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Abstract

We conduct a large-scale, systematic study
to evaluate the existing evaluation methods
for natural language generation in the con-
text of generating online product reviews. We
compare human-based evaluators with a va-
riety of automated evaluation procedures, in-
cluding discriminative evaluators that measure
how well machine-generated text can be dis-
tinguished from human-written text, as well as
word overlap metrics that assess how similar
the generated text compares to human-written
references. We determine to what extent these
different evaluators agree on the ranking of a
dozen of state-of-the-art generators for online
product reviews. We find that human eval-
uators do not correlate well with discrimina-
tive evaluators, leaving a bigger question of
whether adversarial accuracy is the correct ob-
jective for natural language generation. In gen-
eral, distinguishing machine-generated text is
challenging even for human evaluators, and
human decisions correlate better with lexical
overlaps. We find lexical diversity an intrigu-
ing metric that is indicative of the assessments
of different evaluators. A post-experiment sur-
vey of participants provides insights into how
to evaluate and improve the quality of natural
language generation systems 1.

1 Introduction

Recent developments in neural language models
(Mikolov and Zweig, 2012), (Reiter and Belz,
2009), (Mikolov et al., 2011b), (Mikolov et al.,
2011a) have inspired the use of neural network
based architectures for the task of natural language
generation (NLG). Despite fast development of al-
gorithms, there is an urgency to fill the huge gap in
evaluating NLG systems. On one hand, a rigorous,

1 The experimental setup, data, and annotations are pub-
licly available at: https://github.com/Crista23/
JudgeTheJudges

efficient, and reproducible evaluation procedure is
critical for the development of any machine learn-
ing technology and for correct interpretation of the
state-of-the-art. On the other hand, evaluating the
quality of language generation is inherently dif-
ficult due to the special properties of text, such
as subjectivity and non-compositionality. Indeed,

“there is no agreed objective criterion for comparing
the goodness of texts” (Dale and Mellish, 1998),
and there lacks a clear model of text quality (Hard-
castle and Scott, 2008).

Conventionally, most NLG systems have been
evaluated in a rather informal manner. (Reiter
and Belz, 2009) divide existing evaluation meth-
ods commonly employed in text generation into
three categories: i) evaluations based on task per-
formance, ii) human judgments and ratings, where
human subjects are recruited to rate different di-
mensions of the generated texts, and iii) evalua-
tions based on comparison to a reference corpus
using automated metrics. Task based evaluation
considers that the value of a piece of functional text
lies in how well it serves the user to fulfill a specific
application. It can be expensive, time-consuming,
and often dependent on the good will of partici-
pants in the study. Besides that, it is hard to toss
out the general quality of text generation from the
special context (and confounds) of the task, or to
generalize the evaluation conclusions across tasks.
Human annotation is able to assess the quality of
text more directly than task based evaluation. How-
ever, rigorously evaluating NLG systems with real
users can be expensive and time consuming, and it
does not scale well (Reiter et al., 2001). Human as-
sessments also need to be consistent and repeatable
for a meaningful evaluation (Lopez, 2012). Alter-
native strategies which are more effective in terms
of cost and time are used more frequently.

Automated evaluation compares texts generated
by the candidate algorithms to human-written texts.

https://github.com/Crista23/JudgeTheJudges
https://github.com/Crista23/JudgeTheJudges
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Word overlap metrics and more recent automated
adversarial evaluators are widely employed in NLG
as they are cheap, quick, repeatable, and do not re-
quire human subjects when a reference corpus is
already available. In addition, they allow devel-
opers to make rapid changes to their systems and
automatically tune parameters without human in-
tervention. Despite the benefits, however, the use
of automated metrics in the field of NLG is con-
troversial (Reiter and Belz, 2009), and their results
are often criticized as not meaningful for a number
of reasons. First, these automatic evaluations rely
on a high-quality corpus of references, which is
not often available. Second, comparisons with a
reference corpus do not assess the usefulness and
the impact of the generated text on the readers as in
human-based evaluations. Third, creating human
written reference texts specifically for the purpose
of evaluation could still be expensive, especially if
these reference texts need to be created by skilled
domain experts. Finally and most importantly, us-
ing automated evaluation metrics is sensible only
if they correlate with results of human-based eval-
uations and if they are accurate predictors of text
quality, which is never formally verified at scale.

We present a large-scale, systematic experiment
that evaluates the evaluators for NLG. We compare
three types of evaluators including human evalu-
ators, automated adversarial evaluators trained to
distinguish human-written from machine-generated
product reviews, and word overlap metrics (such as
BLEU and ROUGE) in a particular scenario, gen-
erating online product reviews. The preferences of
different evaluators on a dozen representative deep-
learning based NLG algorithms are compared with
human assessments of the quality of the generated
reviews. Our findings reveal significant differences
among the evaluators and shed light on the poten-
tial factors that contribute to these differences. The
analysis of a post experiment survey also provides
important implications on how to guide the devel-
opment of new NLG algorithms.

2 Related Work

2.1 Deep Learning Based NLG

Recently, a decent number of deep learning
based models have been proposed for text gener-
ation. Recurrent Neural Networks (RNNs) and
their variants, such as Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) mod-
els, Google LM (Jozefowicz et al., 2016), and

Scheduled Sampling (SS) (Bengio et al., 2015) are
widely used for generating textual data.

Generative Adversarial Networks (Goodfellow
et al., 2014), or GANs, train generative models
through an adversarial process. Generating text
with GANs is challenging due to the discrete nature
of text data. SeqGAN (Yu et al., 2017) is one of the
earliest GAN-based model for sequence generation,
which treats the procedure as a sequential decision
making process. RankGAN (Lin et al., 2017) pro-
poses a framework that addresses the quality of
a set of generated sequences collectively. Many
GAN-based models (Yu et al., 2017), (Lin et al.,
2017), (Rajeswar et al., 2017), (Che et al., 2017),
(Li et al., 2017), (Zhang et al., 2017) are only capa-
ble of generating short texts. LeakGAN (Guo et al.,
2018) is proposed for generating longer texts.

Deep learning architectures other than LSTM or
GAN have also been proposed for text generation.
(Tang et al., 2016) study NLG given particular con-
texts or situations and proposes two approaches
based on the encoder-decoder framework. (Dong
et al., 2017) address the same task and employ an
additional soft attention mechanism. Pre-training
enables better generalization in deep neural net-
works (Erhan et al., 2010), especially when com-
bined with supervised discriminative fine-tuning
to learn universal robust representations (Radford
et al., 2018), (Devlin et al., 2018), (Radford et al.,
2019). (Guu et al., 2018) use a prototype-then-edit
generative language model for sentences.

2.2 Automated Evaluation Metrics

The variety of NLG models are also evaluated with
various approaches. Arguably, the most natural
way to evaluate the quality of a generator is to
involve humans as judges, either through some
type of Turing test (Machinery, 1950) to distinguish
generated text from human input texts, or to directly
compare the texts generated by different generators
(Mellish and Dale, 1998). Such approaches are
hard to scale and have to be redesigned whenever a
new generator is included. Practically, it is critical
to find automated metrics to evaluate the quality
of a generator independent of human judges or an
exhaustive set of competing generators.

Perplexity (Jelinek et al., 1977) is commonly
used to evaluate the quality of a language model,
which has also been employed to evaluate genera-
tors (Yarats and Lewis, 2018), (Ficler and Goldberg,
2017), (Gerz et al., 2018) even though it is com-
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monly criticized for not being a direct measure of
the quality of generated text (Fedus et al., 2018).
Perplexity is a model dependent metric, and “how
likely a sentence is generated by a given model” is
not comparable across different models. Therefore
we do not include perplexity in this study.

Discriminative Evaluation is an alternative
way to evaluate a generator, which measures how
likely its generated text can fool a classifier that
aims to distinguish the generated text from human-
written texts. In a way, this is an automated approx-
imation of the Turing test, where machine judges
are used to replace human judges. Discriminative
machine judges can be trained either using a data
set with explicit labels (Ott et al., 2011), or using
a mixture of text written by real humans and those
generated by the model being evaluated. The lat-
ter is usually referred to as adversarial evaluation.
(Bowman et al., 2016) proposes one of the earliest
studies that uses adversarial error to assess the qual-
ity of generated sentences. Notably, maximizing
the adversarial error is consistent to the objective
of the generator in generative adversarial networks.
(Kannan and Vinyals, 2017) propose an adversarial
loss to discriminate a dialogue model’s output from
human output. The discriminator prefers longer
output and rarer language instead of the common
responses generated. There however lacks evidence
that a model that obtains a lower adversarial loss is
better according to human evaluations.

Automatic dialogue evaluation is formulated as a
learning problem in (Lowe et al., 2017), who train
an RNN to predict the scores a human would assign
to dialogue responses. RNN predictions correlate
with human judgments at the utterance and system
level, however each response is evaluated in a very
specific context and the system requires substantial
human judgments for training. (Li et al., 2017)
employ a discriminator (analogous to the human
evaluator in the Turing test) both in training and
testing and define adversarial success. Other work
finds the performance of a discriminative agent
(e.g., attention-based bidirectional LSTM binary
classifier) is comparable with human judges at dis-
tinguishing between real and fake dialogue excerpts
(Bruni and Fernández, 2017). However, results
show there is limited consensus among humans on
what is considered as coherent dialogue passages.

Word Overlap Metrics, such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005), are commonly

used to measure the similarity between the gener-
ated text and human written references. (Liu et al.,
2016) find that word overlap metrics present weak
or no correlation with human judgments in non-task
oriented dialogue systems and thus should be used
with caution or in combination with user studies.
In contrary, it is reported in (Sharma et al., 2017)
that text overlap metrics are indicative of human
judgments in task-oriented dialogue settings, when
used on datasets which contain multiple ground
truth references. (Dai et al., 2017) find text overlap
metrics too restrictive as they focus on fidelity of
wording instead of fidelity of semantics. (Callison-
Burch et al., 2006) consider an increase in BLEU
insufficient for an actual improvement in the quality
of a system and posit in favor of human evaluation.

BLEU and its variants (e.g., Self-BLEU) are
used to evaluate GAN models (Caccia et al., 2018;
Zhu et al., 2018). (Shi et al., 2018) compare frame-
works for text generation including MLE, SeqGAN,
LeakGAN and Inverse Reinforcement Learning us-
ing a simulated Turing test. A benchmarking exper-
iment with GAN models is conducted in (Lu et al.,
2018); results show LeakGAN presents the highest
BLEU scores on the test data. Similarly, BLEU and
METEOR present highest correlations with human
judgements (Callison-Burch et al., 2008), (Graham
and Baldwin, 2014). However, evaluation metrics
are not robust across conditions, and no single met-
ric consistently outperforms other metrics across
all correlation levels (Przybocki et al., 2009).

Conventional neural language models trained
with maximum likelihood can be on par or better
than GANs (Caccia et al., 2018), (Semeniuta et al.,
2018), (Tevet et al., 2018). However, log-likelihood
is often computationally intractable (Theis et al.,
2016). Models with good likelihood can produce
bad samples, and vice-versa (Goodfellow, 2016).
Generative models should be evaluated with re-
gards to the task they are intended for over the
full quality-diversity spectrum (Cı́fka et al., 2018),
(Hashimoto et al., 2019), (Montahaei et al., 2019).

While many generators are proposed and eval-
uated with various metrics, no existing work has
systematically evaluated the different evaluators at
scale, especially in the context of online review
generation. Our work fills in this gap.

3 Experiment Design

We design a large-scale experiment to systemati-
cally analyze the procedures and metrics used for
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evaluating NLG models. To test the different evalu-
ators, the experiment carefully chooses a particular
application context and a variety of natural lan-
guage generators in this context. Ideally, a sound
automated evaluator should be able to distinguish
good generators from suboptimal ones. Its prefer-
ences (on ordering the generators) should be con-
sistent to humans in the exact application context.

3.1 Experiment Context and Procedure

We design the experiment in the context of gen-
erating online product reviews. There are several
reasons why review generation is a desirable task
for the experiment: 1) online product reviews are
widely available, and it is easy to collect a large
number of examples for training/ testing the gener-
ators; 2) Internet users are used to reading online
reviews, and it is easy to recruit capable human
judges to assess the quality of reviews; and 3) com-
paring to tasks like image caption generation or
dialogue systems, review generation has minimal
dependency on the conversation context or on non-
textual data, which reduces possible confounds.

Figure 1: Overview of the Experiment Procedure.

The general experiment procedure is presented
in Figure 1. We start from the publicly available
Amazon Product Reviews dataset 2 and select three
most popular domains: books, electronics, and
movies. After filtering rare products, inactive users,
and overly long reviews, the dataset is randomly
split into three parts, to train, to validate, and to

2http://jmcauley.ucsd.edu/data/amazon/

test the candidate review generators (denoted as G-
train, G-valid, and G-test). Every generative model
is trained and validated using the same datasets,
and then charged to generate a number of product
reviews (details are included in the next section).
These generated reviews, mixed with the real re-
views in G-test, are randomly split into three new
subsets for training, validating, and testing candi-
date (discriminative) evaluators, denoted as D-train,
D-valid, and D-test. Finally, a random sample of
reviews from D-test are sent for human evaluation.

3.2 Review Generators

Although our goal is to evaluate the evaluators, it is
critical to include a wide range of text generators
with various degrees of quality. A good evalua-
tor should be able to distinguish the high-quality
generators from the low-quality ones. We select a
diverse set of generative models from recent litera-
ture. The goal of this study is not to name the best
generative model, and it is unfeasible to include all
existing models. Our criteria are: (1) the models
are published before 2018, when our experiment is
conducted; (2) the models represent different learn-
ing strategies and quality levels; (3) the models
have publicly available implementations, for repro-
ducibility purposes. In Table 1 we list the candidate
generators. It is not an exhaustive list of what are
currently available. For implementation details of
these models please see Appendix A.1.

Table 1: Candidate models for review generation.

Generative Model Adversarial
Framework

Word LSTM temp 1.0 (Hochreiter and Schmidhuber, 1997) No
Word LSTM temp 0.7 (Hochreiter and Schmidhuber, 1997) No
Word LSTM temp 0.5 (Hochreiter and Schmidhuber, 1997) No
Scheduled Sampling (Bengio et al., 2015) No
Google LM (Jozefowicz et al., 2016) No
Attention Attribute to Sequence* (Dong et al., 2017) No
Contexts to Sequences* (Tang et al., 2016) No
Gated Contexts to Sequences* (Tang et al., 2016) No
MLE SeqGAN (Yu et al., 2017) Yes
SeqGAN (Yu et al., 2017) Yes
RankGAN (Lin et al., 2017) Yes
LeakGAN (Guo et al., 2018) Yes
* indicates that review generation using these models are conditional on

context information such as product ids; other models are context independent.

Every generator (except Google LM) is trained
and validated on G-train and G-valid datasets, and
used to generate the same number of machine-
generated (a.k.a., fake) reviews (see Table 2). We
follow the best practice in literature to train these
models, although it is possible that the performance
of models might not be optimal due to various con-

http://jmcauley.ucsd.edu/data/amazon/
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straints. This will not affect the validity of the
experiment as our goal is to evaluate the evalua-
tors instead of the individual generators. Google
LM was not trained on reviews, but it provides a
sanity check for the experiment - a reasonable eval-
uator should not rank it higher than those trained
for generating reviews.

Table 2: Number of generated reviews by each model.

Generative Model Total D-Train D-Valid D-Test
∀ model in Table 1 except Google LM 32,500 22,750 3,250 6,500
Google LM 6,680 4,676 668 1,336

3.3 Evaluators

We include a comprehensive set of evaluators for
the quality of the aforementioned generators: i)
human evaluators, ii) discriminative evaluators, and
iii) text overlap evaluators. The evaluators are the
main subjects of the experiment.

3.3.1 Human evaluators
We conduct a careful power analysis (Christensen,
2007), which suggests that at least 111 examples
per generative model should be human annotated to
infer that the machine-generated reviews are com-
parable in quality to human-written reviews, at a
minimal statistically significance level of 0.05. Per
this calculation, we sample 150 examples for each
of the 12 generators for human evaluation. This
totals 1,800 machine-generated reviews, to which
we add 1,800 human-written reviews, or a total
of 3,600 product reviews sent for human annota-
tion. We markup out-of-vocabulary words in both
human-written and machine-generated reviews to
control for confounds of using certain rare words.
There is no significant difference in proportion of
the markup token between the two classes (2.5%-
real vs. 2.2%-fake). We recruit 900 human annota-
tors through the Amazon Mechanical Turk (AMT)
platform. Each annotator is presented 20 reviews,
a mixture of 10 real (i.e., human written) and 10
fake (i.e., machine generated), and they are charged
to label each review as real or fake based on their
own judgment. Clear instructions are presented
to the workers that markup tokens are present in
both classes and cannot be used to decide whether
a review is real or fake. Each page is annotated
by 5 distinct human evaluators. The 5 judgments
on every review are used to assemble two distinct
human evaluators: H1 - individual votes, treat-
ing all human annotations independently, and H2

- majority votes of the 5 human judgments. For
every annotated review, the human evaluator (H1
or H2) makes a call which can be either right or
wrong with regard to the ground truth. A generator
is high quality if the human evaluator achieves low
accuracy identifying the reviews as fake.

3.3.2 Discriminative evaluators
The inclusion of multiple generators provides the
opportunity of creating meta-adversarial evalu-
ators, trained using a pool of generated reviews
by many generators, mixed with a larger number
of “real” reviews (D-train and D-valid datasets).
Such a “pooling” strategy is similar to the standard
practice used by the TREC conferences to evalu-
ate different information retrieval systems (Harman
and Voorhees, 2006). Comparing to individual ad-
versarial evaluators, a meta-evaluator is supposed
to be more robust and fair, and it can be applied to
evaluate new generators without being retrained. In
our experiment, we find that the meta-adversarial
evaluators rank the generators in similar orders to
the best individual adversarial evaluators.

We employ a total of 7 meta-adversarial eval-
uators: 3 deep, among which one using LSTM
(Hochreiter and Schmidhuber, 1997), one using
Convolutional Neural Network (CNN) (LeCun
et al., 1998), and one using a combination of
LSTM and CNN architectures; 4 shallow, based on
Naive Bayes (NB) (Rish, 2001), Random Forest
(RF) (Liaw et al., 2002), Support Vector Machines
(SVM) (Cortes and Vapnik, 1995), and XGBoost
(Chen and Guestrin, 2016), with unigrams, bigrams,
and trigrams as features and on balanced training
sets. We find the best hyper-parameters using ran-
dom search and prevent the models from overfitting
by using early stopping. For every review in D-test
(either annotated or not), a meta-adversarial evalu-
ator makes a judgment call. A generator is consid-
ered high quality if the meta-adversarial evaluator
makes more mistakes on reviews it generated.

3.3.3 Word-overlap evaluators
We include a set of 4 text-overlap metrics used for
NLG evaluation: BLEU and METEOR (specific to
machine translation), ROUGE (used in text summa-
rization), and CIDEr (Vedantam et al., 2015) (used
in image description evaluation). These metrics
rely on matching n-grams in the target text (i.e.,
generated reviews) to the “references” (i.e., human-
written reviews). The higher the overlap (similar-
ity), the higher the quality of generated text. For
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every generated review in D-test Fake, we assemble
the set of references by retrieving the top-10 most
similar human-written reviews in D-test Real using
a simple vector space model. We compute 600-
dimensional vector representation of reviews using
Sent2Vec (Pagliardini et al., 2018), pretrained on
English Wikipedia, and retrieve the top-k nearest
neighbors for each review based on cosine similar-
ity of the embedding vectors. The rationale of using
nearest neighbors of each generated review as ref-
erences is that to appear “real”, a generated review
just need to be similar to some real reviews instead
of all. A generator is considered high quality if its
generated reviews obtain a high average score by
a text overlap evaluator. In total, we analyze and
compare 13 candidate evaluators (2 human evalua-
tors, 7 discriminative evaluators, and 4 text-overlap
metrics), based on the D-test dataset.

4 Results

First, we are interested in the accuracy of individual
evaluators - how well they can distinguish “fake”
(machine-generated) reviews from “real” (human-
written) reviews. Second, we are interested in how
an evaluator assesses the quality of the 12 gener-
ators instead of individual reviews. The absolute
scores an evaluator gives to the generators are not
as informative as how it ranks them: a good evalu-
ator should be able to rank good generators above
bad generators. Last but not least, we are inter-
ested in how the rankings by different evaluators
correlate with each other. Intuitively, an automated
evaluator that ranks the generators in similar orders
as the human evaluators is more reasonable and can
potentially be used as the surrogate of humans.

4.1 Results of Individual Evaluators

4.1.1 Human evaluators
Every review is annotated by 5 human judges as
either “fake” or “real.” The inter-annotator agree-
ment (Fleiss-Kappa score (Fleiss et al., 2013)) is
k = 0.2748. This suggests that distinguishing
machine-generated reviews from real in general is
a hard task even for humans; there is limited con-
sensus on what counts as a realistic review. The low
agreement also implies that any automated evalu-
ator that mimics human judges is not necessarily
the most “accurate.”

In Figure 2 we present the accuracy of two hu-
man evaluators on individual annotated reviews,
based on either all 5 annotations or their majority

Figure 2: Accuracy of human evaluators on individual
reviews: H1 - individual votes; H2 - majority votes.

votes for each review. Comparing to the ground-
truth (of whether a review is machine-generated
or collected from Amazon), individual human de-
cisions are 66.61% accurate, while their majority
votes can reach 72.63%. Neither of them is close to
perfect. We observe that human evaluators gener-
ally do better at correctly labelling human-written
reviews as real (true positive rate of 78.96% for
H1 and 88.31% for H2), and they are confused
by machine-generated reviews in close to half of
the cases (true negative rate of 54.26% for H1 and
56.95% for H2). This trend reassures previous
observations (Tang et al., 2016).

We then look at how the human evaluators rank
the 12 generators, according to the accuracy of hu-
man evaluators on all (fake) reviews generated by
each of the generators. The lower the accuracy,
the more likely the human evaluator is confused
by the generated reviews, and thus the better the
generator. We observe a substantial variance in
the accuracy of both human evaluators on different
generators, which suggests that human evaluators
are able to distinguish between generators. The
generator ranked the highest by both human evalu-
ators is Gated Contexts to Sequences. Google LM
is ranked on the lower side, which makes sense as
the model is not trained to generate reviews. Inter-
estingly, humans tend not to be fooled by reviews
generated by the GAN-based models (MLE Seq-
GAN, SeqGAN, RankGAN and LeakGAN), even
though their objective is to confuse fake from real.
GAN-generated reviews tend to be easily distin-
guishable from the real reviews by human judges.

4.1.2 Discriminative evaluators
We then analyze the 7 meta-adversarial evaluators.
Different from human evaluators that are applied
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to the 3,600 annotated reviews, the discriminative
evaluators are applied to all reviews in D-test.

Meta-adversarial Evaluators. On individual
reviews, the three deep learning based and the
one SVM based evaluators achieve higher accu-
racy than the two human evaluators, indicating
that adversarial evaluators can distinguish a sin-
gle machine-generated review from human-written
better than humans (Figure 3 and Table 4 in Ap-
pendix A.3.2). Their true positive rates and true
negative rates are more balanced than human eval-
uators. Meta-discriminators commonly rank GAN-
based generators the highest. This makes sense as
the objective of GAN is consistent to the (reversed)
evaluator accuracy. Interestingly, by simply setting
the temperature parameter of Word LSTM to 1.0,
it achieves comparable performance to the GANs.

Figure 3: Accuracy of human (H1, H2) and meta-
adversarial evaluators (LSTM, SVM) on reviews gener-
ated by individual generators. The lower the accuracy,
the better the generator.

4.1.3 Word-Overlap Evaluators
The generators are ranked based on the average
scores of their generated reviews. In Figure 4 we
present the average scores of the 12 generators by
each evaluator. Different word-overlap evaluators
also tend to rank the generators in similar orders.
Interestingly, the top-ranked generator according
to three evaluators is Contexts to Sequences, while
CIDEr scores highest the Gated Contexts to Se-
quences model. GAN-based generators are gener-
ally ranked low; please also see Appendix A.3.3.

4.2 Comparing Evaluators

To what degree do the evaluators agree on the rank-
ing of generators? We are more interested in how
the automated evaluators compare to the human
evaluators, and whether there is any suitable au-
tomated surrogate for human judges at all. To do

Figure 4: Text-Overlap Evaluators (BLEU and CIDEr)
scores for individual generators. The higher the bet-
ter. The rankings are overall similar, as GAN-based
generators are ranked low.

this, we compute the correlations between H1, H2
and each discriminative evaluator and correlations
between H1, H2 and the text-overlap evaluators,
based on either their decisions on individual re-
views, their scores of the generators (by Pearson’s
coefficient (Fieller et al., 1957)), and their rank-
ings of the generators (by Spearman’s ρ (Spearman,
1904) and Kendall’s τ (Daniel et al., 1978)). Pat-
terns of the three correlation metrics are similar;
please see Figure 5 and Table 5 in Appendix A.3.4.

Figure 5: Kendall τ -b between human and automated
evaluators. Human’s ranking is positively correlated
to text-overlap evaluators and negatively correlated to
adversarial evaluators (∗ is p ≤ 0.05).

Surprisingly, none of the discriminative evalu-
ators have a positive correlation with the human
evaluators. That says, generators that fool ma-
chine judges easily are less likely to confuse human
judges, and vice versa. Word-overlap evaluators
tend to have a positive correlation with the human
evaluators in ranking the generators. Among them,
BLEU appears to be closer to humans. This pat-
tern is consistent in all three types of correlations.
These two observations are intriguing, which indi-
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cates that when identifying fake reviews, humans
might focus more on word usage rather than trying
to construct a “decision boundary” mentally.

In summary, we find that 1) human evalua-
tors cannot distinguish machine-generated reviews
from real reviews perfectly, with significant bias
between the two classes; 2) meta-adversarial evalu-
ators can better distinguish individual fake reviews,
but their rankings at the generator level tend to be
negatively correlated with human evaluators; and 3)
text-overlap evaluators are highly correlated with
human evaluators in ranking generators.

5 Discussion

We carried a systematic experiment that evaluates
the evaluators for NLG. Results have intriguing im-
plications to both the evaluation and the construc-
tion of natural language generators. We conduct
in-depth analysis to discover possible explanations.

5.1 Granularity of Judgments

We charged the Turkers to label individual reviews
as either fake or real instead of evaluating each
generator as a whole. Comparing to an adversarial
discriminator, a human judge has not seen many
“training” examples of fake reviews or generators.
That explains why the meta-adversarial evaluators
are better at identifying fake reviews. In this con-
text, humans are likely to judge whether a review
is real based on how “similar” it appears to the true
reviews they are used to seeing online.

This finding provides interesting implications to
the selection of evaluation methods for different
tasks. In tasks that are set up to judge individual
pieces of generated text (e.g., reviews, translations,
summaries, captions, fake news) where there ex-
ists human-written ground-truth, it is better to use
word-overlap metrics instead of adversarial eval-
uators. When judgments are made on the agent/
system level (e.g., whether a Twitter account is a
bot), signals like how similar the agent outputs are
or how much the agent memorizes the training ex-
amples may become more useful than word usage,
and a discriminative evaluator may be more effec-
tive than word-overlap metrics. Our finding also
implies that adversarial accuracy might not be the
optimal objective for NLG if the goal is to generate
documents that humans consider as real. Indeed, a
fake review that fools humans does not necessarily
need to fool a machine that has seen everything. In
Appendix B.2 we provide more details.

5.2 Imperfect Ground Truth

One important thing to note is that all discrimi-
native evaluators are trained using natural labels
(i.e., treating all examples from the Amazon review
dataset as positive and examples generated by the
candidate models as negative) instead of human-
annotated labels. Some reviews posted on Amazon
may have been generated by bots, and if that is the
case, treating them as human-written examples may
bias the discriminators. To verify this, we apply the
already trained meta-discriminators to the human-
annotated subset (3,600 reviews) instead of the full
D-test set, and we use the majority vote of human
judges (whether a review is fake or real) to surro-
gate the natural “ground-truth” labels (whether a
review is generated or sampled from Amazon).

Figure 6: Kendall τ -b correlation coefficients between
human evaluators and automated evaluators, tested on
the annotated subset of D-test with majority votes as
ground-truth (∗ denotes p ≤ 0.05).

When the meta-adversarial evaluators are tested
using human majority-votes as ground-truth, the
scores and rankings of these discriminative eval-
uators are more inline with the human evaluators,
although still not as highly correlated as BLEU;
please see Figure 6. Indeed, discriminative evalua-
tors suffer the most from low-quality labels, as they
were directly trained using the imperfect ground-
truth. Word-overlap evaluators are more robust, as
they only take the most relevant parts of the test
set as references (more likely to be high quality).
Our results also suggest that when adversarial train-
ing is used, selection of training examples must be
done with caution. If the “ground-truth” is hijacked
by low quality or “fake” examples, models trained
by GAN may be significantly biased. This finding
is related to the recent literature of the robustness
and security of machine learning models (Papernot
et al., 2017). Appendix B.3 contains further details.
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5.3 Role of Diversity

We assess the role diversity plays in rankings the
generators. Diversity of a generator is measured
by either the lexical diversity (Bache et al., 2013)
or Self-BLEU (Zhu et al., 2018) of the samples
produced by the generator. Results obtained (see
Figure 7) indicate generators that produce the least
diverse samples are easily distinguished by the
meta-discriminators, while they confuse humans
the most. This confirms that adversarial discrimi-
nators capture limitations of generative models in
lack of diversity (Kannan and Vinyals, 2017).

Figure 7: Self-BLEU scores (the lower the more di-
verse) and lexical diversity scores (the higher the more
diverse) are highly correlated in ranking the generators.

Similarly, we measure to what extent the gen-
erators are memorizing the training set G-train as
the average BLEU scores of generated reviews us-
ing their nearest neighbors in G-train as references.
We observe the generators do not memorize the
training set, and GAN models generate reviews
that have fewer overlap with G-train; this finding
is in line with recent theoretical studies on memo-
rization in GANs (Nagarajan et al.).

The effects of diversity indicate that when hu-
mans are distinguishing individual reviews as real
or fake, whether or not a fake review is sufficiently
different from the other generated reviews is not a
major factor for their decision. Instead, they tend
to focus on whether the review looks similar to the
reviews they have seen in reality. A discriminative
evaluator is more powerful in making decisions at
a system level (e.g., a dialog system or a bot ac-
count), where diversity becomes a major factor. In
Appendix B.4 we provide more details.

5.4 User Study

Finally, we are interested in the reasons why human
annotators label certain reviews as fake (machine-
written). After annotating a batch of reviews, work-

ers are asked to explain their decisions by filling in
an optional free-text comment. This enables us to
have a better understanding of what differentiates
machine-generated from human-written reviews
from human’s perspective. Analyzing their com-
ments, we identify the main reasons why human
evaluators annotate a review as machine-written.
These are mainly related to the presence of gram-
matical errors in the review text, wrong wording or
inappropriate choice of expressions, redundant use
of specific phrases or contradictory arguments in
the review. Interestingly, human evaluators’ innate
biases are also reflected in their decisions: they
are likely to categorize a review as fake if it is too
formal, lacks emotion and personal pronouns, or is
too vague and generic. Please see Appendix B.1.

5.5 Summary

In summary, our findings represent a preliminary
foundation for proposing more solid and robust
evaluation metrics and objectives of natural lan-
guage generation. The low inter-rater agreement
we observe suggests that judging individual pieces
of text as machine- or human-generated is a dif-
ficult task even for humans. In this context, dis-
criminative evaluators are not as correlated with
human judges as word-overlap evaluators. That
implies that adversarial accuracy might not be the
optimal objective for generating individual docu-
ments when realism is the main concern. In con-
trast, GAN based models may more easily pass a
Turing test on a system level, or in a conversational
context. When the judges have seen enough exam-
ples from the same generator, the next example had
better be somewhat different.

Our results also suggest that when adversarial
evaluation is used, the training examples must be
carefully selected to avoid false-positives. We also
find that when humans are distinguishing fake re-
views from real ones, they tend to focus more on the
usage of words, expressions, emotions, and other
details. This may affect the design of objectives for
the next generation of NLG models.

Acknowledgement

We thank Wei Ai for his help on the power analysis,
and Yue Wang and Teng Ye for helpful discussions.
This work is in part supported by the National Sci-
ence Foundation under grant numbers 1633370 and
1620319 and by the National Library of Medicine
under grant number 2R01LM010681-05.



3975

References
Kevin Bache, David Newman, and Padhraic Smyth.

2013. Text-based measures of document diversity.
In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 23–31. ACM.

Philip Bachman and Doina Precup. 2015. Data gener-
ation as sequential decision making. In Advances
in Neural Information Processing Systems, pages
3249–3257.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.
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