
Graph Representation Learning via Multi-task
Knowledge Distillation

Jiaqi Ma
School of Information
University of Michigan
jiaqima@umich.edu

Qiaozhu Mei
School of Information
University of Michigan
qmei@umich.edu

Abstract

Machine learning on graph structured data has attracted much research interest due
to its ubiquity in real world data. However, how to efficiently represent graph data
in a general way is still an open problem. Traditional methods use handcraft graph
features in a tabular form but suffer from the defects of domain expertise require-
ment and information loss. Graph representation learning overcomes these defects
by automatically learning the continuous representations from graph structures, but
they require abundant training labels, which are often hard to fulfill for graph-level
prediction problems. In this work, we demonstrate that, if available, the domain
expertise used for designing handcraft graph features can improve the graph-level
representation learning when training labels are scarce. Specifically, we proposed a
multi-task knowledge distillation method. By incorporating network-theory-based
graph metrics as auxiliary tasks, we show on both synthetic and real datasets that
the proposed multi-task learning method can improve the prediction performance
of the original learning task, especially when the training data size is small.

1 Introduction

Graph structured data are ubiquitous in application domains of machine learning, such as social
networks [14, 7], chemistry [17], and biology [16, 1]. However, learning from graph structured data
is very challenging, as they cannot be directly represented in a tabular form, which is what most
traditional machine learning models are designed for. Therefore, how to properly represent the graph
structured data has been a key factor influencing the performance.

A common and straightforward method of graph representation is to calculate handcraft features from
the graph based on domain knowledge to obtain a tabular representation. Though being successful
in some applications [14, 7], this method has a heavy demand of domain expertise and suffers from
information loss in the handcraft features. Graph representation learning methods [12, 15, 3, 6],
which learn a graph representation model automatically from data, overcome these defects but require
a large amount of labels. While co-occurrence-based unsupervised learning methods are widely used
in node-level or subgraph-level prediction problems (labels are associated with nodes or subgraphs),
most existing graph-level (labels are associated with the entire graph) prediction models are trained
with supervised learning. On the other hand, when successful, we know the machine learning models
with handcraft graph features require much fewer labels to train, thanks to the domain knowledge
provided by the features. And there is rich literature in network theory providing useful graph metrics.
So it would be desirable if we can incorporate the existing domain knowledge from network theory
into the graph representation learning to reduce the number of training labels required.

In this paper, we propose a novel multi-task knowledge distillation method for graph representation
learning. We share an abstract view of knowledge with Hinton et al. [4] that the knowledge can
be represented as a mapping from input vectors to output vectors. Here we encode the knowledge

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

ar
X

iv
:1

91
1.

05
70

0v
1

 [c
s.L

G
]

11
 N

ov
 2

01
9

of the network-theory-based graph metrics into the mapping from the raw graphs to the metric
values. We then use these graph metrics as auxiliary tasks and distill the knowledge of network
theory into the learned graph representations via multi-task learning. We implement the proposed
method on top of DeepGraph [8], a recently proposed graph-level representation learning method,
as a proof-of-concept. In general, however, the proposed method should be compatible with any
graph representation learning models that are trained through supervised learning. We illustrate the
implementation of the proposed method in Figure 1.

Finally, we evaluate the proposed method on both synthetic datasets and real benchmark datasets.
Experimental results show that the domain knowledge can improve the main task performance,
especially when training labels are scarce.

Input Graph

Time length

N
um

 o
f n

od
es

Time length
N

um
 o

f b
in

s

HKS Histogram Shared Conv and
Dense Layers

...

...

...

Separate Dense
Layers

Output A

Output B

Multi-task Learning Framework

DeepGraph Representation

Figure 1: Implementation of the multi-task knowledge distillation method for graph representation
learning.

2 Approach

In this section, we describe the proposed multi-task knowledge distillation method shown in details.
The method contains two building blocks, a Graph Representation block, and a Multi-task Learning
block.

2.1 Graph Representation

We use a similar graph representation structure as DeepGraph [8] at the bottom of our model (shown
in the left block in Figure 1). We first calculate the Heat Kernel Signature (HKS)1 as a graph
descriptor and then feed the histogram of the HKS into a convolutional neural network (CNN) to
learn the representation of the graph.

2.2 Multi-task Learning

Denote pairs of graph and (graph-level) label as {(Gi, yi)}Ni=1, where Gi ∈ G, yi ∈ Y and G,Y
are the spaces of all possible graphs and labels respectively. The graph-level prediction can be
formulated as a supervised learning problem that finds a parameterized mapping function f : G → Y
minimizing J(θ) = 1

N

∑N
i=1 L(yi, f(Gi; θ)), where L is a prediction error function and θ are the

model parameters.

In the proposed method, we use network-theory-based graph metrics as auxiliary tasks and train these
tasks together with the main prediction task together through multi-task learning [2]. In the multi-task
setting, the label yi becomes a vector yi = (y11 , y

2
i , . . . , y

K
i) ∈ Y = Y1 × Y2 × · · · × YK , and K is

the number of tasks. The problem becomes finding K functions fk : G → Yk, k = 1, 2, . . . ,K that
minimizes

K∑
k=1

1

|Ik|
∑
i∈Ik

αkLk(y
k
i , fk(Gi; θ, θk)),

1See Appendix B for more details.

2

Figure 2: Test MSE of the Diameter task vs different sizes of training data of the Diameter task on
Poisson random graphs and preferential-attachment graphs.
where Ik ⊂ 1, 2, . . . , N is the set of examples that have labels in task k and |Ik| is the size of Ik; Lk
is the prediction error function for task k; θk are the task-specific model parameters of fk; θ are the
model parameters shared by all fk, k = 1, 2, . . . ,K; αk are hyper-parameters for task weights.

We specify the model function for task k as
fk(G; θ, θk) = gk(h(G; θ); θk),

where h(·; θ) is the DeepGraph representation and is shared by all the tasks and gk(·; θk) is the
separate dense layers for task k. Typically, gk(·; θk) is a simple model (e.g., a linear model), so that
the graph representation h(·; θ) is forced to capture the knowledge from the auxiliary tasks.

Network-theory based graph metrics as auxiliary tasks

It is known that the auxiliary tasks should be related to the main task to improve the model perfor-
mance [10, 9] but measuring task relatedness in general has been an open problem. For this specific
scenario, however, the network-theory-based graph metrics are likely to be related because they have
been useful as handcraft features in many graph-level prediction tasks [14, 7].

Another advantage of using these graph metrics as auxiliary tasks is they are usually easier to obtain
than the labels of the main task. We can calculate infinite number of auxiliary labels (e.g., from
randomly generated graphs) so long as computation resources permit.

Finally, as the benefit of knowledge distillation, using the graph metrics as auxiliary labels rather than
graph features helps reduce the computational cost at the test time, as we do not need to calculate
these metrics for test data. This is especially important for applications in certain online services.

In this paper, we use Density and Diameter as our auxiliary tasks as a proof-of-concept.

3 Experiments

In this section, we test the proposed method on both synthetic data and real data.

3.1 Datasets

Synthetic data We adopt two commonly used random graph models in network theory, Poisson
random graph (a.k.a. Erdős-Rényi model) and preferential attachment graph (a.k.a. Barabási-Albert
model), to generate our synthetic datasets. For each model, we generate 100k graphs and calculated
both the Density and the Diameter as labels for each graph. The details of synthetic data generation
can be found in Appendix A.1.1.

Real data Two real graph-level prediction benchmark datasets, NCI1 [17] and IMDB-BINARY [18],
are used. More details can be found in Appendix A.1.2.

3.2 Experiment Setup

For each dataset, we first split the whole dataset into training, validation, and test dataset with the
proportion 8:1:1. We vary the number of labels available for the main task. For synthetic datasets,

3

Figure 3: 10-fold cross validation test accuracy of the main task vs the fraction of the training dataset
used on NCI1 and IMDB-BINARY datasets. The error bar indicates the standard deviation of the
mean of the cross validation experiments.

we set the main task as Diameter and the auxiliary task as Density because Diameter has a higher
computation complexity. For the real datasets, we set the original prediction task associated with the
dataset as the main task, and both Diameter and Density as the auxiliary tasks.

We implement both the multi-task model and the single-task model as a neural network of two convo-
lutional layers followed by two fully connected layers. For multi-task model, the two convolutional
layers and the first fully connected layer are shared by two tasks while the second fully connected
layer is separated. For each setting, we tune the hyper-parameters for the multi-task model and the
single-task model separately using random search on the validation set (see Appendix A.2). We
evaluate the models on the independent test set.

For the real datasets, because the data sizes are small, we use 10-fold cross validation to evaluate the
models. We only tune the hyper-parameters on the first fold and fix them for other folds.

3.3 Results

Synthetic data The results of Poison random graph and preferential attachment graph are shown in
Figure 2. As can be seen in the results, for both datasets, the single-task model gets lower MSE on
the test set when the training data size increases. With the help of the auxiliary task (Density task),
the multi-task model is almost always better than the single-task model on the synthetic datasets. Yet
the gap between the performance of the multi-task model and that of the single-task model is larger
when the training data size is relatively small. This trend is especially obvious on the Poison random
graph dataset, where the gap vanishes as the training data size increases to 24k.

Real data The results of the multi-task model and the single-task model with variable training data
size on NCI1 and IMDB-BINARY are shown in Figure 3. The result of the NCI1 dataset is consistent
with what we observed in the synthetic data: the multi-task model is better than the single-task model,
and the gap between the multi-task model and the single-task model is larger when the training data
size is smaller. While the multi-task model is also mostly better than the single-task model on the
IMDB-BINARY dataset, the gap between the multi-task model and single-task model does not show
the same pattern as in other datasets. This is likely because the IMDB-BINARY dataset is too small
therefore there is high variance in the results. Indeed, the error bars of the the evaluation scores
indicate that the difference between the two models, especially when the fraction of the training
dataset used is small, is not significant.

4 Conclusion

In this paper, we propose a novel multi-task knowledge distillation method for graph representation
learning. This method incorporates network-theory-based graph metrics as auxiliary tasks via multi-
task learning to learn better graph representations, and we have demonstrated that the proposed
method improves the quality of the main prediction task. In future work, we plan to adopt more
advanced graph representation models to further optimize for the performance on real datasets.

4

References
[1] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J., and Kriegel, H.-P.

(2005). Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56.

[2] Caruana, R. (1998). Multitask learning. In Learning to learn, pages 95–133. Springer.

[3] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864. ACM.

[4] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

[5] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[6] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

[7] Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., and Kustarev,
A. (2012). Prediction of retweet cascade size over time. In Proceedings of the 21st ACM
international conference on Information and knowledge management, pages 2335–2338. ACM.

[8] Li, C., Guo, X., and Mei, Q. (2016). Deepgraph: Graph structure predicts network growth. arXiv
preprint arXiv:1610.06251.

[9] Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., and Chi, E. H. (2018). Modeling task relationships in
multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1930–1939. ACM.

[10] Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch networks for multi-task
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3994–4003.

[11] Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning convolutional neural networks for
graphs. In International conference on machine learning, pages 2014–2023.

[12] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM.

[13] Sun, J., Ovsjanikov, M., and Guibas, L. (2009). A concise and provably informative multi-scale
signature based on heat diffusion. In Computer graphics forum, volume 28, pages 1383–1392.
Wiley Online Library.

[14] Szabo, G. and Huberman, B. A. (2010). Predicting the popularity of online content. Communi-
cations of the ACM, 53(8):80–88.

[15] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pages 1067–1077. International World Wide Web Conferences Steering Committee.

[16] Toivonen, H., Srinivasan, A., King, R. D., Kramer, S., and Helma, C. (2003). Statistical
evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):1183–1193.

[17] Wale, N., Watson, I. A., and Karypis, G. (2008). Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375.

[18] Yanardag, P. and Vishwanathan, S. (2015). Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1365–1374.
ACM.

5

A Experiment Details

In the experiments, we want to test our hypothesis that the multi-task model can help the main task
when the number of labels available for the main task is small, and we found some difficulties in
using the real datasets for this hypothesis testing.

First, We would like to conduct control experiments varying the size of training dataset of the main
task. However, for each individual dataset and a given data size n, it is difficult to determine which
“phase” the dataset resides in: n = 100k might still be too small for a difficult task while n = 1000
could be large enough for a simple task; and we do not know difficulty of the main task associated
with the dataset as a priori. Moreover, the real benchmark graph prediction datasets we got are in the
level of thousands of examples. The test set is so small that the evaluation score on the test set has a
high variance. As a consequence, we have to run heavy cross validation experiments before we get
results that are significant.

Therefore to overcome these difficulties, we used synthetic data generated by random graph models
as a proof-of-concept testing of our hypothesis. In synthetic data, we can easily control the data size
and have abundant test data to have robust evaluation.

A.1 Datasets

A.1.1 Synthetic Data

• Poisson random graph: For each graph, the number of nodes n is randomly generated from
a normal distribution N (30, 102) with the minimum 5. The link probability p is randomly
generated from a normal distribution N (0.3, 0.122) with the minimum 0.05.

• Preferential attachment graph: For each graph, the number of nodes n is randomly generated
from a normal distributionN (30, 102) with the minimum 5. The number of edges k for each
new node is randomly generated from a normal distribution N (6, 22) with the minimum 2
and maximum n− 3.

A.1.2 Real Data

• NCI1 [17] are chemical compounds screened for activity against non-small cell lung cancer
and ovarian cancer cell lines. There are 4110 graphs in this dataset.

• IMDB-BINARY [18] is a movie collaboration dataset. The nodes of each graph represent
actors and two nodes are linked by an edge if the corresponding actors appear in the same
movie. Each graph is the ego-network of an actor, and the task is to predict which genre an
ego-network belongs to. There are 1000 graphs in this dataset.

A.2 Hyper-parameter Tuning

For both synthetic data and real data, the hyper-parameters we tuned are listed below.

• Number of time step for HKS: Uniformly from {16, 32, 64, 128}.

• Minimum time step for HKS: Uniformly from [e−6, e1] in log scale.

• Maximum time step for HKS: Uniformly from [e2, e6] in log scale.

• Number of bins for HKS histogram: Uniformly from {16, 32, 64, 128}.

• Kernel sizes of the convolutional layers: Uniformly from {3, 5, 7}.

The first fully connected layer size is set as 60 and the second fully connected layer size is set as 40.
Adam [5] algorithm with the default hyper-parameter setting is used to train both models and early
stop is used with the validation set.

For real data, there is one more hyper-parameter: which auxiliary task to use (either diameter or
density).

6

Table 1: 10-fold cross validation test accuracy of state-of-the-art graph prediction methods and our
approach on the real benchmark datasets.

Deep GK Deep WL PSCN DGSTL DGMTL
NCI1 62.48 (± 0.25) 80.31 (± 0.46) 76.34 (± 1.68) 77.17 (± 0.19) 77.56 (± 0.21)

IMDB-B 66.96 (± 0.56) N/A 71.00 (± 2.29) 70.10 (± 0.35) 70.83 (± 0.36)

A.3 Comparison with Strong Baselines

We also compare the proposed methods with Strong baseline methods on the full dataset.

Comparison methods

• DGMTL
• Deep graph kernels [18] are a group of deep variants of some graph kernels, which are

reported to outperform or match the corresponding graph kernels on these benchmark
datasets. In this paper, we compare with the deep variants of the graphlet kernel (Deep GK)
and the Weisfeiler-Lehman subtree kernel (Deep WL).

• PSCN [11] is an extension of CNN to graphs, which first determines an ordered sequence of
nodes from the graph, then generates a neighborhood graph of constant size for each node
in the sequence, and generates a vector representation (patch) for each neighborhood so that
nodes with similar structural roles in the neighborhood graph are positioned similarly in the
vector space, finally feeds the patches to a 1D CNN.

As we use the same setting as of Yanardag and Vishwanathan [18], Niepert et al. [11], we just report
the results from those papers for comparison. “N/A” means the result is not available from the
original paper.

Results The results are shown in Table 1. For the NCI1 dataset, the Deep WL method still remains
the best, probably because the WL kernel is a very good fit for this specific task. Our approach
(DGMTL) outperforms all other methods. For the IMDB-BINARY dataset, while the PSCN method
has a slightly higher mean accuracy than our approach (DGMTL), it has very high variance. Overall,
the proposed method is comparable with the strong baseline methods.

B Heat Kernel Signature (HKS)

HKS maps isomorphic graphs to the same representation and graphs with the same HKS representation
are isomorphic. Therefore HKS is a very informative graph descriptor.

Given a graph G = (V,E,W), where V,E are the set of nodes and edges of G respectively and
W ∈ R|V |×|V | is a matrix denotes the edge weights between every pair of nodes. The heat kernel
hz(i, j), a function of two nodes i, j ∈ V at any given diffusion step z, represents the amount of
aggregated heat flow through all edges among the two nodes after diffusion step z. The heat kernels
are computed using eigenfunction expansion of a graph Laplacian. The graph Laplacian is defined as:

L = D −W,

where D is a diagonal degree matrix with diagonal entries being the summation of rows of W :
Dii =

∑
j wij .

The heat kernel is then defined as

hz(i, j) =

|V |∑
k=1

e−λkzφk(i)φk(j),

where λk is the k-th eigenvalue of L and phik is the corresponding eigenfunction.

In practice, using heat kernels as representation of graphs has a high computation complexity so heat
kernel signature was introduced as a computationally cheaper representation of graphs. Specifically,

7

the heat kernel signature is a matrix H ∈ R|V |×T such that

Hij = hzj (i, i),

where zj ∈ {z1, z2, ..., zT } is a time step from a finite set of T diffusion steps.

Finally, the heat kernel signature is summarized into a histogram S ∈ RB×T , where B is a hyper-
parameter representing the number of histogram bins, and then is fed into a CNN.

For more details of the graph representation, we refer the readers to the paper [8] for the DeepGraph
model and the paper [13] for the original HKS literature.

8

	1 Introduction
	2 Approach
	2.1 Graph Representation
	2.2 Multi-task Learning

	3 Experiments
	3.1 Datasets
	3.2 Experiment Setup
	3.3 Results

	4 Conclusion
	A Experiment Details
	A.1 Datasets
	A.1.1 Synthetic Data
	A.1.2 Real Data

	A.2 Hyper-parameter Tuning
	A.3 Comparison with Strong Baselines

	B Heat Kernel Signature (HKS)

