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Abstract

We consider a family of problems that are concerned about making predictions
for the majority of unlabeled, graph-structured data samples based on a small
proportion of labeled samples. Relational information among the data samples,
often encoded in the graph/network structure, is shown to be helpful for these
semi-supervised learning tasks. However, conventional graph-based regularization
methods and recent graph neural networks do not fully leverage the interrelations
between the features, the graph, and the labels. In this work, we propose a flexible
generative framework for graph-based semi-supervised learning, which approaches
the joint distribution of the node features, labels, and the graph structure. Borrow-
ing insights from random graph models in network science literature, this joint
distribution can be instantiated using various distribution families. For the inference
of missing labels, we exploit recent advances of scalable variational inference tech-
niques to approximate the Bayesian posterior. We conduct thorough experiments
on benchmark datasets for graph-based semi-supervised learning. Results show
that the proposed methods outperform the state-of-the-art models in most settings.

1 Introduction

Traditional machine learning methods typically treat data samples as independent and approximate a
mapping function from the features to the outcome of each individual sample. However, many real-
world data, such as social media or scientific articles, often come with richer relational information
among the individual samples. We consider a family of such scenarios where the relational information
is stored in a graph structure with the data samples as nodes, and the learning task is to predict the
outcomes of unlabeled nodes based on the node features, the graph structure, as well as the labels
of a subset of nodes. In these scenarios, breaking the independence assumption and utilizing such
relational information in the prediction models have been shown to be helpful [26, 25, 1, 10, 5, 14, 12].
However, there lacks a principled way to best synergize and utilize the relational information stored
in the graph together with the information stored in individual nodes. In this paper, we consider the
problem of graph-based semi-supervised learning and try to approach this problem by presenting a
flexible generative framework that explicitly models the joint relationship among the three key types
of information in this context: features, outcomes (or labels), and the graph.

There are two major classes of existing methods for graph-based semi-supervised learning. The
first class includes the graph-based regularization methods [26, 25, 1, 14, 12], where explicit regu-
larizations are posed to smooth the predictions or feature representations over local neighborhoods.
This class of methods share an assumption that some kind of smoothness (e.g., the outcomes of
adjacent nodes are likely to be the same) should present in the local and global graph structure. The
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second class consists of graph neural networks [10, 5, 21], where the node features within a local
neighborhood are aggregated into a hidden representation for the ego node and predictions are made
on top of the hidden representations. These existing methods either do not treat the graph as a random
variable (but rather as a fixed observation) or do not jointly model the data features, graph, and
outcomes.

While having not been well-explored in graph-based semi-supervised learning, we believe that
modeling the joint distribution of the data, graph, and labels with generative models has several
unique advantages over the above methods.

First, generative models can learn succinct underlying structures of the graph data. Rich literature in
network science [16] has shown that underlying structures often exist in real-world graph data. And
there have been many probabilistic generative models [7, 6] that can learn the underlying structures
well from observed graph data. Most of the existing graph-based semi-supervised learning methods
described above view the graph as a fixed observation and treat it as ground truth. In reality, however,
an observed graph is often noisy. We expect that through treating features, outcomes, and graph as
random variables, a generative model can capture more general patterns among these entities and
learn low-dimensional representations of the data that can take account for the noise in the graph.

Second, modeling the joint distribution can extract more general relationship among features, out-
comes, and the graph. We argue that both classes of the existing graph-based semi-supervised
learning methods only utilize restricted relationships among them. The graph-based regularization
methods usually make strong assumptions about smoothness over adjacent nodes. Such assumptions
often restrict the model capacity, making the models fail to fully utilize the relational information.
The graph neural networks, although more flexible in aggregating node features through the graph
structure, usually implicitly assume conditional independence over the outcomes given node features
and the graph. This might be sub-optimal in utilizing the relational information. Directly modeling
the joint distribution with flexible models allows us to better utilize the relational information.

Moreover, generative models can better handle the missing-data situation. In real-world applications,
we are often faced with imperfect data, where either node features or edges in the graph are missing.
Generative models excel in such situations.

A few previous studies [24] trying to apply generative models to graph-based semi-supervised learning
have been restricted to relatively simple model families due to the difficulty in efficient training of
generative models. Thanks to recent advances of scalable variational inference techniques [9, 8], we
are able to propose a flexible generative framework for graph-based semi-supervised learning. In
this work, we use neural networks, latent space models [6], and stochastic block models [7] to form
the generative models. And we use graph neural networks as the approximate posterior models in
the scalable variational inference. We refer such instantiations of the proposed framework as G3NN
(Generative Graph models with Graph Neural Networks as approximate posterior). We evaluate the
proposed framework with four variants of G3NN on three semi-supervised classification benchmark
datasets. Experiments show that our models achieve better performances than the state-of-the-art
models under most settings.

2 Related Work

This paper mainly focuses on the problem of graph-based semi-supervised learning, where the data
samples are connected by a graph and the outcome labels are only available for part of the samples.
The goal is to infer the unobserved labels based on both the labeled and unlabeled data as well as the
graph structure.

2.1 Graph-based Regularization for Semi-supervised Learning

One of the most popular types of graph-based semi-supervised learning methods is the graph-based
regularization methods. The general assumption of such methods is that the data samples are located
in a low-dimensional manifold where each local neighborhood is a high-dimensional Euclidean space,
and the graph stores the similarity or proximity of these data samples. Various graph regularizations
are posed to smooth the outcome predictions of the model or the feature representations of the data
samples over the local neighborhood in the graph. Suppose there are n data samples in total and m of
them are labeled, the graph-based regularization methods generally conduct semi-supervised learning
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by optimizing the following objective function:
m∑
i=1

Li + η
n∑

i,j=1

wi,jR(fi,fj),

where Li is the supervised loss function of sample i; R(·, ·) is a regularization function and wi,j

is a graph-based coefficient; fi,fj could be the outcome predictions [26, 25, 1] or the feature
representations [14, 22, 12] of nodes i and j; η is a hyper-parameter trading-off the supervised loss
and the graph-based regularization. Different methods can have different variants of the regularization
term. Most commonly, it is set as a graph Laplacian regularizer [26, 25, 1, 14, 22]. Such type of
models heavily rely on the smoothness assumption over the graph, which restricts the modeling
capacity [10].

2.2 Graph Neural Networks for Semi-supervised Learning

Another class of methods that have gained great attention recently are the graph neural networks [10,
5, 21]. A graph neural network aggregates the node features within a local neighborhood into a
hidden representation for the central node. Such aggregation operations can also be stacked on top of
the hidden representations to form deeper neural networks. Generally, a single aggregation operation
for node i at depth l can be represented as follows,

hli = σ(
∑
j∈Ni

αi,jWhl−1j ),

where hli is the hidden representation of i at lth layer; Ni is the neighbor set of i;W is a learnable
linear transformation matrix; σ is an element-wise nonlinear activation function; and different
models have different definitions of αi,j . For Graph Convolutional Networks [10], αi,j = 1/di or
αi,j = 1/

√
didj , where di is the number of neighbors of i. For Graph Attention Networks [21], αi,j

is defined as an attention function between i and j. Finally, the predictions of each node are made
on top of hidden representations in the last layer. Such methods usually model the mapping from
the features and the graph to the outcome of an individual node, which assume the outcomes are
conditionally independent given the features and the graph. This assumption prevents the model from
utilizing the joint relationship among the outcomes over the graph. Our framework models the joint
distribution of the features, outcomes, and the graph, and it is not restricted to this assumption. A
concurrent work [18] also tries to mitigate this assumption. They take a statistical relational learning
point of view and model the outcome dependency with a Markov network conditioned on the graph,
while we take a generative model point of view and instantiate the joint distribution with random
graph models.

2.3 Generative Methods for Graph-based Semi-supervised Learning

Most methods from the above two classes treat the graph as fixed observation and only a few
methods [17, 24, 13] treat the graph as a random variable and model it with generative models.
Among them, Ng et al. [17] focused more on an active learning setting on graphs; Zhang et al. [24]
modeled the graph along with a stochastic block model and did not consider the interaction between
the graph and the features or the labels in the generative model of the graph; Liu [13] shares the
most similar generative model with our framework, but considers a supervised learning setting where
the labels are fully observed. To our best knowledge, our work is the first to propose a generative
framework for graph-based semi-supervised learning that models the joint distribution of features,
outcomes, and the graph with flexible nonlinear models.

Finally, as a side note, there is a recently active area of deep generative models for graphs [11, 3].
But these models focus more on generating realistic graph topology structures and are less related to
the graph-based semi-supervised learning, which is the problem of interest in this work.

3 Approach

3.1 Problem Setup

We start by formally introducing the problem of graph-based semi-supervised learning. Given a
set of data samples D = {(xi,yi)}ni=1, xi ∈ Rd and yi ∈ Rl are the feature and outcome vectors
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of sample i respectively. We further denote X ∈ Rn×d and Y ∈ Rn×l as the matrices formed by
feature and outcome vectors. The dataset also comes with a graph G = (V, E) with the data samples
as nodes, where V = {1, 2, · · · , n} is the set of nodes and E ⊆ V × V is the set of edges. In the
semi-supervised learning setting, only 0 < m < n samples have observed their outcome labels and
the outcome labels of other samples are missing. Without loss of generality, we assume the outcomes
of the samples 1, 2, · · · ,m are observed and that of m + 1, · · · , n are missing. Therefore we can
partition the outcome matrix as

Y =

[
Yobs

Ymiss

]
.

The goal of graph-based semi-supervised learning is to infer Ymiss based on (X,Yobs, G). For
discriminative methods, we are learning the conditional distribution of p(Y|X,G). This is usually
done by learning a prediction model y = f(x;X, G) using empirical risk minimization, optionally
with regularizations:

f̂ = argmin
f

1

m

m∑
i=1

L(yi, f(xi;X, G)) + λR(f ;G),

where L(·, ·) is a loss function, R(·;G) is a graph-based regularization term, and λ is a hyper-
parameter controlling the strength of the regularization. Then f̂ is used to predict Ymiss.

There are two specific learning settings, namely transductive learning and inductive learning, which
are common in graph-based semi-supervised learning. Transductive learning assumes thatX and G
are fully observed during both the learning stage and the inference stage while inductive learning
assumes Xm+1:n and the nodes of m + 1, · · · , n in G are missing during the learning stage but
available during the inference stage. In the following of this paper, we will mainly focus on the
transductive learning setting but our method can also be extended to the inductive learning setting.

3.2 A Flexible Generative Framework for Graph-based Semi-supervised Learning

In discriminative methods, the graph G is usually viewed as a fixed observation. In reality, however,
there is usually considerable noise in the graph. Moreover, we want to take advantage of the
underlying structure among X , Y , and G to improve the prediction performance under this semi-
supervised learning setting. In this work, we propose a flexible generative framework that can model
a wide range of the forms of the joint distribution p(X,Y,G), where X, Y, and G are the random
variables corresponding to X , Y , and G. We also denote Yobs and Ymiss as the random variable
counterparts of Yobs and Ymiss.

Generation process. Inspired by the random graph models from the area of network science [16],
we assume the graph is generated based on the node features and outcomes. The generation process
can be illustrated by the following factorization of the joint distribution:

p(X,Y,G) = p(G|X,Y)p(Y|X)p(X),

where the conditional probabilities p(G|X,Y) and p(Y|X) will be modeled by some flexible
parametric families distributions pθ(G|X,Y) and pθ(Y|X) with parameters θ. By "flexible" we
mean that the only restriction on the PMFs of these conditional probabilities is that they need to
be differentiable almost everywhere w.r.t. θ; and we do not assume the integral of the marginal
distribution pθ(G|X) =

∫
pθ(Y|X)pθ(G|Y,X)dY is tractable. For simplicity, we do not specify

the distribution p(X) and everything will be conditioned on X later in this paper.

Model inference. To infer the missing outcomes Ymiss, we would need the posterior distribution
pθ(Ymiss|X,Yobs,G), which is usually intractable under many flexible generative models. Follow-
ing the recent advances in scalable variational inference [9, 8], we introduce a recognition model
qφ(Ymiss|X,Yobs,G) parameterized by φ to approximate the true posterior pθ(Ymiss|X,Yobs,G).

Model learning. We train the model parameters θ and φ by optimizing the Evidence Lower BOund
(ELBO) of the observed data (Yobs, G) conditioned onX . The negative ELBO loss LELBO is defined
as follows,
log p(Yobs, G|X) ≥ Eqφ(Ymiss|X,Yobs,G)(log pθ(Ymiss,Yobs, G|X)− log qφ(Ymiss|X,Yobs, G))

, −LELBO(θ,φ;X,Yobs, G).
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And the optimal model parameters are obtained by minimizing the above loss:

θ̂, φ̂ = argmin
θ,φ

LELBO(θ,φ;X,Yobs, G).

3.3 G3NN Instantiations

For practical use, it remains to specify the parametric forms of the generative model pθ(G|X,Y)
and pθ(Y|X), and the approximate posterior model qφ(Ymiss|X,Yobs,G). In this section, we
instantiate the Generative Graph model with two types of random graph models, and adopt two types
of Graph Neural Networks as the approximate posterior model, which leads to four variants of G3NN.
As proof of the effectiveness of our general framework, we intend to instantiate its components with
simple models and leave room for optimizing its performance with more complex instantiations. The
generative framework proposed above does not restrict the type of outcomes. As proof of concept,
we focus on multi-class classification outcomes in the following of the paper and denote the number
of classes as K.

3.3.1 Instantiations of the Generative Model

For pθ(Y|X) in the generative model, we simply instantiate it with a multi-layer perceptron. For
pθ(G|X,Y) in the generative model, we have come up with two instantiations inspired by the
generative network models from network science literature. There are two major classes of generative
models for complex networks: the latent space models (LSM) [6] and the stochastic block models
(SBM) [7]. We instantiate a simple model from each class as our generative models.

A general assumption used by both classes of generative models for networks is that the edges are
conditionally independent. Let ei,j ∈ V × V be the binary edge random variable between node i
and j. ei,j = 1 indicates the edge between i and j exists and 0 otherwise. Based on the conditional
independence assumption of edges, the conditional probability of the graph G can be factorized as

pθ(G|X,Y) =
∏
i,j

pθ(ei,j |X,Y).

Next we will specify the instantiations of pθ(ei,j |X,Y).

Instantiation with an LSM. The latent space model assumes that the nodes lie in a latent space
and the probability of ei,j only depends the representation of nodes i and j. i.e., pθ(ei,j |X,Y) =
pθ(ei,j |xi,yi,xj ,yj). We assume it follows a logistic regression model:

pθ(ei,j = 1|xi,yi,xj ,yj) = σ([(Uxi)
T ,yT

i , (Uxj)
T ,yT

j ]w),

where σ(·) is the sigmoid function; w are the learnable parameters of the logistic regression model;
U is a linear transformation matrix with learnable parameters (e.g., word embedding when x is a
bag-of-words feature); the class labels yi,yj are represented as one-hot vectors, and we concatenate
the transformed features and the class labels of a pair of nodes as input of the logistic regression
model. All the learnable parameters are included in θ.

Instantiation with an SBM. The stochastic block model assumes there are C types of nodes and
each node i has a (latent) type variable zi ∈ {1, 2, · · · , C} and the probability of edge ei,j only
depends on node types zi and zj . In a general SBM, we have pθ(ei,j = 1|zi, zj) = pzi,zj , and the
pu,v for all u, v ∈ {1, 2, · · · , C} form a probability matrix P and are free parameters to be fitted.

In our model, we assume the node types are the class labels, i.e., C = K and zi being the correspond-
ing class of yi, and pθ(ei,j |X,Y) = pθ(ei,j |yi,yj). Note that in our notation yi is a one-hot vector.
We specify pθ(ei,j |yi,yj) with the simplest SBM, which is also called the planted partition model.
That is,

ei,j |yi,yj ∼
{

Bernoulli(p0) if yi = yj

Bernoulli(p1) if yi 6= yj
.

This means the probability matrix P has all the diagonal elements equal to a constant p0 and all the
off-diagonal elements equal to another constant p1.
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3.3.2 Instantiations of the Approximate Posterior Model

For the approximate posterior model qφ(Ymiss|X,Yobs,G), in principle we need a strong function
approximator that takes (X,Yobs,G) as the input and outputs the probability of Ymiss. Here we
consider two recently invented graph neural networks: the Graph Convolutional Network (GCN) [10]
and the Graph Attention Network (GAT) [21]. Note that by doing this we are making a further
approximation from qφ(Ymiss|X,Yobs,G) to qφ(Ymiss|X,G), as the graph neural networks by
design only take (X,G) as the input. This approximation is known as the mean-field method, which
is commonly used in variational inference [2].

3.4 Training

Finally, we end this section by introducing two practical details of model training.

Supervised loss. As our main task is to conduct classification with the approximate posterior model,
similar with Kingma et al. [8], we add an additional supervised loss to better train the approximate
posterior model:

Ls(φ;X,Yobs, G) = − log qφ(Yobs|X, G).

The total loss is controlled by a weight hyper-parameter η,

L(θ,φ) = LELBO(θ,φ;X,Yobs, G) + η · Ls(φ;X,Yobs, G).

We could rewrite the total loss in an alternative way as follows,

L(θ,φ) =Eqφ(Ymiss|X,G) − log pθ(G|X,Yobs,Ymiss) +DKL(qφ(Ymiss|X, G)‖pθ(Ymiss|X))

− log pθ(Yobs|X)− η · log qφ(Yobs|X, G),

which provides a connection between the proposed generative framework and existing graph neural
networks. The fourth term−η ·log qφ(Yobs|X, G) provides supervised information from labeled data
for the approximate posterior GCN or GAT, while the other three terms can be viewed as additional
regularizations: the learned GCN or GAT is encouraged to support the generative model of the graph,
and not to go far away from pθ(Y|X).

Negative edge sampling. For both LSM and SBM based models, the probability pθ(G|X,Y)
factorizes to the production of probabilities of all possible edges. Calculating the log-likelihood
of it requires enumeration of all possible (i, j) pairs where i, j ∈ {1, 2, · · · , n}, which results in a
O(n2) computational cost at each epoch. In practice, instead of going through all (i, j) pairs, we only
calculate the probabilities of the edges observed in the graph and a set of "negative edges" randomly
sampled from the (i, j) pairs where edges do not exist. This practical trick, named negative sampling,
is commonly used in the training of word embeddings [15] and graph embeddings [20].

4 Experiments

In this section, we evaluate the proposed variants of G3NN on several benchmark datasets for graph-
based semi-supervised learning. We test the models under both the standard benchmark setting [23]
as well as two data-scarce settings.

4.1 Standard Benchmark Setting

We first consider a standard benchmark setting in recent graph-based semi-supervised learning
literature [23, 10, 21].

Datasets. We use three standard semi-supervised learning benchmark datasets for graph neural
networks, Citeseer, Cora, and Pubmed [19, 23]. The graph G of each dataset is a citation network
with documents as nodes and citations as edges. The feature vector of each node is a bag-of-words
representation of the document and the class label represents the research area this document belongs
to. We adopt these datasets from the PyTorch-Geometric library [4] in our experiments5. For each

5The datasets loaded by the PyTorch-Geometric data loader have slightly less edges than those reported in
Yang et al. [23], which is believed due to the existence of duplicate edges in the original datasets.
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Table 1: Summary of benchmark datasets.

Dataset # Classes # Nodes # Edges Avg. 2-Neighborhood Size

Cora 7 2,708 5,278 35.8
Pubmed 3 19,717 44,324 59.1
Citeseer 6 3,327 4,552 14.1

Table 2: Classification accuracy under the standard benchmark setting. The upper block lists the
discriminative baselines. The lower block lists the proposed variants of G3NN. The bold marker
denotes the best performance on each dataset. The underline marker denotes that the generative model
outperforms its discriminative counterpart, e.g., LSM-GCN outperforms GCN; and the asterisk (*)
marker denotes the difference is statistically significant by a t-test at significance level 0.05. The
(±) error bar denotes the standard deviation of the test performance of 10 independent trials.

Cora Pubmed Citeseer

MLP 0.583 ± 0.009 0.734 ± 0.002 0.569 ± 0.008
GCN 0.815 ± 0.002 0.794 ± 0.004 0.718 ± 0.003
GAT 0.825 ± 0.005 0.785 ± 0.004 0.715 ± 0.007

LSM_GCN 0.825 ± 0.002* 0.779 ± 0.004 0.744 ± 0.003*
LSM_GAT 0.829 ± 0.003 0.776 ± 0.007 0.731 ± 0.005*
SBM_GCN 0.822 ± 0.002* 0.784 ± 0.006 0.745 ± 0.004*
SBM_GAT 0.829 ± 0.003 0.774 ± 0.004 0.740 ± 0.003*

dataset, we summarize number of classes, number of nodes, number of edges, and average number of
nodes within the 2-hop neighborhood of each node in Table 1. In this standard benchmark setting, we
closely follow the dataset setup in Yang et al. [23] and Kipf and Welling [10].

Models for comparison. For the proposed framework, we implement four variants (2×2) of G3NN
by combining the two generative model instantiations with the two approximate posterior model
instantiations: LSM-GCN, SBM-GCN, LSM-GAT, SBM-GAT.

For baselines, we compare against two state-of-the-art models for the graph-based semi-supervised
learning, GCN [10] and GAT [21]. We also include a multi-layer perceptron (MLP), which is a fully
connected neural network without using any graph information, as a reference.

We use the original architectures of GCN and GAT models in both the baselines and the proposed
methods. We grid search the number of hidden units from (16, 32, 64) and the learning rate from
(0.001, 0.005, 0.01). GAT uses a multi-head attention mechanism. In our experiments, we fix the
number of heads as 8 and try to set the total number of hidden units as (16, 32, 64) and to set
the number of hidden units of a single head as (16, 32, 64). In the proposed methods, we set the
generative model for pθ(Y|X) as a two-layer MLP having the same number of hidden units as the
corresponding GCN or GAT in the posterior model. For the MLP baseline, we also set the number of
layers as 2 and grid search the number of hidden units and learning rate like other models. For the
proposed generative models, we grid search the coefficient of the supervised loss η from (0.5, 1, 10).
The number of negative edges is set to be the number of the observed edges in the graph. For LSM
models, the dimensions of the feature transformation matrix U is fixed to 8 × d, where d is the
feature size. For SBM models, we use two settings of (p0, p1): (0.9, 0.1) and (0.5, 0.6). We use
Adam optimizer to train all the models and apply early stopping with the cross-entropy loss on the
validation set. We adopt the implementations of GCN and GAT from the PyTorch-Geometric [4]
library in all our experiments.

Results. The performance of the baselines and proposed models under the standard benchmark
setting is summarized in Table 2. We report the mean and the standard deviation of the test accuracy
of 10 independent trials for each model. The results show that on all datasets except for Pubmed,
the proposed methods achieve the best test accuracy on the standard benchmark setting. Notably,
every instantiation model of the proposed generative framework outperforms their corresponding
discriminative baseline (GCN or GAT) in most cases. We also note that GCN performs better than
GAT and the proposed models on Pubmed. We conjecture that, when the number of classes is
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Table 3: Classification accuracy under the missing-edge setting. The bold marker, the underline
marker, the asterisk (*) marker, and the (±) error bar share the same definitions in Table 2.

Cora Pubmed Citeseer

MLP 0.583 ± 0.009 0.734 ± 0.002 0.569 ± 0.008
GCN 0.665 ± 0.007 0.746 ± 0.004 0.652 ± 0.005
GAT 0.682 ± 0.004 0.744 ± 0.006 0.642 ± 0.004

LSM_GCN 0.711 ± 0.005* 0.766 ± 0.006* 0.704 ± 0.002*
LSM_GAT 0.710 ± 0.007* 0.766 ± 0.004* 0.691 ± 0.005*
SBM_GCN 0.718 ± 0.004* 0.762 ± 0.005* 0.716 ± 0.004*
SBM_GAT 0.716 ± 0.007* 0.761 ± 0.005* 0.709 ± 0.008*

small and the graph is relatively dense, GCN may be already quite capable of propagating feature
information from neighbors (see the average size of 2-hop neighborhoods in Table 1). When there
are more classes or the graph is relatively sparse (e.g., Cora, Citeseer, and the missing-edge setting of
Pubmed in Section 4.2.1), the advantage of our proposed method is more evident.

4.2 Data-Scarce Settings

Generative models usually have better sample efficiency than discriminative models. Therefore, we
expect the proposed generative framework to show bigger advantage when data are scarce. Next,
we evaluate the models on the citation datasets under two such settings: missing-edge setting and
reduced-label setting.

4.2.1 Missing-Edge Setting

In the standard benchmark setting, we assume that all samples are connected to the graph identically
and the training, validation, and test set are split randomly in the datasets. In practice, however, the
samples we are interested in the test period may not be well connected to the graph. For example, we
may not have connection for new users in a social network other than their profile information. In
this cold-start situation, one may expect to make predictions purely based on the profile information.
However, we believe that the relational information stored in the graph of the training data can still
help us learn a better and more generalizable model even if some of the predictions are made only
based on the node features. And we expect the proposed generative models to work better than the
discriminative baselines in this case because they can better distill the relationship among the data.

To mimic such situations, we create a missing-edge setting, where we remove all the edges of the
test nodes from the graph. Note that this setting is different from the inductive learning setting in
previous works [5, 21] where the edges for the test data are absent during the training stage but
present during the test stage. In the missing-edge setting, the edges for the test data are absent during
both stages. We follow the same experimental setup as in the standard benchmark setting except for
the modification of the graph.

Results. The performance under the missing-edge setting is shown in Table 3. Not surprisingly, as
we lose part of the graph information, the performances of all models except for MLP (which does
not use the graph at all) drop compared to the standard benchmark setting in Table 2. However, the
proposed generative models perform better than their corresponding discriminative baselines by a
large margin. Remarkably, even without knowing any edges of out-of-sample nodes, the accuracy of
SBM-GCN on Citeseer can achieve the state-of-the-art level of GCN under the standard benchmark
setting.

4.2.2 Reduced-Label Setting

Another common data-scarce situation is the lack of labeled data. Therefore, we create a reduced-label
setting, where we drop half of the training labels for each class compared to the standard benchmark
setting. All other experiment and model setups are the same as the standard benchmark setting.

Results. The performance under the reduced-label setting is shown in Table 4. As can be seen from
the results, the proposed generative models achieve the best test accuracy on Cora and Citeseer again.
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Table 4: Classification accuracy under the reduced-label setting. The bold marker, the underline
marker, the asterisk (*) marker, and the (±) error bar share the same definitions in Table 2.

Cora Pubmed Citeseer

MLP 0.498 ± 0.004 0.674 ± 0.005 0.493 ± 0.010
GCN 0.750 ± 0.003 0.724 ± 0.005 0.666 ± 0.003
GAT 0.771 ± 0.004 0.711 ± 0.006 0.675 ± 0.005

LSM_GCN 0.777 ± 0.002* 0.709 ± 0.003 0.691 ± 0.005*
LSM_GAT 0.792 ± 0.004* 0.699 ± 0.003 0.691 ± 0.004*
SBM_GCN 0.780 ± 0.002* 0.710 ± 0.004 0.703 ± 0.006*
SBM_GAT 0.796 ± 0.008* 0.699 ± 0.003 0.698 ± 0.003*

And the gap of the performances between the proposed generative models and the corresponding
discriminative models are larger on Cora and Citeseer.

5 Conclusion

In this paper, we have presented a flexible generative framework for graph-based semi-supervised
learning. By applying scalable variational inference, this framework is able to take the advantages
of both recently developed graph neural networks and the wisdom of random graph models from
classical network science literature, which leads to the G3NN model. We further implement 4
variants of G3NN, instantiations of the proposed framework where we build generative graph models
with graph neural networks as the approximate posterior models. Through thorough experiments,
We demonstrated that these instantiation models outperform the state-of-the-art graph-based semi-
supervised learning methods on most benchmark datasets under the standard benchmark setting. We
also showed that the proposed generative framework has great potential in data-scarce situations.

For future work, we expect more complex instantiations of generative models to be developed using
this framework and to optimize the graph-based semi-supervised learning.
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