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Abstract—Detection of malicious behavior is a fundamental
problem in security. One of the major challenges in using
detection systems in practice is in dealing with an overwhelming
number of alerts that are triggered by normal behavior (the
so-called false positives), obscuring alerts resulting from actual
malicious activity. While numerous methods for reducing the
scope of this issue have been proposed, ultimately one must
still decide how to prioritize which alerts to investigate, and
most existing prioritization methods are heuristic, for example,
based on suspiciousness or priority scores. We introduce a novel
approach for computing a policy for prioritizing alerts using
adversarial reinforcement learning. Our approach assumes that
the attacker knows the full state of the detection system and the
defender’s alert prioritization policy, and will dynamically choose
an optimal attack. The first step of our approach is to capture the
interaction between the defender and attacker in a game theoretic
model. To tackle the computational complexity of solving this
game to obtain a dynamic stochastic alert prioritization policy,
we propose an adversarial reinforcement learning framework. In
this framework, we use neural reinforcement learning to compute
best response policies for both the defender and the adversary to
an arbitrary stochastic policy of the other. We then use these in a
double-oracle framework to obtain an approximate equilibrium
of the game, which in turn yields a robust stochastic policy for the
defender. Extensive experiments using case studies in fraud and
intrusion detection demonstrate that our approach is effective in
creating robust alert prioritization policies.

I. INTRODUCTION

One of the core problems in security is detection of mali-
cious behavior, with examples including detection of malicious
software, emails, websites, and network traffic. There is a vast
literature on detection approaches, ranging from signature-
based to machine-learning based [8], [26], [34]. Despite best
efforts, however, false positives are inevitable. Moreover, one
cannot in general reduce the rate of false alarms without
missing some real attacks as a result. Under the pressure
of practical considerations such as liability and accountabil-
ity, these systems are often configured to produce a large
amount of alerts in order to be sufficiently sensitive to capture
most attacks. As a consequence, cybersecurity professionals
are routinely inundated with alerts, and must sift through
these overwhelmingly uninteresting logs to identify alerts that
should be prioritized for closer inspection.

A considerable literature has therefore emerged attempting
to reduce the number of false alerts without significantly
affecting the ability to detect malicious behavior [16], [30],

[13]. Most of these attempt to add meta-reasoning on top of
detection systems that capture broader system state, combining
related alerts, escalating priority based on correlated observa-
tions, or using alert correlation to dismiss false alarms [38].
Nevertheless, despite significant advances, there are typically
still vastly more alerts than time to investigate them. With this
state of affairs, alert prioritization approaches have emerged,
but rely predominantly on predefined heuristics, such as sort-
ing alerts by suspiciousness score or by potential associated
risk [2]. However, any policy that deterministically orders
alerts potentially opens the door for determined attackers who
can simply choose attacks that are rarely investigated, thereby
evading detection.

Building on the observation of the fundamental tradeoff
between false alert and attack detection rate, we propose a
novel computational approach for robust alert prioritization
to address the challenge. Our approach assumes a strong
attacker who knows the full state of the detection environment
including which alerts have been triggered, which have been
investigated in the past, and even the defender’s policy. We
also assumed that the adversary is capable of finding and
utilizing a near optimal attack strategy against the defender
policy based on his knowledge of the system and defending
policy. To defend against such a strong attacker, we propose to
compute the optimal stochastic dynamic defender policy that
chooses the alerts to investigate as a function of the observable
state, and that is robust to our threat model. At the core of
our technical approach is a combination of game theory with
adversarial reinforcement learning (ARL). Specifically, we
model the problem of robust alert prioritization as a game in
which the defender chooses its stochastic and dynamic policy
for prioritizing alerts, while the attacker chooses which attacks
to execute, also dynamically with full knowledge of the system
state. Our computational approach first uses neural reinforce-
ment learning to compute approximately optimal policies for
either player in response to a fixed stochastic policy of their
counterpart. It then uses these (approximate) best response
oracles as a part of a double-oracle framework, which iterates
two steps: 1) solve a game involving a restricted set of policies
by both players, and 2) augment the policy sets by calling the
best response oracle for each player. Note that our approach
is completely orthogonal to methods for reducing the number
of false positive alerts, such as alert correlation, and is meant



to be used in combination with these, rather than as an
alternative. In particular, we can first apply alert correlation
to obtain a reduced set of alerts, and subsequently use our
approach for selecting which alerts to investigate. Since alert
correlation cannot be overly aggressive in order to ensure that
we still capture actual attacks, the number of alerts often still
significantly exceeds the investigation budget.

We evaluate our approach experimentally in two application
domains: intrusion detection, where we use the Suricata open-
source intrusion-detection system (IDS) with a network IDS
dataset, and fraud detection, with a detector learned from data
using machine learning. In both settings, we show that our
approach is significantly more effective than alternatives with
respect to our threat model. Furthermore, we demonstrate that
our approach remains highly effective, and better than baseline
alternatives in nearly all cases, even when certain assumptions
of our threat model are violated.

II. SYSTEM MODEL
A. Overview

As displayed in Figure 1, our system is partitioned into
four major components: a group of regular users (RU), an
adversary (also called attacker), a defender, and an attack
detection environment (ADE).

The regular users (RU) are the authorized users of a system.
In contrast, the adversary is a sophisticated actor who attacks
the target computer system. The attack detection environment
(ADE) models the combination of the software artifact that
is responsible for monitoring the system (e.g., network traffic,
files, emails) and raising alerts for observed suspicious be-
havior, as well as relevant system state. System state includes
attacks that have been executed (unknown to the defender),
and alerts that have been investigated (known to both the
attacker and defender). Crucially, the alerts triggered in the
ADE may correspond either to behavior of the normal users
RU, or to malicious behavior (attacks) by the adversary. We
divide time into a series of discrete time periods. The defender
is limited in how many alerts it can investigate in each time
period and must select a small subset of alerts for investigation,
while the adversary is limited in how many attacks it executes
in each time period. The full system operates as follows
for a representative time period (see again the schematic in
Figure 1):

1) Benign alerts are generated by the ADE.

2) These alerts, and the remaining ADE system state (such
as which alerts from past time periods have not yet been
investigated, but could be investigated in the future), are
observed by the attacker, who executes a collection of
attacks.

3) The attacks trigger new alerts. These are arbitrarily
mixed into the full collection of alerts, which is then
observed by the defender.

4) The defender chooses a subset of alerts to investigate.
The ADE state is updated accordingly, and the process
repeats in the next time period.

TABLE I
NOTATION SUMMARY.
Notation [ Interpretation
Constants and functions

A Types of attacks
T Types of alerts
Ct Cost of investigating an alert of type ¢t € T'
B Defender’s budget
E, Cost of mounting an attack of type a € A
D Adversary’s budget
Py t(n) Probability that an attack a € A raises n alerts of type

teT
Fi Probability distribution of false alerts of type t € T'
Lqg Loss inflicted by an undetected attack a € A
T Temporal discounting factor

State variables (Time slot k& € N)

Nék) Number of uninvestigated alerts of type t € T’
M,gk) Indicator of whether an attack of type a € A was

mounted
S((llft) Number of alerts of type ¢ € T raised due to attack

a€A
Rﬂff Reward obtained by the defender

Actions, policies, and strategies

ay Action of player v € {—1,+1}
Ty Policy (i.e., pure strategy) of player v € {—1,+1}
o, Mixed strategy of player v € {—1,+1}

Next, we describe our model of the alert detection environ-
ment, our threat model, and our defender model. The full list
of notation that we use in the model is presented in Table I.

B. Attack Detection Environment (ADE) Model

Our model of the attack detection environment (ADE)
captures a broad array of detection settings, including credit
card fraud, intrusion, and malware detection. In this model, the
ADE is composed of two parts: an alert generator (such as
an intrusion detection system, like Suricata) and system state.

An alert generator produces a sequence of alerts in each
time period. We aggregate alerts based on a finite predefined
set of types T'. For example, an alert type may be based on
the application layer it was generated for (HTTP, DNS, etc),
port number or range, destination IP address, and any other
information that’s informative for determining the nature and
relative priority of alerts. We can also define alert types for
meaningful sequences of alerts. Indeed, the notion of alert
types is entirely without loss of generality—we can define
each type to be a unique sequence of alerts, for example—
but in practice it is useful (indeed, crucial for scalability) to
aggregate semantically similar alerts.

At the end of each time period the system generates a
collection of alert counts for each alert type ¢t € T'. We assume
that normal or benign behavior generates alerts according to a
known distribution F, where F;(n) is the marginal probability
that n alerts of type ¢ are generated. We also refer to this as
the distribution of false alarms, since if the defender were
omniscient, they would never trigger such alerts. Note that
in practice it is not difficult to obtain the distribution F.
Specifically, we can use past logs of all alerts over some time
period to learn the distribution F. Since the vast majority
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System model. The Artack Oracle computes the attacker’s policy for executing attacks, which is implemented by the Attack Generator and then

triggers alerts observed by the Attack Detection Environment. The Defense Oracle computes the defender’s alert prioritization policy, which is implemented

by the Alert Analyzer.

of alerts in real systems are in fact false positives, any
unidentified true positives in the logs will have a negligible
impact.!

We use three matrices to represent the state of ADE at time
period k. The first represents the counts of alerts not yet inves-
tigated, grouped by type. Formally, we denote this structure
by N® = (N1, 7, where N\¥) is the number of alerts
of type t € T' that were raised but have not been investigated
by the defender. This is observed by both the defender and
the attacker. The second describes which attacks have been
executed by the adversary; formally, M(*) = {J\Lgk)}ae A,
where Mék) is a binary indicator where M(S,k) = 1 iff the attack
a was executed. This matrix is only observed by the attacker.
Finally, we represent which alerts are raised specifically due
to each attack. Formally, S(*) = {Sé’ft)}ae A.teT> Where SC(L"?
represents the number of alerts of type ¢ € T raised due to
attack a. This is also only observed by the attacker.

C. Threat Model

Adversary’s Knowledge. We consider a strong attacker
who is capable of observing the current state of the ADE.
This obviates the need to make specific (and potentially
erroneous) assumptions about information actually available
to the attacker about system state; in practice, given the zero-
sum nature of the encounter we consider below, having a
less informed attacker will only improve the defender’s utility.
Additionally, the attacker knows the randomized policy used
by the defender for choosing which alerts to inspect (more
on this below), and inspection decisions in previous rounds,
but not the inspection decision in the current round (which
happens after the attack).

Adversary’s Capabilities. In each time period, the adver-
sary can execute multiple actions a from a set of possible
(representative) actions A.2 Each attack action a € A stochas-
tically triggers alerts according to the probability distribution
P, where P, .(n) is the marginal probability that action a

If we are concerned about these poisoning the data, we can use robust
estimation approaches to mitigate the issue [39].

’In practice, actions in A correspond to equivalence classes of attacks; for
example, a € A could be a representative denial-of-service attack.

generates n alerts of type ¢. These probabilities can be learned
by replaying known attack actions through actual detectors
(as we do in the experiments below), ideally as a part of a
full dataset which includes a mix of benign and malicious
behavior. Commonly, alerts are generated deterministically
for given attack actions; it is evident that our model admits
this as a special case (ie., P,+ € {0,1}). However, our
generality allows us to handle important cases where alerts
are, indeed, stochastic. For example, consider a Port Scan
attack (as a part of a reconnaissance step). Port scan alert rules
commonly consider the number of certain kinds of packets
(such as ICMP packets) observed over a small time period
(say, several seconds), and raise an alert if this number exceeds
a predefined threshold. The number of such packets, of course,
also depends on background traffic, which is stochastic, so
that the triggering of the alert is also stochastic if the attack
is sufficiently stealthy to avoid exceeding such a threshold in
isolation.

Let E, be the cost for executing an attack a € A. One
method to estimate these costs is to examine the difficulty of
executing the exploit based on the CVSS complexity metrics.
The main limitation to the attacker capabilities is a budget
constraint D that limits how many, and which combination
of, attacks can be executed.® While it is difficult to reliably
estimate this budget, our case studies in Section V demonstrate
that our approach is robust to uncertainty about this parameter.
Specifically, any attack decision c_; with a_; , the proba-
bility that the attack a is executed by the attacker in a given
time period, must abide by the following constraint:

Z Oéfl,aEa < D.
acA

(1)

For our purposes, it is useful to represent the attacker as con-
sisting of two modules: Attack Oracle and Attack Generator, as
seen in Figure 1. The attack oracle runs a policy, which maps
observed the state of the ADE to attacks that are executed. In
each time period, after observing ADE state, the attack oracle

3Note that this easily admits the possibility of multiple attackers, where D
becomes the total budget of all attackers. This case is equivalent to assuming
that attackers coordinate. This is a safe assumption, since if they do not, the
defender’s utility can only increase.



chooses attack actions, which are then executed by the attack
generator, triggering alerts and thereby modifying the state of
the ADE. Below we present our approach for approximating
the optimal attack policies.

Adversary’s Goals. The adversary aims to successfully
execute attacks. Success entails avoiding being detection by
the defender, which only happens if alerts associated with an
attack are inspected. Thus, if an attack triggers a collection
of alerts, but none of these are chosen by the defender to be
inspected in the current round, the attack succeeds. Different
attacks, however, entail different consequences and, therefore,
different rewards to the attacker (and loss to the defender). As
a result, the adversary will ultimately need to balance rewards
to be gained from successful attacks and the likelihood of
being detected.

D. Defender Model

Defender’s Knowledge. Unlike the adversary, the defender
can only partially observe the state of the ADE. In particular,
the defender only observes N(*)| the numbers of remaining
uninvestigated alerts, grouped by alert type (since clearly the
defender cannot directly observe actually attacks). In addition,
we assume that the defender knows the attack budget and costs
of (representative) attacks. In our experiments, we study the
impact of relaxing this assumption (see Sections V-C5 and
V-B5), and provide practical guidance on this issue.

Defender’s Capabilities. The defender chooses subsets of
alerts in N(*) to investigate in each time period k. This choice
is constrained by the defender’s budget, which in practice can
translate to time the defender has to investigate alerts. Since
different types of alerts may need different amounts of time
to investigate, or more generally, incur varying investigation
costs, the budget constraint is on the total cost of investigating
chosen alerts. Formally, let C; be the investigation cost of an
alert of type ¢, and let agfl)’t be the number of alerts of type
t chosen to be investigated by the defender in period k. Then
the budget constraint takes the following mathematical form:

Yl < B )
teT
An additional constraint imposed by the problem definition is
that the defender can only investigate existing alerts:

vieT: o), < NM. 3)

Just as with the adversary, it is useful to represent the
defender as consisting of two modules: Defense Oracle and
Alert Analyzer, as shown in Figure 1. The defense oracle runs
a policy, which maps partially observed state of the ADE to
the choice of a subset of alerts to be investigated. In each
time period, after observing the set of as yet uninvestigated
alerts, the defense oracle chooses which alerts to investigate,
and this policy is then implemented by the alert analyzer,
which thereby modifies ADE state (marking the selected alerts
as having been investigated). Below we present our approach
for approximately computing optimal defense policies that are
robust to attacks as defined in our threat model above.

Defender’s Goals. The goal of the defender is to guard
a computer system or network by detecting attacks through
alert inspection. To achieve its goal, the defender develops an
investigation policy to allocate its limited budget to investiga-
tion activities in order to minimize consequences of successful
attacks, where we assume that an attack will fail to accomplish
its primary objectives if the alerts it causes the ADE to emit
are investigated in a timely manner.

E. An Illustrative Example

Since our system is built on top of an abstracted model
of alert investigation, the results are generally applicable to
a wide range of real-world problems. We will use intrusion
detection as an illustrative example in this section. Port Scan
reconnaissance attack is one of the most common initial steps
in remote exploitation and is a common occurrence faced by
many enterprise IT professionals. In a Suricata IDS system,
each alert item has different levels of categorization. For
example, at the lowest layer, the port scan may trigger two
types of alert, 1) Httprecon Web Server Fingerprint Scan, and
2) ET SCAN NMAP -sO. At a higher level, these alerts can be
categorized into attempted-recon (since both reflect potential
reconnaissance efforts by the attacker), as is the case in the
Emerging Threats Ruleset of Suricata. A defender can choose
different granularities of attack categorization to map the IDS
alert types into the abstracted types in our proposed model
based on individual needs. Besides categorization, the defender
can also make use of other attributes in the IDS alerts to aid
in abstracted type assignment. For example, a port scan on the
enterprise file server can be assigned to the abstracted type of
high-risk-recon, while a port scan on employee desktop can
be assigned to attempted-recon.

In addition to the alerts corresponding to an actual attack
action, normal user behavior can generate false positive alerts.
For example, a user who is scraping the web for weather data
monitoring may trigger the ET POLICY POSSIBLE Web Crawl
using Curl, which is grouped into the attempted-recon type
by the same Emerging Threats Suricata ruleset. Leveraging
the proposed game-theoretic model on these abstracted alerts,
it is possible for the defender to devise an optimal defense
policy for a wide range of alert applications even in the face
of possible false positives.

III. GAME THEORETIC MODEL OF
ROBUST ALERT PRIORITIZATION

We now turn to the proposed approach for robust alert
prioritization. We model the interaction between the defender
and attacker as a zero-sum game, which allows us to define
and subsequently compute robust stochastic inspection policies
for the defender. In this section, we formally describe the
game model. We then present the computational approach for
solving it in Section IV.

The game has two players: the defender (denoted by
v = +1) and the adversary (denoted by v = —1). Each
player’s strategies are policies, that is, mappings from an
observed ADE state to the probability distribution over actions



to take in that state. In a given state, the defender chooses
a subset of alerts to investigate; thus, the defender’s set of
possible actions is the set of all alert subsets that satisfy the
constraints (2) and (3). The attacker’s choices in a given state
correspond to subsets of actions A to take. Consequently,
the set of adversary’s actions is the set of all subsets of
attacks satisfying constraint (1). Note that the combinatorial
nature of both players’ action spaces and of the state space
makes even representing deterministic policies non-trivial; we
will deal with this issue in Section IV. Moreover, we will
consider stochastic policies. An equivalent way to represent
stochastic policies is as probability distributions over deter-
ministic policies, which map observed state to a particular
action (subset of alerts for the defender, subset of attacks for
the adversary). Henceforth, we call deterministic policies of
the players their pure strategies and stochastic policies are
termed mixed strategies, following standard terminology in
game theory.*

Let 7v_; denote the attacker’s policy, which maps the fully
observed state of ADE, O = (N(®) M(®) S(k’)> to a subset
of attacks. Let o ) =m_ (O( )) where a*) = {a(k) Yaca

are (for the moment) binary indicators wrth a(k) = 1 iff
an action a € A is chosen by the attacker. In other words,
the vector a(_kl) represents the choice of actions made by
the adversary. Similarly, 7v;; denotes the defender’s policy,
which maps the portion of ADE state Osrkl) = N®*) observed
by the defender to the number of alerts of each type to
investigate Aalogous to the attacker, afl) = w11(0 k)
where a +1 = {a , t}teT are the counts of alerts chosen to
be investigated for each type ¢. Now, notice that all alerts of
type t are equivalent by definition; consequently, it makes no
difference to the defender Whl(Ch of these are chosen, and we

therefore choose the fraction ]\;r(}cf
t

of alerts of type ¢ uniformly
at random.

Let II, be player v’s set of pure strategies, where each
pure strategy m, € II, is a policy as defined above. A mixed
strategy of player v is then a probability distribution o, =
{0w(7y) }r,em, over the player’s pure strategies IT, where
o,(7,) is the probability that player v uses policy 7,. Since
a mixed strategy o, is a distribution over a finite set of pure
strategies, it satisfies 0 < o, (m,) < 1 and Zmenv oy(my) =
1. Let ¥, denote the set of all mixed strategies of player v.

For any strategy profile of the two players,
(7y,™—y), we denote the utility of each player v by
Uy(my, ), v € {+1,—1}. Since our game is zero-sum,
> vef+1,—13 Uv(my, m—y) = 0. When player v chooses pure
strategy m, € II, and its opponent —v plays mixed strategy

4 At decision time, players can sample from their respective mixed strategies
in each round, thereby determining their decisions in that round. We assume
that while the defender’s mixed strategy is known to the attacker, the
realizations, or samples, of deterministic policies drawn in each round are
not observed by the attacker; for example, the sampling process can take
place after the entire set of alerts in that round are observed. Note that if
we resample independently in each round, the attacker learns no additional
information about the defender’s policy from past rounds.

o_, € X_,, then the expected utility of v is

Z O'_U(ﬂ'—v)UU(anTr—U)- (4)

w_,ell_y,

U, (771)7 U—v) =

Similarly, the expected utility of player v when it chooses the
mixed strategy o, € X, and its opponent play the mixed
strategy o_, € 3_, is

Uv(o'vao'—v) - Z U—U(ﬂ'v)Uv(ﬂ-v7U—v)- (5)
7, €11,

Next, we describe how to compute the utility of player v,
U,(m,, m™_,), when its policy is 7, and the opponent’s policy
_, are given.

Consider arbitrary pure strategies of both players, m
and 7_;. The game begins with an initial system state
(N©O MO S0 — (0,0,0). The system state is then
updated in each time period k as follows:

1) Alert investigation. The defender first investigates a sub-
set of alerts produced thus far. Specifically, the defender
chooses the number of alerts of each type to investigate
{Olgf1)7t}teT according to its policy 71'+1(O$€1)) given

Sfl) . For each attack a € A,
let ]\/Zék) be an indicator of whether attack a has been
executed by the beginning of time period k, but has not
been investigated. If M, k) — 0, we have M *) — 0 as
no attack a € A has been executed. If M, (k) = 1, then
M, M® =1 with probability

(k) (k) (k)
) = H {C(N ;)Sa f(v)ale,t) } ’ ©)
ter C(Ny 7 ayiy)

current observed state O

where C(n,r) is the number of possible combinations
of r objects from a set of n objects. p((zk) is then the
probability that attack a is not detected by the defender.

2) Attack generation. The adversary produces attacks by
executing actions according to its policy {Oé(fl),a}ae A=
ﬁ_l(O(_kl)) given the fully observed ADE state ngl)

hen MM = a(kl) ., for each a € A.

3) Triggering alerts. Each attack a € A can trigger alerts
as follows. For each attack a € A and alert type t € T,
if MékH) 1, then S, (D) — 1 with probability
P, ¢(n) for n > 0. This probabihty can be estimated, for
example, by feeding inputs which include representative
attacks into an attack detector and observing relative
frequencies of alerts that are triggered. In addition, false
alerts are generated according to the distribution F,
which we can estimate from data of normal behavior
and associated alert counts. Let ft(k) be the number of
false alerts of type ¢t € T that have been generated. Then
the total number of alerts in the next time period k + 1
X Nt(kH) _ f N S k+1 .

In order to define the reward received by the defender in
time period k, we make the following assumption: if any of the
alerts raised by an attack is chosen to be inspected, then the
attack is detected; otherwise, the attack is not detected. Let L,



be the loss incurred by the defender when an attack a € A
is not detected. Then the reward of the defender obtained in
time period k is

R = =3 Lo M. )
acA

For an arbitrary pure strategy profile of the defender and
adversary, (w1, 7_1), the defender’s utility from the game
is the expected total discounted sum of the reward accrued in
each time period:

Z k R(k)

where 7 € (0,1) is a temporal discounting factor which
implies that future rewards are less important than current
rewards. That is, imminent losses are more important to the
defender than potential future losses. The adversary’s utility
is then U_q (741, 7_1) = —Ujq(mwyr, mw_1).

Our goal of finding robust alert investigation policies
amounts to computing a mixed-strategy Nash equilibrium
(MSNE) of our game by the well-known equivalence be-
tween MSNE, maximin, and minimax solutions in zero-sum
games [17]. A mixed-strategy profile (o,0*,) of the two
players is an MSNE if it satisfies the following condition for
all v e {+1,-1}

* *
U’U (0-1” 0'7,[]

®)

Upr(myq, ™)

) > Uy(oy,0",) Vo, €X,. 9)

That is, each player v chooses a stochastic policy o that
is the best response (is optimal for v) when its opponent
chooses o~

IV. COMPUTING ROBUST ALERT
PRIORITIZATION POLICIES

A. Solution Overview

For given sets of policies, II;; and II_;, a standard
approach to computing the MSNE of a zero-sum game is to
solve a linear program of the following form:

max U}

s.t. Zmel'lu Uy(Tty, ) - 0y(my) 2 US, Voo, € I1_,
Z‘rrvel'lv O—U(ﬂ-v) =1
oy(my) >0 vV, € I1,

(10)
where in our case the optimal solution o ; yields the robust
alert prioritization policy for the defender. However, using
this approach for our problem entails two principal techni-
cal challenges: 1) the space of policies for both players is
intractably large, and 2) it is even intractable to explicitly
represent individual policies, since they map a combinatorial
set of states to a combinatorial set of actions for both players.

We propose an adversarial reinforcement learning approach
to address these challenges, which combines a double ora-
cle framework [25] with neural reinforcement learning. The

general double oracle approach is illustrated in Figure 2.

We start with an arbitrary small collection of policies for

both players, (II1,II_1), and solve the linear program (10),

obtaining provisional equilibrium mixed strategies (41,0 _1)
of the restricted game. Next, we query the attack oracle
to compute the adversary’s best response 7_1(o ;1) to the
defender’s equilibrium mixed strategy o i, and, similarly,
query the defense oracle to compute the defender’s best
response wi1(o_1) to the adversary’s equilibrium mixed
strategy o_1. The best response policies are then added to the
policy sets (IT;+1,II_1) of the players, and we then re-solve
the linear program and repeat the process. The process stops
when neither player’s best response policy yields appreciable
improvement in utility compared to the provisional equilibrium
mixed strategy. Since the space of possible policies in our case
is infinite, this process may not converge. However, in our
experiments the procedure converged in fewer than 15 itera-
tions (see Figure 12 in Appendix B), with the fast convergence
in part due to the way we represent policies, as discussed
below. The main question that remains is how to compute or
approximate the best response oracles for both players. To this
end, we use reinforcement learning techniques with policies
represented using neural networks. Below, we explain both our
double oracle approach and our neural reinforcement learning
methods (including the specific way in which we represent
policies) in further detail.

B. Policy-based Double Oracle Method

As displayed in Figure 2, our game solver is an extension of
the double oracle algorithm proposed in [36] and is partitioned
into four parts: a policy container, a linear programming (LP)
optimizer, a defense oracle, and an attack oracle. The policy
container stores the policies of the two players, II,; and
II_4, as well as a utility matrix U, whose elements are
Uypi(my1,m—q) forall w4q € Iy and w_; € II_;. The LP
optimizer solves the game by computing the current mixed-
strategy Nash equilibrium given the utility matrix U. The
defense and attack oracles are agents that apply reinforcement
learning to compute the optimal responses to their opponents’
mixed strategies, which are provided by the LP optimizer.

Our solver works in an iterative manner such that the
players’ policies and the utility matrix grow incrementally.
Initially, IT4, IT_; can be set up with some basic policies,
for example, uniformly allocating each player’s budget among
their choices. Then, the policy sets, jointly encapsulated in a
policy container, are updated in each iteration as follows:

1) First, the LP optimizer computes the mixed-strategy
Nash Equilibrium (0';_17 o) of the current iteration by
solving the optimization problems presented in Equation
(10).

2) The oracle of player v computes the best response
policy 7/ given that its opponent uses its equilibrium
mixed- strategy o', forve {+1,—1}.

3) If Uy(rw),0",) <U,(o,,o",) for all v € {+1, -1},
the double oracle algorithm terminates and returns
(6/1,0" 1) as the approximate MSNE. Otherwise,
add w to the corresponding II,, update the utility
matrix U and continue from Step 2.
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Fig. 2. The game solver based on the double oracle algorithm.

The resulting (0;1,0/_1) is an approximate mixed-strategy
Nash equilibrium (o7 ;,0" ;).

Next, we describe how the defense and attack oracles apply
neural reinforcement learning to compute their best responses
to an arbitrary mixed-strategy of the opponent.

C. Approximate Best Response Oracles with Neural Rein-
forcement Learning

We now turn to our approach to compute 7r,, the optimal
response of player v when its opponent uses a mixed strat-
egy o’ such that

7, = argmax U, (m,, 0" ,).

—v 1D
Ty

This problem poses a major technical challenge, since the
spaces of possible policies for both the defender and the
attacker are quite large. To address this, we propose using
the reinforcement learning (RL) paradigm. However, the use
of RL poses two further challenges in our setting. First,
for a given state, each player’s set of possible actions is
combinatorial. For example, the attacker is choosing subsets
of attacks, whereas the defender is choosing subsets of alerts.
Consequently, we cannot use common methods such as Q-
learning, which requires explicitly representing the action-
value function Q(x, a) for every possible action a, even if we
approximate this function over states x using, e.g., a neural
network, as is common in deep RL. We can address this issue
by appealing to actor-critic methods for RL, where the policy
is represented as a parametric function 7,.p with parameters
6. However, this brings up the second challenge: actor-critic
approaches learn policies using gradient-based methods, which
require that the actions are continuous. In our case, however,
the actions are discrete.

One solution is to learn the action-value function Q(z,a)
over a vector-based representation of actions, such as using a
binary vector to indicate which attacks are used. The problem
with this approach, however, is that the resulting policy m, €
argmaxge 4 Q(x,a) is hard to compute in real time, since it
involves a combinatorial optimization problem in its own right.
We therefore opt for a much more scalable solution that uses
the actor-critic paradigm with an alternative representation of
the adversary and defender policies, which admits gradient-
based learning.

Let us start with the adversary. Recall that the adversary’s
policy maps a state to a subset of attack actions A, with the
constraint on the total budget used by the chosen actions.
Instead of returning a discrete subset of actions, we map the
adversary’s policy to a probability distribution over actions,
overloading our prior notation so that Oé(fi),a now denotes the
probability that action a € A is executed. Now the policy
can be used with actor-critic methods, but it may violate the
budget constraint. To address this final issue, we simply project
the probability distribution into the feasible space at execution
time by normalizing it by the total cost of the distribution,
and then multiplying by the budget constraint. Notice that in
this process we have relaxed the attacker’s budget constraint to
hold only in expectation; however, this only makes the attacker
stronger. An interesting side-effect of our transformation of
the adversary’s policy space is that the RL method will now
effectively search in the space of stochastic adversary policies.
An associated benefit is that it leads to faster convergence of
the double oracle approach.

Next, consider the defender. In this case, we can simply
represent the policy as a mapping to fractions of the roral
defense budget allocated to each alert type ¢. In other words,
for each alert type ¢, the policy will output the maximum
fraction of the defense budget that will be used to inspect
alerts of type t. This simultaneously makes the mapping
continuous, and obviates the need to explicitly deal with the
budget constraint.

The final nuance is that RL methods are typically designed
for a fixed environment, whereas our setting is a game.
However, note that since we are concerned only with each
player’s best response to the other’s mixed strategy, we can
embed the mixed strategy of the opponent as a part of the
environment. Next, we describe our application of actor-critic
methods to our problem, given the alternative representations
of adversary and defender policies above.

The basic idea of the actor-critic method is that we can
iteratively learn and improve a policy without enumerating
actions by using two parallel processes that interact with each
other: an actor which develops a policy, and a critic network
which evaluates the policy. The interaction between the actor
and critic in illustrated in Figure 3. In each iteration, the actor
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Fig. 3. The interactions among actor, critic and environment.

and critic proceed as follows:

1) The actor executes an action according to its policy given
the observation of the environment.

2) Upon receiving the action, the environment updates its
system state and returns a reward to the critic.

3) The critic updates its evaluation method and provides
feedback to the actor.

4) The actor updates its policy according to the feedback
given by the critic.

We propose DDPG-MIX, actor-critic algorithm that operates
in continuous action spaces and computes an approximate best
response to an opponent who uses a stochastic policy. DDPG-
MIX is an extension of the Deep Deterministic Policy Gradient
(DDPG) approach proposed in [20] to our setting, and the full
algorithm is outlined in Algorithm 1 in the Appendix. For
each player v, DDPG-MIX employs two neural networks to
represent the actor and critic: a policy network 7, (O0,|07) for
the actor, which has parameters ] and maps an observation
O, into an action, and a value network Q,(O,, a,|6%2) for
the critic, which has parameters 8% and maps an observation
O, and an action «,, into a value. Initially, these two neural
networks are randomly initialized. Then, we train these two
iteratively with multiple episodes, each of which contains
multiple steps. At the beginning of each episode, the opponent
samples a deterministic policy w_, with its mixed-strategy
o_,. The policy network and value network are then updated
as follows. First, we generate an action by using the e-greedy
method: we randomly choose an action with probability e
(called exploration in RL), and apply the policy network
7,(0,|07) to produce an action corresponding to the current
state with probability 1 — € (called exploitation). Player v
then executes the action produced and so does its opponent,
which executes an action «_, returned by w_,. Once the
system state of the environment is updated, player v receives
the reward and stores the transition into a memory buffer.
Player v then samples a minibatch, a subset of transitions
randomly sampled from the buffer, to update the value network
Qv(0,, @, |62) by minimizing a loss function as in most
regression tasks. The sampled gradient of the value network
with respect to «, is then forwarded to the policy network,
which is further applied to update ,(O,|07) as presented
in Equation (12) in Algorithm 1. After a fixed number of
episodes, the resulting policy network 7, (O, |07 ) is returned

as the parameterized optimal response to an opponent with
mixed-strategy o_,.

D. Preprocessing

An important consideration in applying the above ap-
proaches is scalability of training. One way to significantly
improve scalability is through preprocessing, and pruning
alerts for which the (near-)optimal decision is obvious. We
use the following pruning step to this end. Suppose that there
is an alert type ¢ which is generated by benign traffic with
probability at most e, where € is very small (for example,
e = 0, in which case alerts of type t never correspond to a
false positive). In most realistic cases, it is nearly optimal to
always inspect such alerts. Consequently, we prune all alerts
with false positive rate below a small pre-defined € (in our
implementation below, we set ¢ = 0), and mark them for
inspection (correspondingly reducing the available budget for
inspecting other alerts).

V. CASE STUDIES

In this section, we present case studies to investigate the
robustness of our proposed approach for alert prioritization.
We conduct our experiments in two applications: intrusion
detection which employs a signature-based detection system
and fraud detection which applies a learning-based detection
system. We start with a broad introduction of the experimental
methodology, including the details of the implementation of
our approach and evaluation methods. We then proceed to
describe each case study in detail.

A. Experimental Methodology

1) Implementation: The DDPG-MIX algorithm was imple-
mented in TensorFlow [1], an open-source library for neural
network learning. The architecture of the policy and value
networks for both players are displayed in Table II. We used
Adam for learning the parameters of the neural networks with
learning rates of 0.001 and 0.002 for the policy and value
networks, respectively. The discount factor 7 was set to be
0.95, and we set the size of the memory buffer to 40,000.
The learning process contained 500 episodes, each with 400
learning steps. The collection of policies used in the double-
oracle framework was initialized with a pair of policies that
uniformly allocate each player’s budget among their choices.

Our experiments were conducted on a server running
Ubuntu 16.04 with Intel(R) Xeon(R) CPU E5-2695 v4 @
2.10GHz, 18 cores and 64 GB memory. Each experiment was
repeatedly executed 20 times with 20 different random seeds.

2) Evaluation Method: We use the expected loss of the
defender (equivalently, gain of the adversary) as the metric
throughout our evaluation. Specifically, for a given defense
policy, we evaluate the loss of the defender using several
models of the adversary. First, we used Algorithm 1 to
compute the best response of the adversary, as anticipated by
our approach. In addition, to evaluate the general robustness
of our approach, we employed two alternative policies for the
adversary: Uniform, a policy which uniformly distributes the



TABLE II
ARCHITECTURE OF THE IMPLEMENTED POLICY AND VALUE NETWORKS.

[ Neural network [ Layer | Number of units | Activation function |  TInitializer |
Input T (defender); [T+ JA]- (1 4 [T]) (adversary) - -
Policy network Hidden 16 (Fraud detection); 32 (Intrusion detection) Tanh Xavier [10]
Output [TT (defender); [A] (adversary) Sigmoid Xavier
Input 2 - |T| (defender); |T'| + |A] - (2 + |T]) (adversary) - -
Value netwrok Hidden 32 (Fraud detection); 64 (Intrusion detection) Relu He Normal [I1]
Output 1 Relu He Normal
adversary’s budget over attack actions; and Greedy, a policy TABLE III
which allocates the budget to attacks in the order of expected ALERT TYPES OF SURICATA IN OUR EXPERIMENTS.
adversary utility. Specifically, the Greedy adversary prioritizes [ Alert type [ Description [ Priority |
the attack actions according to L, - min{£, 1}, where D is attempted-recon Auempted Information Leak 2
. . . LCa c . attempted-user Attempted User Privilege Gain 1
the available attack budget, adding actions in this priority order bad-unknow Potentially Bad Traffic >
until the adversary’s budget is exhausted. misc-acticity Misc activity 3
We fi d . b . h h not-suspicious Not Suspicious Traffic 3
€ first conduct our experlments Yy assuming that the policy-violation Potential Corporate Privacy Violation | 1
defender knows the adversary’s capabilities. Subsequently, we protocol-command-decode | Generic Protocol Command Decode | 3
1 h b £ h h he defend trojan-activity A Network Trojan was Detected 1
evaluate the robustness of our approach when the defender unsuccessful-user Unsuccessful User Privilege Gain 1
is uncertain about the adversary’s capabilities, and use it to web-application-attack Web Application Attack 1

provide practical guidance. We also provide results on the
computational cost of our approach in Appendix B.

B. Case Study I: Intrusion Detection

Our first case study involves a signature-based intrusion
detection scenario, using the Suricata, a state-of-the-art open
source intrusion detection system (IDS), combined with the
CICIDS2017 dataset. Our case study evaluates our alert pri-
oritization method in two cases: i) the defender has full
knowledge of the adversary; and ii) the defender is uncertain
about the adversary’s capabilities.

1) CICIDS2017 dataset: The CICIDS2017 dataset [33]
records benign and malicious network flows in pcap format,
captured in a real-world network between 07/03/2017 and
07/27/2017. The network consists of 10 desktops belonging to
regular users and 5 laptops owned by attackers. The desktops
are used to generate natural benign background traffic by using
a profile system that abstracts the behaviors of regular users.
The laptops are employed to produce malicious traffic of the
following classes of attacks: Brute Force, Botnet, DDoS, DoS,
Heartbleed, Infiltration, Portscan, and Web Attack.

2) Suricata IDS: We employ Suricata® to conduct our case
study on the CICIDS2017 dataset. Suricata is an open-source
network intrusion detection system which performs analysis of
passing traffic on a network by using a set of signatures (also
called rules). If a traffic pattern matches any of the signatures,
then a corresponding alert is triggered and sent to the network
administrator.

A Suricata signature contains the following parts: action,
header, rule options, and priority. Action describes the oper-
ation of Suricata when a signature is matched, which can be
either dropping a packet or raising an alert. Header defines the
protocol, port, and IP addresses of the source and destination
in a signature. Rule options include a list of keywords,
for example, the corresponding alert type associated with a

5 Available at https://suricata-ids.org/about/open-source/.

priority. Finally, the priority keyword comes with a numerical
value ranging from 1 to 255 where 1 indicates the highest
priority and 255 the lowest.

In our experiments, we use Suricata to scan the pcap files
in the CICIDS2017 dataset. Specifically, we use the Emerging
Threats Ruleset (ETR)® to analyze the network traffic in the
dataset. ETR defines a total of 33 alert types, and we select the
10 most common alert types exhibited during our experiments,
which are shown in Table III.

3) Experimental Setup: We use the following steps to set
up our experiments for the case study. First, we used 30
minutes as the fixed length of each time period. Then, we
utilized the Suricata IDS to scan and detect intrusions for
both malicious and benign traffic in the CICIDS2017 data.
By doing so, we obtained the number of alerts of each type
raised by each attack action, as well as the number of false
alerts in each time period. In the preprocessing step we pruned
alert types that were triggered only by malicious traffic, as
discussed in Section IV-D. As a result, we were left with 7
out of the 10 alert types to consider using our full adversarial
RL framework. In addition, we filtered out the attack actions
that do not raise any alerts, since those attacks will never
be detected using Suricata, leaving 7 out of 8 representative
attacks for our experiments. The final attack actions and alert
types that we use in the experiments are given in Table IV.

We used Poisson distribution to fit the distribution of alerts
raised by benign traffic in each time period. Since the benign
traffic in the CICIDS2017 dataset was captured from only 10
desktop which is far less than the number of computers in a
real-world local area network, we amplified the corresponding
mean of each type of alert by a factor of 100. The resulting
average numbers are shown in Table V. We set the cost
of investigating each alert to 1.0 (i.e., equal for all alerts).

6 Available at https://rules.emergingthreats.net/open/suricata/.



TABLE IV
ATTACK ACTIONS AND ALERT TYPES USED IN THE CASE STUDY OF INTRUSION DETECTION.

Attack action Number of each alert type raised E L
attempted-recon | attempted-user | bad-unknown | misc-activity | not-suspicious | policy-violation | protocol-command-decode @ @
Brute Force 1230 0 0 0 0 0 0 120 | 3.6
Botnet 0 4 2 106 0 54 0 60 6.0
DoS 0 0 0 0 0 24 0 74 4.0
Heartbleed 0 0 4 0 10 0 0 20 3.6
Infiltration 710 2 862 12 0 80 600 52 1.4
PortScan 138 0 320 30 0 0 0 80 1.4
Web Attack 0 0 6 0 0 0 0 62 | 27
TABLE V 200
72 ARL ARL
AVERAGE NUMBER OF FALSE ALERTS TRIGGERED IN EACH TIME PERIOD Uniform Uniform
wn w
E 1501 | @& Suricata E B Suricata
Alert type Avg. number of false alerts in each period » 0
attempted-recon 7,200 3100 3
attempted-user 44,100 § §
bad-unknown 1,600 8 50 Y a
misc-activity 7,300 %
not-suspicious 17,400 0 00 1000 1500
policy-violation 4,000 Defense budget Attack budget
protocol-command-decode 10,200
Fig. 4. Intrusion detection: loss of the defender when it knows the attack

Next, we used the base score of the Common Vulnerability
Scoring System (CVSS) to measure the loss of defender if
an attack action was not detected. Specifically, we employed
CVSS v3.07 to compute L, for a € A. Note that since
the defender observes only alerts but not the actual attacks,
alert-investigation decisions in deployment cannot directly
take advantage of the CVSS scores to quantify the risk of
underlying attack. However, since the ground truth is available
during training and evaluation, CVSS scores are used to
provide additional information on the impact of the attack.
For example, the cost of mounting a Brute Force attack is
120 minutes. We document L, (loss to the defender from a
successful attack) and F, (execution cost of the attack) for
a € A in Table IV.

4) Baselines: The performance of the proposed approach is
compared with two alternative policies for alert prioritization:
Uniform, a policy which uniformly allocates the defender’s
budget over alert types, and Suricata priorities, where the
defender exhausts the defense budget according to the built-
in prioritization of the Suricata IDS, shown in Table III. We
tried two additional baselines from prior literature that use
game theoretic alert prioritization: GAIN [19] and RIO [43],
but these do not scale computationally to the size of our IDS
case study (we compare to these in our second, smaller, case
study). We did not compare to alert correlation methods for
reducing the number of false alerts, since these techniques
are entirely orthogonal and complementary to our setting (we
address the issue of limited alert inspection budget in the face
of false alerts, whatever means are used to generate alerts).
Throughout, we refer to our proposed approach as ARL.

5) Results: Figure 4 presents our evaluation of the ro-
bustness of alert prioritization approaches when the defender
knows the adversary’s capabilities, and the results suggest that
our approach significantly outperforms the other baselines.

7 Available at https://www.first.org/cvss/calculator/3.0.
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budget. Left: Defender’s loss for different defense budgets, with attack budget
fixed at 120. Right: Defender’s loss for different attack budgets, with defense
budget fixed at 1000.

Specifically, the proposed approach is 50% better than the
Uniform policy, which in turn is significantly better than
using Suricata priorities. There are a few reasons why de-
terministic priority-based approaches perform so poorly. First,
determinism allows attackers to easily circumvent the policy
by focusing on attacks that trigger alerts which are rarely
inspected. Moreover, such naive deterministic policies also
fail to exploit the empirical relationships between attacks and
alerts they tend to trigger: for example, if an attack triggers
multiple alerts, but one of these alert types happens to have
very few alerts in current logs, static priority-based policies
will not leverage this structure. In contrast, by learning a policy
of alert inspection which maps arbitrary alert observations to
a decision about which to inspect, we can make decisions at
a significantly finer granularity.
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Fig. 5. Intrusion detection: loss of the defender when it is uncertain of the
attack budget. Left: def. budget=500. Right: def. budget=1500. The defender’s
estimate of the attack budget is 120 in all cases. Thus, if the actual attack
budget is 60, then the defender overestimates the adversary’s budget; if the
actual attack budget is 180, then it is underestimated by the defender.

Evaluating the alert prioritization methods when the de-
fender is uncertain about the attack budget (Figures 5 and 6),
we can observe that the proposed ARL approach still achieves
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Fig. 6. Intrusion detection: loss of the defender when it has different estimates
of the attack budget.

the lowest defender loss both when the attack budget is
underestimated and when overestimated, and it is still far better
than the baselines. In addition, Figure 6 shows that when the
attack budget is underestimated or overestimated, there is only
a 5% performance degradation compared to when the defender
has full knowledge of the adversary. This demonstrates that
our approach remains robust to a strategic adversary even
when the defender does not precisely know the adversary’s
capabilities. Moreover, in this domain we can see that neither
over- nor underestimating adversary’s budget is particularly
harmful, although overestimation appears to be slightly better.
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Fig. 7. Intrusion detection: loss of the defender when it is certain of the
attack budget but is uncertain of the attack policy. The attack budget is fixed
as 120. Left: def. budget=500. Right: def. budget=1500.

Our final consideration is the impact of uncertainty about
the adversary’s rationality (Figure 7). Specifically, we now
study how our approach performs, compared to the baselines,
if the adversary is in some way myopic, either using a simple
uniform strategy (Uniform) or greedily choosing attacks in
order of impact (Greedy). We can observe that although we as-
sume a very strong adversary, our ARL approach significantly
outperforms the other baselines even when the adversary is
using a different attack policy.

C. Case Study II: Fraud Detection

While IDS settings are a natural fit for our approach, we now
demonstrate its generalizability by considering a very different
problem in which our goal is to identify fraudulent credit card
transactions. Just as with the first case study, we will present
the results first when the defender has full knowledge of the
adversary’s capabilities, and subsequently study the impact of
defender’s uncertainty about these.

1) Fraud dataset: The fraud dataset® contains 284,807
credit card transactions, of which 482 are fraudulent. Each

8 Available at: https://www.kaggle.com/mlg-ulb/creditcardfraud.
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transaction is represented by a vector of 30 numerical features,
28 of which are transformed using Principle Component
Analysis (PCA). In addition, each feature vector is associated
with a binary label indicating the type of transaction (regular
or fraudulent). In order to make it meaningful in our context,
we cluster the set of fraudulent transactions into n subsets, in-
dicating a type of attack, using a Gaussian Mixture model [5].
In our experiments, we set n = 6, and modify the dataset with
fraudulent labels replaced by cluster assignments. The counts
of each type of transaction is shown in Table VL.

TABLE VI
NUMBER OF TRANSACTIONS IN THE MODIFIED FRAUD DATASET

[ Original transaction type [ Label | Count |

Genuine 0 284,308
1 11
2 21
3 72
Fraudulent vy 550
5 14
6 124

2) Learning-based fraud detector: We developed a fraud
detector using supervised learning on the fraud dataset. The
main challenge is that the dataset is highly imbalanced, as
shown in Table VI: the fraudulent transactions only account
for < 0.2% of all transactions. To address this challenge, we
apply Synthetic Minority Over-sampling Technique (SMOTE)
to produce synthetic data for the minority classes to balance
the data. Our implementation contains the following steps:

(i) Dataset splitting: We use stratified split to partition
the modified fraud dataset into training and test data with
equal size, which contain roughly the same proportions of the
fraudulent and non-fraudulent data.

(ii) Binary classification: We use SMOTE and linear SVM
to learn a binary classifier to predict whether a transaction is
fraudulent. The resulting classifier has an AUC >99% and a
recall >90% on the test data, which indicates that more than
90% of the fraudulent transactions can be detected.

(iii)) Multi-class classification: We now restrict attention
to only the fraudulent transactions to learn a conditional
classifier to predict the type of fraud. Specifically, we learn
6 independent classifiers each of which corresponds to one
fraud type and returns a binary classification result indicating
whether a fraudulent transaction belongs to this type. Similarly
to Step (ii), we use SMOTE and linear SVM to learn these
classifiers, each of which admits > 94% recall.

Once the fraud detector is implemented, we evaluate the
detector using the test dataset. We first predict the test data by
using the binary classifier obtained in Step (ii) above. If any
transaction in the test data is classified as fraudulent, then it is
further inspected by the 6 classifiers we construct for multi-
class classification. If a fraudulent transaction is predicted as
any type of fraud, then a corresponding alert is triggered.
Otherwise, an alert corresponding to the fraud type which is
predicted with the highest classification score is triggered.



3) Experimental Setup: To evaluate the robustness of the
proposed approach for alert prioritization in fraud detection,
we first computed the distributions of the true and false alerts
identified by the fraud detector that we implemented. By doing
so, we obtained the probability that any attack a € A triggers
an alert t € T', as well as the number of false alarms associated
with each type of alert, each of which has a value of 1 as
the investigation cost. We filtered out alert types that were
triggered only by fraudulent transactions (as we had done
before), leaving 3 out of 6 alert types. We also filtered out the
attack actions which are associated with the alert types omitted
above, as these attacks can always be detected by investigating
the corresponding alerts. The resulting distribution of the alerts
triggered by frauds is given in Table VII.

TABLE VII
PROBABILITY THAT AN ATTACK ACTION TRIGGERS EACH TYPE OF ALERT

. Alert type
‘ Attack action }ﬁT’T{

1 0.9 0.61 0
2 0.09 [ 0.87 | 0.12
3 0 0.41 | 0.85

We used [1,3,2] as the adversary’s cost of the mounting
each type of attack action. We employed the mean amount of
each type of fraudulent transaction as the loss of the defender
if any such type of attack action is not detected, measured by
the unit of 10 Euros. The corresponding defender’s loss for
each undetected attack was [9.4,12.1,16.0]. In addition, we
used 30 minutes as the fixed length of each time period in our
experiments. Based on our classification results, the average
number of false alerts that occur of each type in a time period
was [10,47,39]. Similar to our IDS case study, we simulated
the distribution of false alerts by using Poisson processes with
the above mean values.

4) Baselines: The performance of the proposed approach is
investigated by comparing with three alternative policies for
alert prioritization: Uniform, a policy which uniformly allo-
cates the defender’s budget over each alert type; GAIN [19],
a game theoretic approach which prioritizes alert types, and
always inspects all alerts of a selected type; and RIO [43],
another game theoretic approach which prioritizes alerts, and
computes an approximately optimal number of alerts of each
type to inspect.
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Fig. 8. Fraud detection: loss of the defender when it knows the attack budget.
Left: Defender’s loss by its budget, with attack budget adv_budget being fixed
as 2. Right: Defender’s loss by attack budget, with defense budget def_budget
being fixed as 20.

5) Results: Figure 8 shows the results when the defender
has full knowledge of the adversary’s capabilities. We can
observe that the proposed approach (ARL) outperforms other
baselines in all settings, typically by at least 25%. The
main reason for the advantage is similar to that in the IDS
setting: the ability to have a policy that is carefully optimized
and conditional on state significantly increases its efficiency.
Interestingly, the alternative game theoretic alert prioritization
approaches, GAIN and RIO, are in some cases worse than
the uniformly random policy. The key reason is that they can
be myopic in that they independently optimize for a single
time period, whereas attacks can be adaptive. The proposed
approach, in contrast, explicitly considers such adaptivity.
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Fig. 9. Fraud detection: loss of the defender when it is uncertain of the attack
budget. Left: def. budget=10. Right: def. budget=30. The defender’s estimate
of the attack budget is 2. If the actual attack budget is 1, then the defender
overestimates the adversary’s budget; if the actual attack budget is 3, then it
is underestimated.
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Fig. 10. Fraud detection: loss of the defender when it has different estimates
of the attack budget.

Figures 9 and 10 investigate performance of our approach
when the attack budget is uncertain. It can be seen in Figure 9
that ARL remains the best approach to use, despite this
uncertainty. Interestingly, GAIN can, in contrast, be rather
fragile to such uncertainty. Considering Figure 10, both under-
and overestimation of the attack budget incurs a limited
performance impact (< 10%). More interesting, however,
is the observation that it is actually better to slightly un-
derestimate the adversary’s budget: in the worst case, this
hurts performance less than 3%. Effectively, the approach
remains quite robust even against stronger attacks, whereas
overestimating the budget does not take sufficient advantage
of weaker adversaries.

Finally, we study the robustness of ARL compared to other
baselines when the attacker is using different policies (Uniform
or Greedy) instead of the RL-based policy that is assumed by
our approach (Figure 11). Here, the results are slightly more
ambiguous than we observed in the IDS domain: when the
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Fig. 11. Fraud detection: loss of the defender when it is certain of the attack
budget but is uncertain of the attack policy. The attack budget is fixed as 2.
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adversary is using the Greedy policy, RIO does outperform
ARL by 8% when the defender’s budget is small, and by 13%
when the defender’s budget is large. However, in these cases,
the adversary can gain a great deal by more carefully designing
its policy. Thus, when the defender’s budget is large, a rational
adversary can cause RIO to degrade by nearly 18%, where
ARL is quite robust to such adversaries.

VI. RELATED WORK

A. Deep Reinforcement Learning

Reinforcement learning has received significant attention
in recent years, which is in large part due to the emer-
gence of deep reinforcement learning. Deep reinforcement
learning combines classic reinforcement learning approaches,
such as Q-learning [42], with deep neural networks. Classic
Q-learning is a model-free reinforcement learning approach,
which is guaranteed to find an optimal policy for any finite
Markov decision process [41]. However, to do so, it needs
to learn and store an exact representation of the action-
value function, which is infeasible for a problem with large
action or state spaces. Notable early successes combining
reinforcement learning with neural networks include 7D-
Gammon, a backgammon program that achieved a level of
play that was comparable to top human players in 1992 [35].
More recently, Mnih et al. introduced the model-free Deep
Q-Learning algorithm (DQN), which achieved human-level
performance in playing a number of Atari videogames, using
purely visual input from the games [28], [29]. However,
the actions spaces in all of these games were small and
discrete. Lillicrap et al. adapted the idea of Deep Q-Learning
to continuous action spaces by introducing an algorithm, called
Deep Deterministic Policy Gradient (DDPG) [20]. DDPG
is a model-free actor-critic algorithm, whose robustness is
demonstrated on a variety of continuous control tasks. Hessel
et al. evaluated six improvements to the DQN algorithm
(DDQN [37], Prioritized DDQN [31], Dueling DDQN [40],
A3C [27], Distributional DQN [4], and Noisy DQN [9]),
which had been proposed by the deep reinforcement learning
community since the publication of DQN, across 57 Atari
games [12]. Further, they integrated these improvements into
a single agent, called Rainbow, and demonstrated its state-of-
the-art performance on common benchmarks.
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B. Multi-agent Reinforcement Learning

Single-agent reinforcement learning approaches can train
only one agent at a time, which means that in a multi-agent
setting, they must treat other agents as part of the environment.
As a result, they often provide policies that are not robust—
especially in a non-cooperative setting such as ours—since
they cannot consider the possibility that other agents respond
by learning and updating their own policies. Multi-agent
reinforcement learning approaches attempt to provide more
robust policies by training multiple adaptive agents together.

Littman proposed a framework for multi-agent reinforce-
ment learning that models the competition between two agents
as a zero-sum Markov game [21]. To solve this game, the
author introduced a Q-learning-like algorithm, called minimax-
Q, which is guaranteed to converge to optimal policies for
both players. However, the minimax-Q algorithm assumes
that the game is zero-sum (i.e., the player’s rewards are
exact opposites of each other) and every step of the training
involves exhaustive searches over the action spaces, which
limits the applicability of the algorithm. A number of follow
up efforts have proposed more general solutions. For example,
Hu and Wellman extended Littman’s framework to general-
sum stochastic games [15]. They propose an algorithm that is
based on each agent learning two action-value functions (one
for itself and one for its opponent), which is guaranteed to
converge to a Nash equilibrium under certain conditions. To
relax some of these conditions, Littman introduced Friend-or-
Foe Q-learning, in which each agent is told to treat each other
agent either as a “friend” or as a “foe” [22]. Later, Hu and
Wellman proposed the NashQ algorithm, which generalizes
single-agent Q-learning to stochastic games with many agents
by using an equilibrium operator instead of expected utility
maximization [14].

While the above approaches have the advantage of providing
certain convergence guarantees, they assume that action-value
functions are represented exactly, which is infeasible for
scenarios with large action or state spaces. Deep multi-agent
reinforcement-learning provides a more scalable approach by
representing action-value functions using deep neural net-
works. For example, Lowe et al. proposed an adaptation
of actor-critic reinforcement-learning methods to multi-agent
settings [23]. In the proposed approach, each agent learns
a collection of different sub-policies, and for each episode,
each agent randomly selects sub-policy from this collection.
However, in contrast to our approach, the size of the collection
is fixed (which may waste training effort at the beginning and
might not converge in the end) and the agents choose their
sub-policies at random instead of strategically. Lanctot et al.
introduced an algorithm, called policy-space response oracles,
which is closer to our double-oracle based computational
approach [18]. Their proposed algorithm maintains a set of
policies for each agent, but it does not incorporate actor-critic
methods, and it was evaluated in settings with relatively small
discrete action spaces.



C. Alert Management and Prioritization

A multitude of research efforts have studied the problem of
reducing the number of alerts without significantly reducing
the probability of attack detection [16]. One of the most
common approaches is alert correlation and clustering, which
attempt to group related alerts together, thereby reducing the
set of messages that are presented [30]. In distributed systems,
collaborative intrusion detection systems may be deployed,
which include several monitoring components and correlate
alerts among the monitors to create a holistic view [38]. Since
the number of alerts may be too high even after correlation, re-
search efforts have also investigated the prioritization of alerts.
For example, Alsubhi et al. introduced a fuzzy-logic based
alert management system, called FuzMet, which uses several
metrics and fuzzy logic to score and prioritize alerts [2].
However, these approaches do not consider the possibility of
an attacker adapting to the prioritization.

D. Game Theory for Alert Prioritization and Security Audits

Prior work has successfully applied game theory to a variety
of security problems, ranging from physical security [3] to
network security and privacy [24].

Our approach is most closely related to alert-prioritization
games. Laszka et al. introduced the first game-theoretic model
for alert prioritization, which they solved with the help of
a greedy heuristic [19]. The performance of this approach,
which we denoted GAIN in our experiments, is limited by its
restrictive assumptions about the defender’s decision making.
In particular, GAIN assumes that the defender’s policy is a
strict prioritization that investigates all higher-priority alerts
before investigating any lower-priority ones, and the prioriti-
zation is chosen before observing the actual number of alerts.
Moreover, the model considers only a single time slot, which
further limits its usefulness. Yan et al. improved upon GAIN
by allowing the defender to specify a maximum budget that
may be spent on each alert types, thereby relaxing the strict
prioritization of GAIN [43]. However, this improved approach,
which we denoted RIO in our experiments, still assumes that
the prioritization is chosen before observing any alerts and
considers only a single time slot. As our numerical results
demonstrate, these restrictions can lead to significantly higher
losses for the defender. Schlenker et al. introduced a similar
model, called Cyber-alert Allocation Game, which further
simplifies the problem by assuming that the number of false
alerts is fixed and known by both parties in advance [32].

Our approach also resembles audit games, which study the
problem of allocating a limited amount of audit resources to
a fixed number of audit targets [6], [7]. However, despite the
resemblance, audit games are ill-suited for prioritizing alerts
since these games assume that the attacker knows the exact set
of targets, which would correspond to individual alerts, before
launching its attack. Due to the unpredictability of false alerts,
this assumption does not hold for alert prioritization.
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VII. DISCUSSION AND CONCLUSION

Since even after applying techniques for reducing the alert
burden (e.g., alert correlation) there often remain vastly more
alerts than time to investigate them, the success of detection
often hinges on how defenders prioritize certain alerts over
others. In practice, prioritization is typically based on non-
strategic heuristics (e.g., Suricata’s built-in priority values),
which may easily be exploited by a strategic attacker who can
adapt to the prioritization. Strategic prioritization approaches
attempt to prevent this by using game-theory to capture adap-
tive attackers; however, existing strategic approaches severely
restrict the defender’s policy (e.g., strict prioritization) for the
sake of computational tractability.

In contrast, we introduced a general model of alert prioriti-
zation that does not impose any restrictions on the defender’s
policy, and we proposed a novel double oracle and rein-
forcement learning based approach for finding approximately
optimal prioritization policies efficiently. Our experimental
results—based on case studies of IDS and fraud detection—
demonstrate that these policies significantly outperform non-
strategic prioritization and prior game-theoretic approaches.
Further, to demonstrate the strength of our attacker model, we
also showed that the attacker policies found by our approach
outperform multiple baseline policies.

For practitioners, the key task in applying our approach is
estimating the parameter values of our model. In our case
studies, we showed how to estimate parameters in two domains
(e.g., for IDS, using CVSS score to estimate attack impact
and CVSS complexity for attack cost). The most difficult
parameter to estimate is the attacker’s budget; however, our
experimental results show that our approach is robust to
uncertainty in the attacker’s budget and outperforms other
approaches even when the budget is misestimated. We leave
studying the sensitivity to other parameters to future work.
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APPENDIX

A. Best Response Oracle Algorithm

The proposed algorithm to compute the best response oracle
is outlined in Algorithm 1.

B. Computational Cost

Figure 12 presents our evaluation of the computational cost
of the proposed alert prioritization approach. The results show
that the double oracle algorithm can converge very fast in
practice, with fewer than 15 iterations in most cases; indeed, in
the vast majority of instances we need fewer than 10 iterations.

Another interesting observation is non-monotonicity of con-
vergence time (in terms of iterations) as we increase the
defense budget. In the IDS setting, for example, increasing
the defense budget increases the number of iterations when
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Algorithm 1 DDPG-MIX Algorithm: Compute the pure-
strategy best response of player v when its opponent takes
mixed-strategy o_,.
Input:
The set of opponent’s pure strategies, II_,;
Mixed strategy of the opponent, o_,;
Output:
The value network of player v, Q,(O,, @,|0%);
The policy network of player v, 7, (O, |0T);
Randomly initialize Q,(O,, c,|6%2) and 7,(0,|67);
Initialize replay memory D;
for episode = 0, M — 1 do
Initialize the system state (N A0 g§(0))
(0,0,0);
Sample the opponent’s policy 7_,
II
for k =0,K —1do
With probability e select a random action o
Otherwise, select a!*) = (O(k)|9“)
Execute aq()k) and a(k) = T_, (Ogv), observe re-

ward %) and tran51t the s stem state to S*t+1;
r, 0% ™) in D;

L

by using o_, over

().

v

Store transition (
Sample a random mlmbatch of N transitions
(Ol(,i o, v @ ot ) from D;

Set yfﬂ =) +7Q, (05", =(0"V|67)|6%);
Update the value network by minimizing the loss

1 . , .
& 28~ Qu(0}.al)69)%

%

10:

11:
12:

L£(67) =

13: Update the policy network by using the sampled

policy gradient:

VorJ ~ (12)

1
N2 T o
where

Ja, = va,,Qv(Ovaav|952)
Jo = Vorm(0,|07)
14:  end for

15: end for
16: return Player v’s policy network, 7, (O, |0F).

|Ov=01()7> s Oy =TTy (01()1) )

o
(13)

we go from a budget of 500 to 1000, but the computational
cost remains stable as we further increase the budget to 1500.
In contrast, in the fraud detection case study, increasing the
budget from 10 to 20 has little impact on the number of
iterations, but further increasing it to 30 actually reduces the
number of iterations necessary for convergence. To understand
this phenomenon, note that increasing the defender’s budget
has two opposing effects: on the one hand, the search space
for the defender increases significantly, but on the other hand,
it may become much easier to compute a near-optimal defense
with a larger budget (for example, with a large enough budget,
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Fig. 12. Computational cost. Left: Number of double oracle iterations in

intrusion detection with adv. budget=120. Right: Number of double oracle
iterations in fraud detection with adv. budget=2.

we can almost always inspect all alerts).
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