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Abstract— Programming by Demonstration (PbD) lets users
with little technical background program a wide variety of
manipulation tasks for robots, but it should be as intuitive
as possible for users while requiring as little time as possible.
In this paper, we present a Programming by Demonstration
system that synthesizes manipulation programs from a single
observed demonstration, allowing users to program new tasks
for a robot simply by performing the task once themselves.
A human-in-the-loop interface helps users make corrections to
the perceptual state as needed. We introduce Object Interaction
Programs as a representation of multi-object, bimanual manip-
ulation tasks and present algorithms for extracting programs
from observed demonstrations and transferring programs to a
robot to perform the task in a new scene. We demonstrate the
expressivity and generalizability of our approach through an
evaluation on a benchmark of complex tasks.

I. INTRODUCTION

Many everyday tasks in human environments, from prepar-
ing a meal to cleaning surfaces with a tool, require complex
manipulation capabilities. Developing universal manipulation
capabilities that work for every possible task is extremely
challenging. Instead, researchers are putting effort to devel-
oping ways in which people can quickly and easily pro-
gram new robot capabilities. Programming by Demonstration
(PbD) is a popular approach that enables people without a
technical robotics background to program new capabilities
on the robot by demonstrating the task to the robot in some
manner. Three decades of research on the topic has resulted
in a wide variety of approaches. Despite these advances,
work in this area has been limited in terms of the level of
user training and involvement (e.g., when using kinesthetic
guidance or teach pendants) and how many demonstrations
are required (typically more than one).

An ideal approach is to have the robot observe a human
demonstrate a task once, and to have the robot subsequently
be able to perform the same task. However, this is hard for
two reasons. First, state of the art perception systems still
have trouble accurately tracking object poses, especially for
small objects that can be occluded by the demonstrator’s
hand. Second, it can be difficult for the robot to correctly
infer the intent of the demonstration, especially when only
one demonstration is provided. In this paper, we present
a system for programming a robot to perform complex
object manipulation tasks by observing a single RGBD video
demonstration. To address the perception problem, we pro-
vide users with a human-in-the-loop interface that combines
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an automatic object tracker with human supervision. Rather
than have the robot try to understand the intent of the user,
our system converts the demonstration into a program using
a small set of rules that are easy for users to understand,
putting users in control of the programming process.

We also present a representation of a manipulation task
called an Object Interaction Program. This representation is
robot-independent and allows the task to be repeated with
varying starting configurations of objects. In contrast to sim-
ple PbD systems that simply record and replay taught poses,
our approach uses several unique modeling and planning
techniques to adapt its grasps and trajectories to maximize
task success. This paper presents our system along with the
novel representation and algorithms that we developed. Our
work contributes:

• An expressive representation of complex manipulation
tasks called Object Interaction Programs.

• New algorithms for (i) synthesizing task programs from
a single observed demonstration, and (ii) transferring
programs to the robot in new scenarios for execution.

• Motion capture tools for semi-automatic annotation of
rich kinematic data from RGBD video without the use
of fiducial markers.

Our approach was implemented on a PR2 robot, and the
expressivity and robustness of our approach was evaluated
through a benchmark of complex, multi-object, bimanual
tasks.

II. RELATED WORK

Our work contributes to a long line of research on robot
Programming by Demonstration (PbD), also referred to as
Learning from Demonstration [1], [2]. In the following we
situate and differentiate our work within the landscape of
PbD research in terms of the demonstration method, the types
of tasks being learned and the learned representation, as well
as the process of going from a demonstration to an execution.
The goal of our research also aligns directly with prior work
within the HRI community on making PbD more intuitive
non expert users [3]–[7] and making it easier for them to
program robots in different ways [8]–[10].

The influential survey by Argall et al. identified demon-
stration method as one of the key design choices in a PbD
system. They define embodiment mapping to differentiate
between demonstrating a task by making the robot do the
task (e.g. through teleoperation [11], verbal commands [12],
or kinesthetic guidance [13]) versus having the human do
the task. Our work falls under the second category, which
they refer to as imitation. Demonstration methods are further
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Fig. 1: Overview of the Programming by Demonstration system developed in this work.

categorized based on record mapping to differentiate between
demonstrations perceived through sensors on the human (1st
person perspective) versus externally through sensors on the
robot (3rd person perspective). Our work falls in the second
category as we use an RGBD camera on the robot to perceive
the demonstration. Recently, researchers have also collected
demonstrations in virtual reality environments [14], [15],
which are harder to set up but provide perfect information.

Inferring human states and actions from sensor observa-
tions is a challenging problem by itself. Earlier work in
this same category mostly relied on simplifications such as
attaching markers to the person [16], [17], using motion cap-
ture [18], [19], or equipping the demonstrator with wearable
sensors like data gloves [11], [20]. Our system does not
require the use of markers for motion capture, leveraging
recent advances in computer vision research. Others have
explored learning a mapping from the robot’s view to the
user’s view and learn a low level policy to replicate the
demonstrated visual change [21], [22].

The way PbD systems represent tasks can be broadly
divided into those that create short-term arm trajectories
(e.g., pouring a cup or opening a cupboard) and those that
build higher-level actions (e.g., changing a tire) using a
catalog of low-level skills. In the first category, researchers
have used statistical methods like Gaussian Mixture Models
[23] or Hidden Markov Models [24] to find commonalities
between multiple demonstrations of the same task. Dynamic
Movement Primitives (DMPs) represent trajectories as an
attractor landscape that can be parameterized by a goal
configuration [25]. Recently, researchers have studied deep
reinforcement learning algorithms that, given video demon-
strations of a task, learn policies that directly map image ob-
servations to low-level robot controls [15], [22], [26], [27]. In
the second category, learned high-level task representations
include finite state machines [28], hierarchical task networks
[29], and knowledge-based ontologies [30]. Work in this area
also includes goal-based representations, in which the robot
makes plans to achieve a goal state without the need for
human demonstration [31]. While the approaches described
above are powerful, they lack explainability and are difficult
for users to modify if the behavior is not quite right. To
enable users to easily program custom robot behaviors, we
designed our task representation to be an easy-to-understand,
rule-based approach.

A problem with most of the approaches described above
is that they require multiple demonstrations or hundreds of
videos for the system to acquire the skill. For novice users,
it may not be intuitive or convenient to provide multiple
demonstrations. More recently researchers have placed more
emphasis on learning from a single (as in our case) or very
few demonstrations, leveraging training with prior knowl-
edge [27] task structure [29], augmenting the demonstration
with different interactions such as asking questions [3], [32],
interacting with visualizations [33], or using the demonstra-
tion to bootstrap a self exploration process [34].

III. SYSTEM OVERVIEW

Our system has roughly three parts, illustrated in Figure 1
and described in more detail in the sections below1.
Perception: First, we extract relevant information from an
RGBD video of a demonstration by tracking the object poses
and the demonstrator’s hands. This step is mostly automated,
but we allow users to make manual corrections as needed.
Program synthesis: Next, we convert the extracted per-
ceptual information into an object interaction program by
first segmenting the demonstration based on certain detected
events, then assigning each segment to a specific action. The
steps described so far can be performed offline.
Program transfer & execution: Lastly the program is
transferred to a specific robot and execution scene at runtime.
First, objects used in the task are located in the scene. We
then plan object grasps, taking into account the type of
grasp that is needed, the possibility of collisions, and more.
Once grasps are selected, all object trajectories observed in
the perception step are converted to end-effector trajectories
based on the positions of the objects in the current scene.
Finally, task-space trajectories are converted to joint-space
trajectories and executed on the robot.

IV. PERCEPTION OF HUMAN DEMONSTRATIONS

A. Object tracking

Replicating complex object interaction tasks requires ac-
cess to the full 6-DOF trajectories of the objects. While
robust tracking of object poses in cluttered scenes is still an
active area of research, recent methods perform reasonably
well in tabletop task settings. In this paper, we use a particle

1The open-source software for the system is available at https://
github.com/jstnhuang/task_perception.



filter-based tracker by Wüthrich et al. [35]. This method
requires point-cloud models of objects to be tracked. The
initial poses of these objects can be determined automatically
as we describe in Section VI-A; however, we let users
manually align the object models to their starting poses.
Given an RGBD video of K frames, the output of the object
tracker with N objects is the sequence of SE(3) poses θij of
each object in each frame, O = {θij : i = 1..N ; j = 1..K}.
We provide users with an interface to visualize the output
of the tracker for each frame. If the tracker drifts away
from the correct answer, the user can adjust the pose, which
reinitializes the tracker to the adjusted pose.

B. Skeleton tracking

To track the demonstrator’s movements in 3D, we use a
human body tracker by Walsman et al. [36]. To initialize
the body tracker, the demonstrator needs to stand with arms
held out to the side. Our approach does not need the full
skeleton information—just an estimate for the pose of the
demonstrator’s wrists. Formally, given an RGBD video of
K frames, we extract the right and left wrist poses for each
frame, W = {θRj , θLj ; j = 1..K}. We use this information
later for determining grasp and ungrasp events and to help
plan future grasps of the same object.

C. Hand segmentation

An important component of the system is to track the
demonstrator’s hands with higher accuracy and precision
than the skeleton tracker can provide. This is especially
useful to tell when the demonstrator grasps or ungrasps an
object. To that end, we train a deep neural network, based
on a single-frame model derived from Xiang et al. [37], that
labels each pixel of the RGBD image as hand or not hand.

To train the model, we generated a dataset of 23,928
frames of RGBD video recorded with an ASUS Xtion Pro
RGBD camera. These videos involved one of two individuals
moving their hands and manipulating objects in an office
setting. To label the data, we mounted a thermal camera next
to the RGBD camera. In the thermal camera image, exposed
parts of the person’s body such as the hands, arms, and face
show up as brighter pixels. Additionally, the skeleton tracker
helped isolate the hands from other parts of the body. A
custom annotation interface was used to step through the
videos to inspect the automatically detected labels and make
corrections.

To assess the performance of the hand tracker, we split
our dataset randomly with 80% in a training set and 20%
in a validation set. We measured the intersection over union
(IOU), which is the same as accuracy but excluding all true
negative pixels2. Our model labeled hand pixels with an IOU
score of 66.46%. We found that the output tended to lose fine
details like fingers, likely due to upsampling operations that
take place in the neural network architecture. Previous work
has shown that this issue can be ameliorated by adding skip

2We use IOU because our dataset contains heavy class imbalance. Only
0.78% of pixels are hand pixels, meaning a trivial algorithm that predicts
all negatives would have an accuracy of 99.22%.

layers to the network [38]. We found that by simply applying
an erosion operation with a 3x3 kernel, the IOU of hand
segmentation improved to 72.64%.

D. Grasp detection

We combine object tracking information with the hand
segmentation to determine when the demonstrator’s hand
makes or loses contact with objects in the scene. We first
project the hand pixels into 3D coordinates using the depth
of the RGBD image. At each frame of the demonstration,
we consider a 3D hand pixel to be “touching” an object
if its distance to the object is below a threshold. Then, we
determine how many hand pixels are touching each object.
If the number is above a threshold for one of the objects, the
hand is considered in contact with that object. Hence, for a
demonstration of K frames, we obtain C = {cRj , cLj ; j =

1..K} where cR/L
j = i ∈ {1..N}, the index of the object

that the hand is in contact with, and 0 if there is no contact.

V. PROGRAM SYNTHESIS

The previous step generated, for each video frame, the
poses of all the objects in the task, as well as grasp and
ungrasp events and the poses of the demonstrator’s wrist.
This section describes how that information is converted into
a program that encodes the semantics of the task.

A. Object Interaction Programs

Our work focuses on complex object manipulation tasks
between objects such as arranging them, disassembling them,
or applying a tool to an object. These tasks involve grasping,
transporting objects in the workspace closer to one another,
and moving them relative to one another. We propose to
represent such tasks as a sequence of the following primitive
actions:

• grasp(object, arm-side, ee-pose)

• move(arm-side, ref-object, pose)

• follow(arm-side, ref-object, trajectory)

• ungrasp(arm-side)

The grasp action involves grasping the object from a
preferred end-effector pose with the specified arm. The exact
grasp pose of the end effector might differ from the specified
one depending on the robot and the execution scene. The
move action involves moving a previously grasped object to
a target pose relative to a reference object. If the movement
is not relative to another object, then the target pose is
relative to the initial pose of the object being moved. The
follow action involves following a dense object trajec-
tory of arbitrary length relative to a reference object. The
ungrasp action involves simply opening the gripper and
moving away from the object. The parameters of the actions
have the following types: object and ref-object are
unique object type identifiers; arm-side ∈ {R,L}; pose,
ee-pose ∈ SE(3); and trajectory ∈ SE(3)M for a
trajectory segment with M frames.

An object interaction program (OIP) is a sequence of ac-
tions instantiated parameters. OIPs capture task information
in terms of object poses and trajectories, independent of the



agent (human or different robots) performing the actions to
manipulate objects. Next, we describe how we go from a
single demonstration to an OIP.

B. Program synthesis

The first step in synthesizing an OIP from an observed
demonstration is segmenting the demonstration. We identify
the set of indexes of all segmentation points, S, as the union
of frames where:

• A grasp or ungrasp event happens,
• Two objects start or stop interacting, i.e., the distance

between the objects exceeds or falls below a threshold.
Next, we assign each segment to a pair of OIP actions, one
for each arm of the robot, based on the demonstration. If
there are |S| segmentation points, then 2∗(|S|+1) segments
need to be assigned an action. Each segment is associated
with an OIP action using easy to understand and explainable
rules.

First, if a segment ends at frame j with a grasp event
(cj > 0 and cj−1 = 0), we add a grasp action, storing the
ID of the object, whether the grasp was with the right or left
arm, and the pose of the demonstrator’s wrist at the time of
the grasp. If demonstrator moves the object close to another
object (i.e., an object interaction), we add a move action.
We store the ID of the other object in ref-object and
the relative pose of the objects in pose. If the demonstrator
continues to move an object in the vicinity of another object,
we add a follow action. As with a move action, we store
the ID of the other object. We also store the trajectory
of the held object relative to the other object. Otherwise, if
the demonstrator moves the object away from any objects,
the choice of ref-frame is a bit ambiguous. In our
implementation, we set the ref-frame in this case to be
the object’s pose at the start of the demonstration, although
other choices are possible. Finally, if the segment ends with
the demonstrator ungrasping an object, we add an ungrasp
action. An example of the segmentation process is shown in
Figure 2.

One special case is when two objects being held by the
two arms interact with each other. To keep the programming
model simple, OIPs do not support dynamic coordinate
frames. This means the demonstrator is holding one of the
objects with the intent of holding it still. However, the system
might detect a small amount of movement for the stationary
object. In these situations we detect the object that moves
the least eliminate all movement by removing the follow
actions in the corresponding segments. The stationary object
serves as the landmark for the object held in the other hand.

VI. TASK TRANSFER AND EXECUTION

OIPs represent tasks independent of the robot and partic-
ular execution scene. Performing a task represented with an
OIP requires the program to be transferred to the particular
robot and scene. This is akin to a high level programming
language that can be compiled on different systems to per-
form the same tasks. Our algorithm for doing so is described
below.
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Fig. 2: (Top) Illustration of a recorded demonstration with
segmentation points highlighted, and (Bottom) the corre-
sponding OIP with each segment assigned to an action. The
example corresponds to the pour and stir task from our
evaluation.

A. Object localization and registration

The first step when running a program is to localize the ob-
jects in the scene. In some cases, there may be two identical
objects in the scene that serve different purposes (e.g., two
cups, one of which is poured into the other). This is the object
registration problem, and the robot must do both localization
and registration before executing a program. Because our
system is already equipped with object models and our tasks
take place in a tabletop setting, we developed a simple
matching approach to solves both problems. To localize the
objects, we fit a plane to the tabletop surface and segment
objects above the plane. We then match the objects to their
models based on shape and iteratively refine their poses using
the ICP algorithm [39]. If there are multiple instances of the
same object, we assign the objects’ roles based on closeness
to the initial object poses in the original demonstration. After
the robot performs the object localization, we allow the user
to edit the pose as needed for certain challenging scenes.

The OIP stores the object trajectories as poses relative
to other objects in the scene. Once the robot has localized
the objects in the new scene, it can re-compute the desired
object trajectories to be poses in the robot’s coordinate
frame. However, rather than simply replaying these object
trajectories, our system performs several more planning steps
to help ensure task success, described below.

B. Grasp selection

Grasp selection is a key component of our system, because
once an object is grasped, it must accomplish all future
move and follow actions without changing its grasp. As in
classical grasp planning problems, finding a successful grasp
on an object depends on (i) the robot’s gripper, (ii) the 3D
model of the object, (iii) the robot’s manipulator kinematics,
(iv) the pose of the object relative to the robot, and (v)
clutter around the workspace. In addition, the demonstration
presents two additional constraints we try to satisfy in grasp
selection:

• The robot should ensure that its grasp allows it to reach
all future poses of the object specified by subsequent
move and follow actions.

• The robot should grasp objects as similarly as possible
to the grasp demonstrated by the human.



Our grasp planning algorithm first generates candidate
grasps. While alternative candidate generation methods are
possible, we randomly sample points on the object and
approach angles. A useful heuristic that we implemented is
to change the grasp depth based on the width of the object
inside the grasp. If the robot is grasping something thin, it
uses a fingertip grasp, but if it is grasping something large,
it uses a power grasp. This tends the correlate well with how
humans grasp objects. For radially symmetric objects (such
as cylinders, cups, bowls, or plates), grasps that are rotations
around the symmetry axis are considered equivalent. Grasps
that are unreachable or in collision with workspace obstacles
or the target object are eliminated. We then compute a
score for remaining candidate grasps as the weighted sum
of several factors:

• Antipodality: The number of points whose normals are
aligned with the gripper jaw.

• Collisions: The number of points that would be in
collision with the gripper.

• Similarity to demonstration: The Euclidean distance
between the grasp pose and the demonstrator’s wrist
at the time of the grasp.

For each of the top grasps, we compute another score factor:
the kinematic feasibility of this grasp if it were used. We
look ahead at future object trajectories and compute what the
robot’s gripper pose would be with the candidate grasp. We
add another weighted term to the grasp score: the percentage
of poses that have no relaxed inverse kinematics (described
in Section VI-C) solution. Finally, we choose the best grasp.

Figure 3 and Figure 4 show example pairs of demonstrated
human grasps and generated robot grasps in different tasks
used in our evaluation.

C. Generating motion plans

Once a grasp has been selected, we compute robot end-
effector poses from all the object poses in the OIP. The target
pose of a move action, which is specified in the coordinate
frame of the ref-object, is first converted into the robot’s
coordinate frame based on the ref-object’s known pose
in the robot’s coordinate frame. Then, the grasp pose is used
to compute the end-effector pose that corresponds to the
target pose. The same process is used for converting object-
relative object trajectories into end-effector trajectories.

Unlike follow actions, grasp, ungrasp, and move
actions only specify goal poses, not trajectories. To find
collision free paths that reach a desired final pose, we use
existing motion planning methods in the open-source MoveIt
library3. We first try planning a straight-line motion for the
gripper. If this plan is not feasible, we use the RRT-Connect
motion planning algorithm. If this does not work, then we
declare a failure to execute the program.

For follow actions, the end effector trajectory is con-
verted into joint trajectories using what we call relaxed
inverse kinematics. Relaxed inverse kinematics is the same as
normal 6 degree-of-freedom inverse kinematics, but it takes

3https://moveit.ros.org
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Fig. 3: Examples of grasps generated based on human
demonstrations. Each row corresponds to a task described
in Section VII-A. Images on the left show frames from the
demonstration at the moment the demonstrator grasps the
object(s). Images on the right show the grasps selected by
our system.

the radial symmetry of certain objects into account (e.g. cups,
bowls, cylinders). If, for a radially symmetric object, the
robot fails to find an IK solution, it considers alternative
poses by radially rotating the object. This allows the robot
to better find IK solutions, as well as avoid collisions when
its two grippers are close together.

The final step before execution is to re-time the trajectories
in case the demonstrator’s motions are faster than the robot’s
velocity limits would allow. This is done on a segment-by-
segment basis, using the segments found in Section V-B.
To ensure that the ordering of grasp, ungrasp, and object
interactions is unchanged after retiming, we compute the
slowdown factor for the arm joint that has to be slowed down
the most, and then scale the other joints’ velocities by the
same factor.

VII. EVALUATION

In our evaluation, we show that how OIPs are expressive
enough to represent complex manipulation tasks with unique
properties. We created a benchmark of eight manipulation
tasks with different kinds of motions, including bimanual
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Fig. 4: Eight tasks that were programmed in the evaluation
of our system. The left image of each row shows a still frame
from the demonstration video and the right image shows the
robot executing the task at the same point in the task. Tasks
are described in detail in Section VII-A.

tasks. We also show that our programs generalize across
varying starting configurations of the objects in each task.

A. Tasks

Our benchmark includes eight tasks, four that use a single
arm and four that use two arms at the same time. Below, we
describe each of the tasks, how they are unique, and how we
defined success for each task. Figure 4 depicts these tasks.

1) Reposition object: In this task, the robot picks up a
canister of chips and places it in a new location. Although
simple, this task tests a special case in our system, where
the reference object in a move action is the object itself. In
other words, the generated program simply shifts the object’s
pose relative to its initial pose. A trial was successful if the
robot successfully grasped the object and moved it from one
side of the table to the other.

2) Pour a cup into a bowl: In this task, the robot picks up
a cup and pours its contents into a bowl. This task demon-
strates a trajectory-following action. Once the robot moves
the cup near the bowl, it follows the human-demonstrated
trajectory of tipping the cup into the bowl. Additionally, it
shows how our system can choose a grasp based on human

demonstration. In the absence of task-specific information
about the cup, the robot could easily grasp the cup from
above, sticking one gripper finger inside the cup. However,
because the demonstrator grasped the cup from the side, we
expect the grasp planner to choose a side grasp as well. A
trial of this task was successful if the robot grasped the cup
from the side, executed the pouring motion, and placed the
cup back down on the table.

3) Drop a ball: In this task, the robot picks up a tennis
ball and drops it into a bowl. There are two unique features
to this task. First, because the ball is spherical, the auto-
matic object tracker cannot correctly determine its orientation
throughout the demonstration. As a result, our system must
use the relaxed inverse kinematics capabilities described in
Section VI-C. This task is also an example of an ungrasping
action that is detected by dropping an object (i.e., the object
moves away from the person’s hand rather than vice versa).
A trial of this action was successful if the robot successfully
picked up the ball and dropped it into the bowl.

4) Stack a bowl: For this task, the robot picks up a bowl
and places it on a plate. The robot should grasp just the
bowl’s rim rather than place its fingers deep inside the bowl.
We also used this task to illustrate how our system deals with
cross-body motions in demonstrations. The bowl was placed
to the demonstrator’s left, but the demonstrator grasped it
using their right hand. A trial of this task was successful if
the robot placed the bowl on the plate.

5) Arrange boxes: For this task, the robot moves a box
to place it in contact with another box. The unique feature
of this task is that it requires the robot to hold one box
steady with one arm while the other arm pushes the other
box against it. A trial of this task was successful if the
robot successfully pushed one box against the other without
moving the steadied box.

6) Stir and pour: This task simulated a cooking action
in which one arm pours a cup into a skillet while the other
arm stirs the skillet with a tool. This task is unique because
it shows the arm executing two trajectory-following actions
simultaneously. The two arms also come in close proximity
over the skillet in this action. Another unique feature of this
task is that the robot can avoid collisions by holding the
tool differently. Because the tool used in our experiments
is radially symmetric, the robot can hold it in such a way
that prevents its arms from colliding. A trial of this task was
successful if the robot successfully grasped the two objects,
executed the two motions simultaneously without its arms
colliding, and placed the objects back on the table.

7) Place setting: In this task, the robot must simultane-
ously arrange a bowl on a plate and a cup next to the plate.
The unique feature of this task is that one of the arms is doing
a pick-and-place action (placing the cup next to the plate),
while the other is doing a trajectory-following action (placing
the bowl on the plate). A trial of this task was successful if
the robot successfully grasped both the cup and the bowl and
placed them in the correct locations.

8) Unstack cups: In this task, there is a stack of two
plastic cups and the robot needs to separate them. Because



there is a small amount of suction between the two cups
when they are stacked, one arm must be used to grasp the
bottom cup while pulling the top cup with the other arm. The
bottom cup must be grasped using a power grasp from the
side while the top cup must be grasped from the rim without
grasping the bottom cup as well. Unlike other tasks in our
benchmark the two objects start close together and the robot
separates them. A trial of this task was considered a success
if the robot successfully separated the two cups and placed
the top cup on the table.

B. Procedure

The experiments took place in an indoor laboratory with
the Willow Garage PR2 robot. A demonstrator recorded
video demonstrations using an ASUS Xtion PRO Live
RGBD camera. All tasks were demonstrated once and ex-
ecuted five times. We did not re-demonstrate tasks based
on the outcome of the executions. One of the authors
initialized and verified the output of the perception system,
making corrections when needed. The objects were placed in
different starting positions for each execution.The minimum
amount of translation across all objects and trials was 1.8
cm, the maximum was 26.7 cm. Program executions were
observed by the experimenter and categorized as successful
or failed based on the task criteria described in Section VII-
A. Reasons for failures were noted.

C. Results

All tasks were successfully programmed with a single
demonstration. The generated OIPs matched expected sets
of actions with the correct ordering. Our task transfer and
execution method successfully generated a plan in all trials
except one; i.e. the robot was able to attempt the execution in
39 out of the 40 trials. Table I shows the success rate of the
program executions across five trials for all tasks. Executions
of all tasks were successful in at least four out of the five trial
configurations. Four out of the eight tasks had one failure.
In total, 36 out of the 40 executions were successful.

The reasons for the failed trials were noted as follows.
For one trial of the pour cup task, the robot was unable to
generate a plan to reach a bowl placed farther away than
it was in the demonstration. Hence, it could not attempt an
execution. The next two failures were due to errors in the
motion execution. In the stack bowl task, the robot failed one
trial by missing a grasp. This was likely due to noise in the
estimated pose of the bowl, which was grasped very close to
the rim and therefore had the low tolerance. In the unstack
cups task, the robot did not get a strong enough grip on the
top cup, and the top cup slipped out of its grasp.

The last failure pointed to a limitation in expressivity of
our representation. In the stir and pour task, the robot is
required to place the tool back on the table. In one trial,
this placement location (which is relative to the starting
pose of the tool) ended up past the edge of the table, and
the tool fell to the ground. Although our system detects
the table surface and knows its location and dimensions,
it only uses this information to avoid colliding with the

Task # success Task # success

Reposition object 5 Arrange boxes 5
Pour cup 4 Stir and pour 4
Drop ball 5 Place setting 5
Stack bowl 4 Unstack cups 4

TABLE I: Number of successful trials (out of 5) for each
task in the evaluation.

table. In an improved system, the robot could use this
information to avoid dropping objects past the edge of the
table. Alternatively, the table itself could be considered a
landmark allowing specified poses to be relative to the table,
instead of the object’s initial pose. Nonetheless, this was a
minor failure as the rest of the stirring and pouring action
were performed successfully in the trial where the tool was
dropped off the table.

We also evaluated the system’s level of autonomy in the
process of programming the eight tasks. For this purpose, we
noted the number of video frames in which the experimenter
had to make corrections to the output of the perception sys-
tem. The total number of video frames in the demonstrations
varied between 116-325 (M=185.75 SD=72.95). We saw that
the skeleton tracking was overall very robust and required
adjustments in only three of the tasks for 1-4 frames. In
contrast, object tracking required corrections in five out of
the eight tasks. The most problematic task was unstack cups,
which required adjustments in 74 out of 116 frames of the
demonstration. This was because the object tracker could not
distinguish between the top and bottom cups while the two
cups were nested. Additionally, we noticed that the object
tracker had a hard time tracking small objects when occluded
by the demonstrator’s hand. These objects included the mug
(in pour cup), the stirring tool (in stir and pour), and the
tennis ball (in drop ball). As a result, the tasks involving
those objects required adjustments in 11.6% to 31.4% of the
demonstration frames.

Overall, our evaluation demonstrated both expressivity
across complex task types and the ability to generalize across
different task execution scenes. The perception challenge of
tracking small (human hand-sized) objects proved to be too
difficult to enable a fully autonomous system. However, our
system adopted a practical alternative, producing working
programs after some minimal user supervision.

VIII. CONCLUSION

We present a system that leverages recent advances in
robot perception for programming complex manipulation
tasks from a single execution of the task observed from
a third person perspective through the robot’s sensors. We
propose object interaction programs as a robot-independent
task representation that captures how objects move relative
to one another as part of the task. We develop algorithms
to parse a single demonstration into a program, and later
transfer the program to a robot in a new scene for execution.
We present a benchmarking evaluation that demonstrates
expressivity across bi-manual task with a variety of objects
and varying object starting positions. While the perception



challenge of tracking nested objects or small objects in the
person’s hand prevented our system from being fully au-
tonomous, we provide users with tools to supervise the object
tracking and initialization steps of the system. We believe
that incorporating greater degrees of autonomy alongside
human supervision will be an exciting area of continuing
research.
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