
Finding Needles in a Moving Haystack: Prioritizing

Alerts with Adversarial Reinforcement Learning

Liang Tong∗, Aron Laszka†, Chao Yan‡, Ning Zhang∗ and Yevgeniy Vorobeychik∗

∗Washington University in St. Louis
†University of Houston
‡Vanderbilt University

∗{liangtong, zhang.ning, yvorobeychik}@wustl.edu, †alaszka@uh.edu, ‡chao.yan@vanderbilt.edu

Abstract—Detection of malicious behavior is a fundamental
problem in security. One of the major challenges in using
detection systems in practice is in dealing with an overwhelming
number of alerts that are triggered by normal behavior (the
so-called false positives), obscuring alerts resulting from actual
malicious activity. While numerous methods for reducing the
scope of this issue have been proposed, ultimately one must
still decide how to prioritize which alerts to investigate, and
most existing prioritization methods are heuristic, for example,
based on suspiciousness or priority scores. We introduce a novel
approach for computing a policy for prioritizing alerts using
adversarial reinforcement learning. Our approach assumes that
the attacker knows the full state of the detection system and the
defender’s alert prioritization policy, and will dynamically choose
an optimal attack. The first step of our approach is to capture the
interaction between the defender and attacker in a game theoretic
model. To tackle the computational complexity of solving this
game to obtain a dynamic stochastic alert prioritization policy,
we propose an adversarial reinforcement learning framework. In
this framework, we use neural reinforcement learning to compute
best response policies for both the defender and the adversary to
an arbitrary stochastic policy of the other. We then use these in a
double-oracle framework to obtain an approximate equilibrium
of the game, which in turn yields a robust stochastic policy for the
defender. Extensive experiments using case studies in fraud and
intrusion detection demonstrate that our approach is effective in
creating robust alert prioritization policies.

I. INTRODUCTION

One of the core problems in security is detection of mali-

cious behavior, with examples including detection of malicious

software, emails, websites, and network traffic. There is a vast

literature on detection approaches, ranging from signature-

based to machine-learning based [8], [26], [34]. Despite best

efforts, however, false positives are inevitable. Moreover, one

cannot in general reduce the rate of false alarms without

missing some real attacks as a result. Under the pressure

of practical considerations such as liability and accountabil-

ity, these systems are often configured to produce a large

amount of alerts in order to be sufficiently sensitive to capture

most attacks. As a consequence, cybersecurity professionals

are routinely inundated with alerts, and must sift through

these overwhelmingly uninteresting logs to identify alerts that

should be prioritized for closer inspection.

A considerable literature has therefore emerged attempting

to reduce the number of false alerts without significantly

affecting the ability to detect malicious behavior [16], [30],

[13]. Most of these attempt to add meta-reasoning on top of

detection systems that capture broader system state, combining

related alerts, escalating priority based on correlated observa-

tions, or using alert correlation to dismiss false alarms [38].

Nevertheless, despite significant advances, there are typically

still vastly more alerts than time to investigate them. With this

state of affairs, alert prioritization approaches have emerged,

but rely predominantly on predefined heuristics, such as sort-

ing alerts by suspiciousness score or by potential associated

risk [2]. However, any policy that deterministically orders

alerts potentially opens the door for determined attackers who

can simply choose attacks that are rarely investigated, thereby

evading detection.

Building on the observation of the fundamental tradeoff

between false alert and attack detection rate, we propose a

novel computational approach for robust alert prioritization

to address the challenge. Our approach assumes a strong

attacker who knows the full state of the detection environment

including which alerts have been triggered, which have been

investigated in the past, and even the defender’s policy. We

also assumed that the adversary is capable of finding and

utilizing a near optimal attack strategy against the defender

policy based on his knowledge of the system and defending

policy. To defend against such a strong attacker, we propose to

compute the optimal stochastic dynamic defender policy that

chooses the alerts to investigate as a function of the observable

state, and that is robust to our threat model. At the core of

our technical approach is a combination of game theory with

adversarial reinforcement learning (ARL). Specifically, we

model the problem of robust alert prioritization as a game in

which the defender chooses its stochastic and dynamic policy

for prioritizing alerts, while the attacker chooses which attacks

to execute, also dynamically with full knowledge of the system

state. Our computational approach first uses neural reinforce-

ment learning to compute approximately optimal policies for

either player in response to a fixed stochastic policy of their

counterpart. It then uses these (approximate) best response

oracles as a part of a double-oracle framework, which iterates

two steps: 1) solve a game involving a restricted set of policies

by both players, and 2) augment the policy sets by calling the

best response oracle for each player. Note that our approach

is completely orthogonal to methods for reducing the number

of false positive alerts, such as alert correlation, and is meant

a
rX

iv
:1

9
0
6
.0

8
8
0
5
v
1

[c

s.
C

R
]

 2
0
 J

u
n
 2

0
1
9

to be used in combination with these, rather than as an

alternative. In particular, we can first apply alert correlation

to obtain a reduced set of alerts, and subsequently use our

approach for selecting which alerts to investigate. Since alert

correlation cannot be overly aggressive in order to ensure that

we still capture actual attacks, the number of alerts often still

significantly exceeds the investigation budget.

We evaluate our approach experimentally in two application

domains: intrusion detection, where we use the Suricata open-

source intrusion-detection system (IDS) with a network IDS

dataset, and fraud detection, with a detector learned from data

using machine learning. In both settings, we show that our

approach is significantly more effective than alternatives with

respect to our threat model. Furthermore, we demonstrate that

our approach remains highly effective, and better than baseline

alternatives in nearly all cases, even when certain assumptions

of our threat model are violated.

II. SYSTEM MODEL

A. Overview

As displayed in Figure 1, our system is partitioned into

four major components: a group of regular users (RU), an

adversary (also called attacker), a defender, and an attack

detection environment (ADE).

The regular users (RU) are the authorized users of a system.

In contrast, the adversary is a sophisticated actor who attacks

the target computer system. The attack detection environment

(ADE) models the combination of the software artifact that

is responsible for monitoring the system (e.g., network traffic,

files, emails) and raising alerts for observed suspicious be-

havior, as well as relevant system state. System state includes

attacks that have been executed (unknown to the defender),

and alerts that have been investigated (known to both the

attacker and defender). Crucially, the alerts triggered in the

ADE may correspond either to behavior of the normal users

RU, or to malicious behavior (attacks) by the adversary. We

divide time into a series of discrete time periods. The defender

is limited in how many alerts it can investigate in each time

period and must select a small subset of alerts for investigation,

while the adversary is limited in how many attacks it executes

in each time period. The full system operates as follows

for a representative time period (see again the schematic in

Figure 1):

1) Benign alerts are generated by the ADE.

2) These alerts, and the remaining ADE system state (such

as which alerts from past time periods have not yet been

investigated, but could be investigated in the future), are

observed by the attacker, who executes a collection of

attacks.

3) The attacks trigger new alerts. These are arbitrarily

mixed into the full collection of alerts, which is then

observed by the defender.

4) The defender chooses a subset of alerts to investigate.

The ADE state is updated accordingly, and the process

repeats in the next time period.

TABLE I
NOTATION SUMMARY.

Notation Interpretation

Constants and functions

A Types of attacks

T Types of alerts

Ct Cost of investigating an alert of type t ∈ T

B Defender’s budget

Ea Cost of mounting an attack of type a ∈ A

D Adversary’s budget

Pa,t(n) Probability that an attack a ∈ A raises n alerts of type
t ∈ T

Ft Probability distribution of false alerts of type t ∈ T

La Loss inflicted by an undetected attack a ∈ A

τ Temporal discounting factor

State variables (Time slot k ∈ N)

N
(k)
t Number of uninvestigated alerts of type t ∈ T

M
(k)
a Indicator of whether an attack of type a ∈ A was

mounted

S
(k)
a,t Number of alerts of type t ∈ T raised due to attack

a ∈ A

R
(k)
+1 Reward obtained by the defender

Actions, policies, and strategies

αv Action of player v ∈ {−1,+1}
πv Policy (i.e., pure strategy) of player v ∈ {−1,+1}
σv Mixed strategy of player v ∈ {−1,+1}

Next, we describe our model of the alert detection environ-

ment, our threat model, and our defender model. The full list

of notation that we use in the model is presented in Table I.

B. Attack Detection Environment (ADE) Model

Our model of the attack detection environment (ADE)

captures a broad array of detection settings, including credit

card fraud, intrusion, and malware detection. In this model, the

ADE is composed of two parts: an alert generator (such as

an intrusion detection system, like Suricata) and system state.

An alert generator produces a sequence of alerts in each

time period. We aggregate alerts based on a finite predefined

set of types T . For example, an alert type may be based on

the application layer it was generated for (HTTP, DNS, etc),

port number or range, destination IP address, and any other

information that’s informative for determining the nature and

relative priority of alerts. We can also define alert types for

meaningful sequences of alerts. Indeed, the notion of alert

types is entirely without loss of generality—we can define

each type to be a unique sequence of alerts, for example—

but in practice it is useful (indeed, crucial for scalability) to

aggregate semantically similar alerts.

At the end of each time period the system generates a

collection of alert counts for each alert type t ∈ T . We assume

that normal or benign behavior generates alerts according to a

known distribution F , where Ft(n) is the marginal probability

that n alerts of type t are generated. We also refer to this as

the distribution of false alarms, since if the defender were

omniscient, they would never trigger such alerts. Note that

in practice it is not difficult to obtain the distribution F .

Specifically, we can use past logs of all alerts over some time

period to learn the distribution F . Since the vast majority

2

chooses attack actions, which are then executed by the attack

generator, triggering alerts and thereby modifying the state of

the ADE. Below we present our approach for approximating

the optimal attack policies.

Adversary’s Goals. The adversary aims to successfully

execute attacks. Success entails avoiding being detection by

the defender, which only happens if alerts associated with an

attack are inspected. Thus, if an attack triggers a collection

of alerts, but none of these are chosen by the defender to be

inspected in the current round, the attack succeeds. Different

attacks, however, entail different consequences and, therefore,

different rewards to the attacker (and loss to the defender). As

a result, the adversary will ultimately need to balance rewards

to be gained from successful attacks and the likelihood of

being detected.

D. Defender Model

Defender’s Knowledge. Unlike the adversary, the defender

can only partially observe the state of the ADE. In particular,

the defender only observes N
(k), the numbers of remaining

uninvestigated alerts, grouped by alert type (since clearly the

defender cannot directly observe actually attacks). In addition,

we assume that the defender knows the attack budget and costs

of (representative) attacks. In our experiments, we study the

impact of relaxing this assumption (see Sections V-C5 and

V-B5), and provide practical guidance on this issue.

Defender’s Capabilities. The defender chooses subsets of

alerts in N
(k) to investigate in each time period k. This choice

is constrained by the defender’s budget, which in practice can

translate to time the defender has to investigate alerts. Since

different types of alerts may need different amounts of time

to investigate, or more generally, incur varying investigation

costs, the budget constraint is on the total cost of investigating

chosen alerts. Formally, let Ct be the investigation cost of an

alert of type t, and let α
(k)
+1,t be the number of alerts of type

t chosen to be investigated by the defender in period k. Then

the budget constraint takes the following mathematical form:
∑

t∈T

Ctα
(k)
+1,t ≤ B. (2)

An additional constraint imposed by the problem definition is

that the defender can only investigate existing alerts:

∀t ∈ T : α
(k)
+1,t ≤ N

(k)
t . (3)

Just as with the adversary, it is useful to represent the

defender as consisting of two modules: Defense Oracle and

Alert Analyzer, as shown in Figure 1. The defense oracle runs

a policy, which maps partially observed state of the ADE to

the choice of a subset of alerts to be investigated. In each

time period, after observing the set of as yet uninvestigated

alerts, the defense oracle chooses which alerts to investigate,

and this policy is then implemented by the alert analyzer,

which thereby modifies ADE state (marking the selected alerts

as having been investigated). Below we present our approach

for approximately computing optimal defense policies that are

robust to attacks as defined in our threat model above.

Defender’s Goals. The goal of the defender is to guard

a computer system or network by detecting attacks through

alert inspection. To achieve its goal, the defender develops an

investigation policy to allocate its limited budget to investiga-

tion activities in order to minimize consequences of successful

attacks, where we assume that an attack will fail to accomplish

its primary objectives if the alerts it causes the ADE to emit

are investigated in a timely manner.

E. An Illustrative Example

Since our system is built on top of an abstracted model

of alert investigation, the results are generally applicable to

a wide range of real-world problems. We will use intrusion

detection as an illustrative example in this section. Port Scan

reconnaissance attack is one of the most common initial steps

in remote exploitation and is a common occurrence faced by

many enterprise IT professionals. In a Suricata IDS system,

each alert item has different levels of categorization. For

example, at the lowest layer, the port scan may trigger two

types of alert, 1) Httprecon Web Server Fingerprint Scan, and

2) ET SCAN NMAP -sO. At a higher level, these alerts can be

categorized into attempted-recon (since both reflect potential

reconnaissance efforts by the attacker), as is the case in the

Emerging Threats Ruleset of Suricata. A defender can choose

different granularities of attack categorization to map the IDS

alert types into the abstracted types in our proposed model

based on individual needs. Besides categorization, the defender

can also make use of other attributes in the IDS alerts to aid

in abstracted type assignment. For example, a port scan on the

enterprise file server can be assigned to the abstracted type of

high-risk-recon, while a port scan on employee desktop can

be assigned to attempted-recon.

In addition to the alerts corresponding to an actual attack

action, normal user behavior can generate false positive alerts.

For example, a user who is scraping the web for weather data

monitoring may trigger the ET POLICY POSSIBLE Web Crawl

using Curl, which is grouped into the attempted-recon type

by the same Emerging Threats Suricata ruleset. Leveraging

the proposed game-theoretic model on these abstracted alerts,

it is possible for the defender to devise an optimal defense

policy for a wide range of alert applications even in the face

of possible false positives.

III. GAME THEORETIC MODEL OF

ROBUST ALERT PRIORITIZATION

We now turn to the proposed approach for robust alert

prioritization. We model the interaction between the defender

and attacker as a zero-sum game, which allows us to define

and subsequently compute robust stochastic inspection policies

for the defender. In this section, we formally describe the

game model. We then present the computational approach for

solving it in Section IV.

The game has two players: the defender (denoted by

v = +1) and the adversary (denoted by v = −1). Each

player’s strategies are policies, that is, mappings from an

observed ADE state to the probability distribution over actions

4

to take in that state. In a given state, the defender chooses

a subset of alerts to investigate; thus, the defender’s set of

possible actions is the set of all alert subsets that satisfy the

constraints (2) and (3). The attacker’s choices in a given state

correspond to subsets of actions A to take. Consequently,

the set of adversary’s actions is the set of all subsets of

attacks satisfying constraint (1). Note that the combinatorial

nature of both players’ action spaces and of the state space

makes even representing deterministic policies non-trivial; we

will deal with this issue in Section IV. Moreover, we will

consider stochastic policies. An equivalent way to represent

stochastic policies is as probability distributions over deter-

ministic policies, which map observed state to a particular

action (subset of alerts for the defender, subset of attacks for

the adversary). Henceforth, we call deterministic policies of

the players their pure strategies and stochastic policies are

termed mixed strategies, following standard terminology in

game theory.4

Let π−1 denote the attacker’s policy, which maps the fully

observed state of ADE, O
(k)
−1 = 〈N(k),M(k),S(k)〉, to a subset

of attacks. Let α
(k)
−1 = π−1(O

(k)
−1), where α

(k)
−1 = {α

(k)
−1,a}a∈A

are (for the moment) binary indicators with α
(k)
−1,a = 1 iff

an action a ∈ A is chosen by the attacker. In other words,

the vector α
(k)
−1 represents the choice of actions made by

the adversary. Similarly, π+1 denotes the defender’s policy,

which maps the portion of ADE state O
(k)
+1 = N

(k) observed

by the defender to the number of alerts of each type to

investigate. Aalogous to the attacker, α
(k)
+1 = π+1(O

(k)
+1),

where α
(k)
+1 = {α

(k)
+1,t}t∈T are the counts of alerts chosen to

be investigated for each type t. Now, notice that all alerts of

type t are equivalent by definition; consequently, it makes no

difference to the defender which of these are chosen, and we

therefore choose the fraction
α

(k)
+1,t

N
(k)
t

of alerts of type t uniformly

at random.

Let Πv be player v’s set of pure strategies, where each

pure strategy πv ∈ Πv is a policy as defined above. A mixed

strategy of player v is then a probability distribution σv =
{σv(πv)}πv∈Πv

over the player’s pure strategies Πv where

σv(πv) is the probability that player v uses policy πv . Since

a mixed strategy σv is a distribution over a finite set of pure

strategies, it satisfies 0 ≤ σv(πv) ≤ 1 and
∑

πv∈Πv
σv(πv) =

1. Let Σv denote the set of all mixed strategies of player v.

For any strategy profile of the two players,

(πv,π−v), we denote the utility of each player v by

Uv(πv,π−v), v ∈ {+1,−1}. Since our game is zero-sum,∑
v∈{+1,−1} Uv(πv,π−v) = 0. When player v chooses pure

strategy πv ∈ Πv and its opponent −v plays mixed strategy

4At decision time, players can sample from their respective mixed strategies
in each round, thereby determining their decisions in that round. We assume
that while the defender’s mixed strategy is known to the attacker, the
realizations, or samples, of deterministic policies drawn in each round are
not observed by the attacker; for example, the sampling process can take
place after the entire set of alerts in that round are observed. Note that if
we resample independently in each round, the attacker learns no additional
information about the defender’s policy from past rounds.

σ−v ∈ Σ−v , then the expected utility of v is

Uv(πv,σ−v) =
∑

π−v∈Π−v

σ−v(π−v)Uv(πv,π−v). (4)

Similarly, the expected utility of player v when it chooses the

mixed strategy σv ∈ Σv and its opponent play the mixed

strategy σ−v ∈ Σ−v is

Uv(σv,σ−v) =
∑

πv∈Πv

σ−v(πv)Uv(πv,σ−v). (5)

Next, we describe how to compute the utility of player v,

Uv(πv,π−v), when its policy is πv and the opponent’s policy

π−v are given.

Consider arbitrary pure strategies of both players, π+1

and π−1. The game begins with an initial system state

〈N (0),M (0),S(0)〉 = 〈0,0,0〉. The system state is then

updated in each time period k as follows:

1) Alert investigation. The defender first investigates a sub-

set of alerts produced thus far. Specifically, the defender

chooses the number of alerts of each type to investigate

{α
(k)
+1,t}t∈T according to its policy π+1(O

(k)
+1) given

current observed state O
(k)
+1 . For each attack a ∈ A,

let M̃
(k)
a be an indicator of whether attack a has been

executed by the beginning of time period k, but has not

been investigated. If M
(k)
a = 0, we have M̃

(k)
a = 0 as

no attack a ∈ A has been executed. If M
(k)
a = 1, then

M̃
(k)
a = 1 with probability

p(k)a =
∏

t∈T

{
C(N

(k)
t − S

(k)
a,t , α

(k)
+1,t)

C(N
(k)
t , α

(k)
+1,t)

}
, (6)

where C(n, r) is the number of possible combinations

of r objects from a set of n objects. p
(k)
a is then the

probability that attack a is not detected by the defender.

2) Attack generation. The adversary produces attacks by

executing actions according to its policy {α
(k)
−1,a}a∈A =

π−1(O
(k)
−1) given the fully observed ADE state O

(k)
−1 .

Then M
(k+1)
a = α

(k)
−1,a for each a ∈ A.

3) Triggering alerts. Each attack a ∈ A can trigger alerts

as follows. For each attack a ∈ A and alert type t ∈ T ,

if M
(k+1)
a = 1, then S

(k+1)
a,t = n with probability

Pa,t(n) for n ≥ 0. This probability can be estimated, for

example, by feeding inputs which include representative

attacks into an attack detector and observing relative

frequencies of alerts that are triggered. In addition, false

alerts are generated according to the distribution Ft,

which we can estimate from data of normal behavior

and associated alert counts. Let f
(k)
t be the number of

false alerts of type t ∈ T that have been generated. Then

the total number of alerts in the next time period k + 1

is N
(k+1)
t = f

(k)
t + S

(k+1)
a,t .

In order to define the reward received by the defender in

time period k, we make the following assumption: if any of the

alerts raised by an attack is chosen to be inspected, then the

attack is detected; otherwise, the attack is not detected. Let La

5

be the loss incurred by the defender when an attack a ∈ A

is not detected. Then the reward of the defender obtained in

time period k is

R
(k)
+1 = −

∑

a∈A

La · M̃
(k)
a . (7)

For an arbitrary pure strategy profile of the defender and

adversary, (π+1,π−1), the defender’s utility from the game

is the expected total discounted sum of the reward accrued in

each time period:

U+1(π+1,π−1) = E

[
∞∑

k=0

τk ·R
(k)
+1

]
, (8)

where τ ∈ (0, 1) is a temporal discounting factor which

implies that future rewards are less important than current

rewards. That is, imminent losses are more important to the

defender than potential future losses. The adversary’s utility

is then U−1(π+1,π−1) = −U+1(π+1,π−1).
Our goal of finding robust alert investigation policies

amounts to computing a mixed-strategy Nash equilibrium

(MSNE) of our game by the well-known equivalence be-

tween MSNE, maximin, and minimax solutions in zero-sum

games [17]. A mixed-strategy profile (σ∗
v ,σ

∗
−v) of the two

players is an MSNE if it satisfies the following condition for

all v ∈ {+1,−1}

Uv(σ
∗
v ,σ

∗
−v) ≥ Uv(σv,σ

∗
−v) ∀σv ∈ Σv. (9)

That is, each player v chooses a stochastic policy σ
∗
v that

is the best response (is optimal for v) when its opponent

chooses σ
∗
−v .

IV. COMPUTING ROBUST ALERT

PRIORITIZATION POLICIES

A. Solution Overview

For given sets of policies, Π+1 and Π−1, a standard

approach to computing the MSNE of a zero-sum game is to

solve a linear program of the following form:

max U∗
v

s.t.
∑

πv∈Πv
Uv(πv,π−v) · σv(πv) ≥ U∗

v , ∀π−v ∈ Π−v∑
πv∈Πv

σv(πv) = 1
σv(πv) ≥ 0 ∀πv ∈ Πv

(10)

where in our case the optimal solution σ
∗
+1 yields the robust

alert prioritization policy for the defender. However, using

this approach for our problem entails two principal techni-

cal challenges: 1) the space of policies for both players is

intractably large, and 2) it is even intractable to explicitly

represent individual policies, since they map a combinatorial

set of states to a combinatorial set of actions for both players.

We propose an adversarial reinforcement learning approach

to address these challenges, which combines a double ora-

cle framework [25] with neural reinforcement learning. The

general double oracle approach is illustrated in Figure 2.

We start with an arbitrary small collection of policies for

both players, (Π+1,Π−1), and solve the linear program (10),

obtaining provisional equilibrium mixed strategies (σ+1,σ−1)
of the restricted game. Next, we query the attack oracle

to compute the adversary’s best response π−1(σ+1) to the

defender’s equilibrium mixed strategy σ+1, and, similarly,

query the defense oracle to compute the defender’s best

response π+1(σ−1) to the adversary’s equilibrium mixed

strategy σ−1. The best response policies are then added to the

policy sets (Π+1,Π−1) of the players, and we then re-solve

the linear program and repeat the process. The process stops

when neither player’s best response policy yields appreciable

improvement in utility compared to the provisional equilibrium

mixed strategy. Since the space of possible policies in our case

is infinite, this process may not converge. However, in our

experiments the procedure converged in fewer than 15 itera-

tions (see Figure 12 in Appendix B), with the fast convergence

in part due to the way we represent policies, as discussed

below. The main question that remains is how to compute or

approximate the best response oracles for both players. To this

end, we use reinforcement learning techniques with policies

represented using neural networks. Below, we explain both our

double oracle approach and our neural reinforcement learning

methods (including the specific way in which we represent

policies) in further detail.

B. Policy-based Double Oracle Method

As displayed in Figure 2, our game solver is an extension of

the double oracle algorithm proposed in [36] and is partitioned

into four parts: a policy container, a linear programming (LP)

optimizer, a defense oracle, and an attack oracle. The policy

container stores the policies of the two players, Π+1 and

Π−1, as well as a utility matrix U , whose elements are

U+1(π+1,π−1) for all π+1 ∈ Π+1 and π−1 ∈ Π−1. The LP

optimizer solves the game by computing the current mixed-

strategy Nash equilibrium given the utility matrix U . The

defense and attack oracles are agents that apply reinforcement

learning to compute the optimal responses to their opponents’

mixed strategies, which are provided by the LP optimizer.

Our solver works in an iterative manner such that the

players’ policies and the utility matrix grow incrementally.

Initially, Π+1, Π−1 can be set up with some basic policies,

for example, uniformly allocating each player’s budget among

their choices. Then, the policy sets, jointly encapsulated in a

policy container, are updated in each iteration as follows:

1) First, the LP optimizer computes the mixed-strategy

Nash Equilibrium (σ
′

+1,σ
′

−1) of the current iteration by

solving the optimization problems presented in Equation

(10).

2) The oracle of player v computes the best response

policy π
′
v given that its opponent uses its equilibrium

mixed-strategy σ
′
−v , for v ∈ {+1,−1}.

3) If Uv(π
′
v,σ

′
−v) ≤ Uv(σ

′
v,σ

′
−v) for all v ∈ {+1,−1},

the double oracle algorithm terminates and returns

(σ′
+1,σ

′
−1) as the approximate MSNE. Otherwise,

add π
′
v to the corresponding Πv , update the utility

matrix U and continue from Step 2.

6

TABLE II
ARCHITECTURE OF THE IMPLEMENTED POLICY AND VALUE NETWORKS.

Neural network Layer Number of units Activation function Initializer

Policy network
Input T (defender); |T |+ |A| · (1 + |T |) (adversary) - -

Hidden 16 (Fraud detection); 32 (Intrusion detection) Tanh Xavier [10]
Output |T | (defender); |A| (adversary) Sigmoid Xavier

Value netwrok
Input 2 · |T | (defender); |T |+ |A| · (2 + |T |) (adversary) - -

Hidden 32 (Fraud detection); 64 (Intrusion detection) Relu He Normal [11]
Output 1 Relu He Normal

adversary’s budget over attack actions; and Greedy, a policy

which allocates the budget to attacks in the order of expected

adversary utility. Specifically, the Greedy adversary prioritizes

the attack actions according to La · min{ D̃
ca
, 1}, where D̃ is

the available attack budget, adding actions in this priority order

until the adversary’s budget is exhausted.

We first conduct our experiments by assuming that the

defender knows the adversary’s capabilities. Subsequently, we

evaluate the robustness of our approach when the defender

is uncertain about the adversary’s capabilities, and use it to

provide practical guidance. We also provide results on the

computational cost of our approach in Appendix B.

B. Case Study I: Intrusion Detection

Our first case study involves a signature-based intrusion

detection scenario, using the Suricata, a state-of-the-art open

source intrusion detection system (IDS), combined with the

CICIDS2017 dataset. Our case study evaluates our alert pri-

oritization method in two cases: i) the defender has full

knowledge of the adversary; and ii) the defender is uncertain

about the adversary’s capabilities.

1) CICIDS2017 dataset: The CICIDS2017 dataset [33]

records benign and malicious network flows in pcap format,

captured in a real-world network between 07/03/2017 and

07/27/2017. The network consists of 10 desktops belonging to

regular users and 5 laptops owned by attackers. The desktops

are used to generate natural benign background traffic by using

a profile system that abstracts the behaviors of regular users.

The laptops are employed to produce malicious traffic of the

following classes of attacks: Brute Force, Botnet, DDoS, DoS,

Heartbleed, Infiltration, Portscan, and Web Attack.

2) Suricata IDS: We employ Suricata5 to conduct our case

study on the CICIDS2017 dataset. Suricata is an open-source

network intrusion detection system which performs analysis of

passing traffic on a network by using a set of signatures (also

called rules). If a traffic pattern matches any of the signatures,

then a corresponding alert is triggered and sent to the network

administrator.

A Suricata signature contains the following parts: action,

header, rule options, and priority. Action describes the oper-

ation of Suricata when a signature is matched, which can be

either dropping a packet or raising an alert. Header defines the

protocol, port, and IP addresses of the source and destination

in a signature. Rule options include a list of keywords,

for example, the corresponding alert type associated with a

5Available at https://suricata-ids.org/about/open-source/.

TABLE III
ALERT TYPES OF SURICATA IN OUR EXPERIMENTS.

Alert type Description Priority

attempted-recon Attempted Information Leak 2

attempted-user Attempted User Privilege Gain 1

bad-unknow Potentially Bad Traffic 2

misc-acticity Misc activity 3

not-suspicious Not Suspicious Traffic 3

policy-violation Potential Corporate Privacy Violation 1

protocol-command-decode Generic Protocol Command Decode 3

trojan-activity A Network Trojan was Detected 1

unsuccessful-user Unsuccessful User Privilege Gain 1

web-application-attack Web Application Attack 1

priority. Finally, the priority keyword comes with a numerical

value ranging from 1 to 255 where 1 indicates the highest

priority and 255 the lowest.

In our experiments, we use Suricata to scan the pcap files

in the CICIDS2017 dataset. Specifically, we use the Emerging

Threats Ruleset (ETR)6 to analyze the network traffic in the

dataset. ETR defines a total of 33 alert types, and we select the

10 most common alert types exhibited during our experiments,

which are shown in Table III.

3) Experimental Setup: We use the following steps to set

up our experiments for the case study. First, we used 30

minutes as the fixed length of each time period. Then, we

utilized the Suricata IDS to scan and detect intrusions for

both malicious and benign traffic in the CICIDS2017 data.

By doing so, we obtained the number of alerts of each type

raised by each attack action, as well as the number of false

alerts in each time period. In the preprocessing step we pruned

alert types that were triggered only by malicious traffic, as

discussed in Section IV-D. As a result, we were left with 7

out of the 10 alert types to consider using our full adversarial

RL framework. In addition, we filtered out the attack actions

that do not raise any alerts, since those attacks will never

be detected using Suricata, leaving 7 out of 8 representative

attacks for our experiments. The final attack actions and alert

types that we use in the experiments are given in Table IV.

We used Poisson distribution to fit the distribution of alerts

raised by benign traffic in each time period. Since the benign

traffic in the CICIDS2017 dataset was captured from only 10

desktop which is far less than the number of computers in a

real-world local area network, we amplified the corresponding

mean of each type of alert by a factor of 100. The resulting

average numbers are shown in Table V. We set the cost

of investigating each alert to 1.0 (i.e., equal for all alerts).

6Available at https://rules.emergingthreats.net/open/suricata/.

9

C. Alert Management and Prioritization

A multitude of research efforts have studied the problem of

reducing the number of alerts without significantly reducing

the probability of attack detection [16]. One of the most

common approaches is alert correlation and clustering, which

attempt to group related alerts together, thereby reducing the

set of messages that are presented [30]. In distributed systems,

collaborative intrusion detection systems may be deployed,

which include several monitoring components and correlate

alerts among the monitors to create a holistic view [38]. Since

the number of alerts may be too high even after correlation, re-

search efforts have also investigated the prioritization of alerts.

For example, Alsubhi et al. introduced a fuzzy-logic based

alert management system, called FuzMet, which uses several

metrics and fuzzy logic to score and prioritize alerts [2].

However, these approaches do not consider the possibility of

an attacker adapting to the prioritization.

D. Game Theory for Alert Prioritization and Security Audits

Prior work has successfully applied game theory to a variety

of security problems, ranging from physical security [3] to

network security and privacy [24].

Our approach is most closely related to alert-prioritization

games. Laszka et al. introduced the first game-theoretic model

for alert prioritization, which they solved with the help of

a greedy heuristic [19]. The performance of this approach,

which we denoted GAIN in our experiments, is limited by its

restrictive assumptions about the defender’s decision making.

In particular, GAIN assumes that the defender’s policy is a

strict prioritization that investigates all higher-priority alerts

before investigating any lower-priority ones, and the prioriti-

zation is chosen before observing the actual number of alerts.

Moreover, the model considers only a single time slot, which

further limits its usefulness. Yan et al. improved upon GAIN

by allowing the defender to specify a maximum budget that

may be spent on each alert types, thereby relaxing the strict

prioritization of GAIN [43]. However, this improved approach,

which we denoted RIO in our experiments, still assumes that

the prioritization is chosen before observing any alerts and

considers only a single time slot. As our numerical results

demonstrate, these restrictions can lead to significantly higher

losses for the defender. Schlenker et al. introduced a similar

model, called Cyber-alert Allocation Game, which further

simplifies the problem by assuming that the number of false

alerts is fixed and known by both parties in advance [32].

Our approach also resembles audit games, which study the

problem of allocating a limited amount of audit resources to

a fixed number of audit targets [6], [7]. However, despite the

resemblance, audit games are ill-suited for prioritizing alerts

since these games assume that the attacker knows the exact set

of targets, which would correspond to individual alerts, before

launching its attack. Due to the unpredictability of false alerts,

this assumption does not hold for alert prioritization.

VII. DISCUSSION AND CONCLUSION

Since even after applying techniques for reducing the alert

burden (e.g., alert correlation) there often remain vastly more

alerts than time to investigate them, the success of detection

often hinges on how defenders prioritize certain alerts over

others. In practice, prioritization is typically based on non-

strategic heuristics (e.g., Suricata’s built-in priority values),

which may easily be exploited by a strategic attacker who can

adapt to the prioritization. Strategic prioritization approaches

attempt to prevent this by using game-theory to capture adap-

tive attackers; however, existing strategic approaches severely

restrict the defender’s policy (e.g., strict prioritization) for the

sake of computational tractability.

In contrast, we introduced a general model of alert prioriti-

zation that does not impose any restrictions on the defender’s

policy, and we proposed a novel double oracle and rein-

forcement learning based approach for finding approximately

optimal prioritization policies efficiently. Our experimental

results—based on case studies of IDS and fraud detection—

demonstrate that these policies significantly outperform non-

strategic prioritization and prior game-theoretic approaches.

Further, to demonstrate the strength of our attacker model, we

also showed that the attacker policies found by our approach

outperform multiple baseline policies.

For practitioners, the key task in applying our approach is

estimating the parameter values of our model. In our case

studies, we showed how to estimate parameters in two domains

(e.g., for IDS, using CVSS score to estimate attack impact

and CVSS complexity for attack cost). The most difficult

parameter to estimate is the attacker’s budget; however, our

experimental results show that our approach is robust to

uncertainty in the attacker’s budget and outperforms other

approaches even when the budget is misestimated. We leave

studying the sensitivity to other parameters to future work.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale
machine learning,” in Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation, 2016, pp. 265–283.
[2] K. Alsubhi, I. Aib, and R. Boutaba, “FuzMet: A fuzzy-logic based

alert prioritization engine for intrusion detection systems,” International

Journal of Network Management, vol. 22, no. 4, pp. 263–284, 2012.
[3] B. An, F. Ordóñez, M. Tambe, E. Shieh, R. Yang, C. Baldwin,

J. DiRenzo III, K. Moretti, B. Maule, and G. Meyer, “A deployed
quantal response-based patrol planning system for the US Coast Guard,”
Interfaces, vol. 43, no. 5, pp. 400–420, 2013.

[4] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” in Proceedings of the 34th International

Conference on Machine Learning (ICML) – Volume 70. JMLR, 2017,
pp. 449–458.

[5] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Infor-
mation Science and Statistics. Springer, 2011.

[6] J. Blocki, N. Christin, A. Datta, A. D. Procaccia, and A. Sinha, “Audit
games,” in Proceedings of the 23rd International Joint Conference on

Artificial Intelligence (IJCAI), ser. IJCAI ’13. AAAI Press, 2013, pp.
41–47. [Online]. Available: http://dl.acm.org/citation.cfm?id=2540128.
2540137

[7] ——, “Audit games with multiple defender resources,” in Proceedings

of the 29th AAAI Conference on Artificial Intelligence, 2015.

14

[8] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-

nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[9] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin et al., “Noisy networks
for exploration,” arXiv preprint arXiv:1706.10295, 2017.

[10] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the 13th international

conference on artificial intelligence and statistics (AISTAT), 2010, pp.
249–256.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the 2015 IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 1026–1034.

[12] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” in Proceedings of the

32nd AAAI Conference on Artificial Intelligence, ser. AAAI, 2018.

[13] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner, “Detecting
credential spearphishing in enterprise settings,” in Proceedings of the

26th USENIX Security Symposium (USENIX Security), 2017, pp. 469–
485.

[14] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” Journal of Machine Learning Research, vol. 4, no. Nov, pp.
1039–1069, 2003.

[15] J. Hu, M. P. Wellman et al., “Multiagent reinforcement learning:
theoretical framework and an algorithm,” in Proceedings of the 15th

International Conference on Machine Learning (ICML), vol. 98, 1998,
pp. 242–250.

[16] N. Hubballi and V. Suryanarayanan, “False alarm minimization tech-
niques in signature-based intrusion detection systems: A survey,” Com-

puter Communications, vol. 49, pp. 1–17, 2014.

[17] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe,
“Stackelberg vs. Nash in security games: An extended investigation of
interchangeability, equivalence, and uniqueness,” Journal of Artificial

Intelligence Research, vol. 41, pp. 297–327, 2011.

[18] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat,
D. Silver, and T. Graepel, “A unified game-theoretic approach to multi-
agent reinforcement learning,” in Proceedings of the 31st International

Conference on Neural Information Processing Systems (NIPS), 2017,
pp. 4193–4206.

[19] A. Laszka, Y. Vorobeychik, D. Fabbri, C. Yan, and B. Malin, “A
game-theoretic approach for alert prioritization,” in AAAI Workshop on

Artificial Intelligence for Cyber Security (AICS), Febrary 2017.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[21] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in Proceedings of the 11th International Conference on

International Conference on Machine Learning (ICML). Elsevier, 1994,
pp. 157–163.

[22] ——, “Friend-or-foe Q-learning in general-sum games,” in Proceedings

of the 18th International Conference on Machine Learning (ICML),
vol. 1, 2001, pp. 322–328.

[23] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proceedings of the 31st International Conference on Neural Information

Processing Systems (NIPS), 2017, pp. 6382–6393.

[24] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, and J.-P. Hubaux, “Game
theory meets network security and privacy,” ACM Computing Surveys

(CSUR), vol. 45, no. 3, p. 25, 2013.

[25] H. B. McMahan, G. J. Gordon, and A. Blum, “Planning in the presence
of cost functions controlled by an adversary,” in Proceedings of the

20th International Conference on Machine Learning (ICML), 2003, p.
536543.

[26] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating computer intrusion detection systems: A survey of common
practices,” ACM Computing Surveys (CSUR), vol. 48, no. 1, p. 12, 2015.

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of the 33rd International Con-

ference on International Conference on Machine Learning (ICML) –

Volume 48, 2016, pp. 1928–1937.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[30] S. Salah, G. Maciá-Fernández, and J. E. Dı́Az-Verdejo, “A model-based
survey of alert correlation techniques,” Computer Networks, vol. 57,
no. 5, pp. 1289–1317, 2013.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[32] A. Schlenker, H. Xu, M. Guirguis, C. Kiekintveld, A. Sinha, M. Tambe,
S. Sonya, D. Balderas, and N. Dunstatter, “Don’t bury your head
in warnings: A game-theoretic approach for intelligent allocation of
cyber-security alerts,” in Proceedings of the 26th International Joint

Conference on Artificial Intelligence (IJCAI), 2017, pp. 381–387.
[Online]. Available: https://doi.org/10.24963/ijcai.2017/54

[33] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic charac-
terization,” in Proceedings of the 4th International Conference on Infor-

mation Systems Security and Privacy (ICISSP) – Volume 1, INSTICC.
SciTePress, 2018, pp. 108–116.

[34] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE symposium on

security and privacy. IEEE, 2010, pp. 305–316.
[35] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,

achieves master-level play,” Neural Computation, vol. 6, no. 2, pp. 215–
219, 1994.

[36] J. Tsai, T. H. Nguyen, and M. Tambe, “Security games for controlling
contagion,” in Proceedings of the 26th AAAI Conference on Artificial

Intelligence, ser. AAAI’12. AAAI Press, 2012, pp. 1464–1470.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2900929.2900936

[37] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the 30th AAAI Conference

on Artificial Intelligence, 2016.
[38] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer,

“Taxonomy and survey of collaborative intrusion detection,” ACM

Computing Surveys (CSUR), vol. 47, no. 4, p. 55, 2015.
[39] Y. Vorobeychik and M. Kantarcioglu, Adversarial Machine Learning.

Morgan and Claypool, 2018.
[40] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,

“Dueling network architectures for deep reinforcement learning,” in
Proceedings of the 33rd International Conference on International

Conference on Machine Learning (ICML), 2016, pp. 1995–2003.
[41] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.

3-4, pp. 279–292, 1992.
[42] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-

tion, King’s College, Cambridge, 1989.
[43] C. Yan, B. Li, Y. Vorobeychik, A. Laszka, D. Fabbri, and B. Malin,

“Get your workload in order: Game theoretic prioritization of database
auditing,” in Proceedings of the 34th IEEE International Conference on

Data Engineering (ICDE), April 2018, pp. 1304–1307.

APPENDIX

A. Best Response Oracle Algorithm

The proposed algorithm to compute the best response oracle

is outlined in Algorithm 1.

B. Computational Cost

Figure 12 presents our evaluation of the computational cost

of the proposed alert prioritization approach. The results show

that the double oracle algorithm can converge very fast in

practice, with fewer than 15 iterations in most cases; indeed, in

the vast majority of instances we need fewer than 10 iterations.

Another interesting observation is non-monotonicity of con-

vergence time (in terms of iterations) as we increase the

defense budget. In the IDS setting, for example, increasing

the defense budget increases the number of iterations when

15

	I Introduction
	II System Model
	II-A Overview
	II-B Attack Detection Environment (ADE) Model
	II-C Threat Model
	II-D Defender Model
	II-E An Illustrative Example

	III Game Theoretic Model ofRobust Alert Prioritization
	IV Computing Robust AlertPrioritization Policies
	IV-A Solution Overview
	IV-B Policy-based Double Oracle Method
	IV-C Approximate Best Response Oracles with Neural Reinforcement Learning
	IV-D Preprocessing

	V Case studies
	V-A Experimental Methodology
	V-A1 Implementation
	V-A2 Evaluation Method

	V-B Case Study I: Intrusion Detection
	V-B1 CICIDS2017 dataset
	V-B2 Suricata IDS
	V-B3 Experimental Setup
	V-B4 Baselines
	V-B5 Results

	V-C Case Study II: Fraud Detection
	V-C1 Fraud dataset
	V-C2 Learning-based fraud detector
	V-C3 Experimental Setup
	V-C4 Baselines
	V-C5 Results

	VI Related Work
	VI-A Deep Reinforcement Learning
	VI-B Multi-agent Reinforcement Learning
	VI-C Alert Management and Prioritization
	VI-D Game Theory for Alert Prioritization and Security Audits

	VII Discussion and Conclusion
	References
	Appendix
	A Best Response Oracle Algorithm
	B Computational Cost

