicious agents follow simple stylized rules.

In reality, decentralized protocols often involve humans, and un-

derstanding how people coordinate in adversarial settings is an

open problem. We initiate a study of this problem, starting with a

human subjects investigation of human coordination on networks

in the presence of adversarial agents, and subsequently using the

resulting data to bootstrap the development of a credible agent-

based model of adversarial decentralized coordination. In human

subjects experiments, we observe that while adversarial nodes can

successfully prevent consensus, the ability to communicate can

significantly improve robustness, with the impact particularly sig-

nificant in scale-free networks. On the other hand, and contrary to

typical stylized models of behavior, we show that the existence of

trusted nodes has limited utility. Next, we use the data collected in

human subject experiments to develop a data-driven agent-based

model of adversarial coordination. We show that this model suc-

cessfully reproduces observed behavior in experiments, is robust

to small errors in individual agent models, and illustrate its utility

by using it to explore the impact of optimizing network location of

trusted and adversarial nodes.
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1 INTRODUCTION

Coordination is one of the fundamental problems faced by teams,

organizations, and societies. Such coordination problems are often

decentralized and involve limited local information and interaction,

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13ś17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

with locality naturally captured by a network structure. A promi-

nent example for the special case of consensus is blockchain, which

enables verifiable decentralized transactions [30].

Considerable prior research has been devoted to understanding

and modeling human behavior in networked coordination settings,

such as networked consensus [19ś21, 40], coloring [19, 28], bargain-

ing [7], and social dilemma games [15, 26], among others. However,

decentralized coordination problems often take place in adversarial

predicaments. For example, organizations attempting to coordinate

on a strategy may also compete with other organizations (legal and

illegal), and coordination in combat mission planning and execution

inherently faces adversarial entities in the form of enemy combat-

ants. Moreover, adversaries often attempt to exert their influence

covertly, such as by bribing insiders, taking control of network

nodes through cyber attacks, and spreading malicious influence

tacitly through social networks, for example, by means of fake

news [4]. Consequently, an important consideration in decentral-

ized coordination is resilience to adversarial tampering with the

process. While much prior research has been devoted to the study of

robust coordination protocols, these rely on simple stylized models

of individual behavior [2, 6, 24, 25]. However, many settings feature

humans in the loop who play an important role in reaching con-

sensus. Surprisingly, the question of human behavior in adversarial

coordination settings has received little prior attention.

We investigate the problem of decentralized consensus on net-

works in the presence of adversarial nodes, first using human sub-

ject experiments with 556 participants, and subsequently through

the data-driven agent-based modeling (DDABM) methodology [44].

Our experiments focus on two design factors: allowing neighboring

nodes to communicate, and embedding a small set of trusted nodes

in the network. While communication has been a major subject of

inquiry in prior research [8, 10, 11, 29], recent research suggests

that communicating solely among network neighbors has limited

value in facilitating consensus [40]. On the other hand, much prior

research, using stylized models of individual behavior, has argued

that the presence of trusted nodes can significantly facilitate de-

centralized coordination [1, 2, 39]. Our results run counter to both

of these observations. First, we demonstrate that communication

helps a great deal, especially as we increase the number of adver-

sarial nodes. Second, we show that the presence of trusted nodes

does not, in the aggregate, help, reinforcing the need to develop

better models of individual and collective behavior in such settings.
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nodes. The second challenge is that nodes in any of these roles may

behave differently depending on whether they see visible nodes

among their neighbors. The third is the fundamental challenge of

how we should model real-time color choices by the players.

We address the third challenge by discretize time into 1 second

intervals, so that there are (up to) 60 decision points in any game

(as a game lasts 60 seconds).

To address the first two challenges, we created distinct behavioral

models for the three roles, and distinct models for the situations

when they have a visible node as a neighbor, and when they don’t

(thus, 6 individual agent models altogether).

Each of these cases raises an additional complication: agents

make two kinds of decisions during the span of a game: first, as

they start as łwhitež (non-commited), they must choose an initial

color, and subsequently, they choose whether to switch their color.

Consequently, we split the decision model into two parts: 1) choos-

ing the initial color, and 2) switch the color. The rationale is that

the initial decision is a deliberate choice of a particular color, and

includes both the timing of changing from the initial default łwhitež

color to either red or green, as well as the particular choice between

these two. In contrast, once a color is chosen, players exhibit a con-

siderable amount of inertia: they change color less frequently than

once every 20 seconds on average. Thus, modeling the decision

to switch (or, effectively, the timing of a color switch) naturally

captures such inertia, and also cleanly captures the inherent sym-

metry of their decision at this point, since players do not have a

preference for one color over the other beyond reaching consensus.

Finally, the initial decision was itself split into two models: the

first modeling the timing of the initial color choice, and the second

modeling which color is actually chosen. Consequently, altogether

we learned 18 different behavior models, or 3 models for each of

the 6 roles and neighborhood assignments. Next, we describe these

3 models (which are qualitatively the same for each of the role x

neighborhood predicaments): timing of initial color choice, choosing

the initial color, and timing of color change. We briefly note that all

models below are highly effective: either they exhibit high accuracy

( 90−95%), or large likelihood improvement over a frequency-based

baseline (50%-100% improvement).

Timing of Initial Color Choice. Our first set ofmodels predicts

the timing of the initial choice of color, or, more precisely, the

probability that the initial color is chosen in a discrete time unit.

For these models, the features are: Dinv , the absolute difference

between the fraction of a player’s non-visible neighbors that picked

red and the fraction that picked дreen;Dvis , the absolute difference

between the fraction of a player’s visible neighbors that picked red

and the fraction of those who picked дreen (if the player has visible

neighbors);Nvis , the number of a player’s neighbors that are visible,

andNinv , the number of a player’s neighbors whose are non-visible

(note that Nvis + Ninv is the total number of neighbors the player

has). The decision model is represented by a logistic regression with

these features, the parameters (coefficients) of which we learned

from experimental data. We added l1 (sparse) regularization to

control for overfitting, with regularization parameter tuned using

cross-validation. In all models, VN is a boolean feature indicating

if a node has a visible neighbor. All feature were normalized.

Table 1: Color-picking model, P(pick a color).

Type VN Intercept Dinv Dvis Ninv Nvis

Reg No −1.952 1.29

Yes −2.21 0.548 0.933 0.002 0.016

Vis No −2.045 1.742 0.04

Yes −1.734 0.579 0.84 -0.061 0.048

Adv No −2.284 1.25 0.011

Yes −2.744 0.802 0.662 0.025 0.155

The learned model coefficients for both the model with and with-

out visible neighbors are given in Table 1. The results offer several

interesting insights. First, we can see that disagreement among

neighbors stimulates a player to make an initial color choice earlier.

This is somewhat surprising, as we may expect players to wait until

their neighbors had come to a near-consensus before making an

initial move. Second, disagreement among visible nodes has a more

significant, positive impact on the likelihood of choosing a color

at a particular time point. Third, the behavior of adversarial nodes

is broadly consistent with the first observation, but not with the

second: such players appear to be more stimulated by disagreement

among non-visible than among visible (trusted) neighbors.

Choosing the Initial Color. Conditional on deciding to choose

the initial color in a particular discrete time unit (per our previous

models), the next decision we model is which of the two colors

the player chooses. We again use l1-regularized logistic regression,

where we predict the probability that a player chooses łredž as their

initial color (conditional on choosing some initial color). As before,

we use cross-validation to tune the regularization coefficient. For

these models, the features are:Ginv

local
, the fraction of a player’s non-

visible neighbors choosing дreen;Gvis

local
, the fraction of a player’s

visible neighbors choosing дreen; Rinv
local

, the fraction of a player’s

non-visible neighbors choosing red ; and Rvis
local

, the fraction of a

player’s visible neighbors choosing red . Note that Ginv

local
+ Rinv

local

and Gvis

local
+ Rvis

local
are not necessarily 1, since some of the neigh-

bors may not have yet chosen a color. As before, all of the features

were normalized.

Table 2: Red picking model, P(red | pick a color).

Type VN Intercept G
inv

local
G
vis

local
R
inv

local
R
vis

local

Reg No 0 -4.863 5.032

Yes -0.066 -2.855 -2.022 3.453 1.733

Vis No 0.109 -4.411 4.202

Yes 0.188 -3.215 -1.599 2.395 1.996

Adv No -0.023 0.817 -0.649

Yes -0.286 0.172 0.732 -0.204

The coefficients of the learned models are presented in Table 2.

The results closely follow expectations here: the more neighbors

(visible and not) are choosing red as opposed to green, the more

likely the consensus team player to choose red as the initial color.

On the other hand, adversarial players tend to act in opposition to

their neighbors, with red prevalence in their local neighborhood

generally leading them to choose green.

However, with regard to the adversarial players, we make a few

noteworthy observations. First, note that adversaries are much
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