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Abstract

With an average network size approaching 8000 servers, data-
center networks need scalable security-state monitoring so-
lutions. Using Attack Graph (AG) to identify possible attack
paths and network risks is a common approach. However, ex-
isting AG generation approaches suffer from the state-space
explosion issue. The size of AG increases exponentially as the
number of services and vulnerabilities increases. To address
this issue, we propose a network segmentation-based scal-
able security state management framework, called S3, which
applies a divide-and-conquer approach to create multiple
small-scale AGs (i.e., sub-AGs) by partitioning a large net-
work into manageable smaller segments, and then merge them
to establish the entire AG for the whole system. S3 utilizes
SDN-based distributed firewall (DFW) for managing service
reachability among different network segments. Therefore, it
avoids reconstructing the entire system-level AG due to the
dependencies among vulnerabilities.

Our experimental analysis shows that S3 (i) reduces AG
generation and analysis complexity by reducing AG’s den-
sity compared to existing AG-based solutions; (ii) utilizes
SDN-based DFW to provide a granular security management
framework, by incorporating security policies at the level of
individual hosts and segments. In effect, S3 helps in limiting
targeted slow and low attacks involving lateral movement.

1 Introduction

With the surge in cloud infrastructure and new technology
such as containers and server-less applications, the attack
surface has increased significantly. In order to have a better
understanding of the security situation of a system, scalable
and effective attack representation methods (ARMs) are re-
quired. The security administrator can use information de-
rived from ARMs and apply the appropriate countermeasure
on the identified critical path [6].

Graphical security states management and analysis solu-
tions, e.g., Attack Graphs (AGs), is such a tool to fulfill the

purpose of security state analysis. AGs are defined as a data
structure, used to model all possible critical attack paths and
vulnerabilities of a system, which an adversary can exploit in
order to achieve his/her attacking goals. However, generating
and analyzing AG in a security system requires a significant
generation and analysis overhead, an issue addressed in this
paper, that has not been effectively addressed by existing so-
lutions. The AG generation and attack path searching when
performing AG-based attack scenario analysis can be an NP-
hard problem as noted by Durkota ez. al. [12], which depends
on the density of a given AG. In a large network system, AGs
are often incomprehensible to a user due to its complex in-
terdependence among vulnerabilities. The identification of
information regarding vulnerability dependencies becomes
increasingly difficult as the number of services and vulnerabil-
ities are increasing in the network system. Amman et. al. [1]
proposed an AG generation approach with the scalability
of the order O(N®). MulVAL [27] reduces the AG genera-
tion and analysis complexity from O(N°®) to O(N?) — O(N?),
where N is the number of network hosts'. Nevertheless, the
generation of AG by using MulVAL still takes an order of
minutes for a few hundreds of hosts.

The second problem S3 framework considers in this work
is lateral movement. This sophisticated attack is conducted
by highly expert individuals or organizations, which allow
for multiple exploits and movement from one system node to
another. AG can be used to identify the critical paths that can
be exploited by an expert attacker. AG-based security analysis
can identify the dependencies between services in a network
and minimize the security issues that will allow an adversary
to compromise critical services by lateral movement along
east-west network using exhaustive trials method [8] over
different attack paths. Moreover, AG has been widely used in
identifying the least expensive countermeasure solution [6].

"MulVAL ignored the scenarios when multiple vulnerabilities exist on
the same host. In current virtualized environments, vulnerabilities can be
interdependent within a given host and thus contribute to the complexity of
AG generation and analysis. In this paper, we consider N is the measurement
of the number of given vulnerabilities.



Thus, to identify and detect lateral movement, a well-modeled
security analysis tool is needed. S3 framework focuses on
the scalability of AG, which in return can be used to iden-
tify critical systems and help in the detecting complex attack
scenarios.

In this paper, we propose to leverage SDN-based Dis-
tributed Firewall (DFW) [13] rules to partition the large-scale
network into small network segments in order to efficiently
compute an AG in a data-centric network. We utilize the SDN
controller to inspect network events and obtain a global view
of the network and service reachability. SDN controller in-
teracts with distributed firewall’s Security Policy Database
(SPD) at the application plane to obtain an updated list of secu-
rity policies. The data-plane is based on OpenFlow switches.
SDN controller installs DFW rules on connected switches at
data-plane layer to limit traffic across different logical seg-
ments. We apply micro-segmentation [3,21] in order to divide
the large data center into small segments based on granular
security policies. This helps in restricting the lateral move-
ments along east-west communication paths among network
segments.

In general, S3 framework follows a divide-and-conquer
approach to generates AG for each segment (sub-AG) after
obtaining vulnerability and reachability information from
vulnerability analysis tools. Finally, the result of divide-and-
conquer approach (sub-AGs) are merged based on the [DFW |
rules to obtain the system AG, or we call it the Composite
Attack Graph (CAG). The key contributions of S3 are as
follows:

e Our proposed S3-based micro-segmentation algorithm
is able to generate a scalable AG by utilizing DFW rules.
The algorithm complexity We achieved is O(( %)2) +
O(Klog(K)), where N is the total number of vulnerabil-
ities and K is the number of established segments. The
AG generation time achieved using S3 is much faster
compared to state-of-the-art AG generation tools, i.e.,
S3 takes ~ 20 sec for generating AG for a network with
services over 6000 services, as shown in Section 6, com-
pared to over 1 hour taken by MulVAL [27].

e We propose a granular divide-and-conquer based secu-
rity state management approach for large data center
network micro-segmentation, which utilizes DFW to sig-
nificantly reduce the AG density and number of attack
paths. Consequently, our approach is able to generate a
scalable AG by leveraging SDN capabilities and utilizing
DFW to obtain real-time security state policies.

The rest of the paper is organized as follows, Section 2
provides a literature review of existing AG generation meth-
ods and DFW frameworks, along with their limitations. We
discuss the threat model, S3 architecture and the details about
AG formalism in the Section 3. We discuss the SDN-based S3
system and API architecture in Section 4. The description of

S3-based micro-segmentation approach, graph segmentation
algorithm, optimal number of micro-segments, and a proof of
scalability of micro-segmentation method has been provided
in the Section 5. The evaluation of AG scalability, SDN con-
troller overhead, and experimental details on optimal number
of micro-segments is discussed in Section 6. In Section 7, we
discuss related issues such as cycles in directed graphs, alter-
native segmentation heuristics, and possible security policy
conflicts that can be induced by the micro-segmentation. Fi-
nally we conclude the research paper in Section 8, and provide
details on the future work.

2 Related Work

The Scalability of Attack Graphs: Generation of scalable
attack graphs has been a popular area of research. Amman et
al. [1] presented a scalable solution in comparison with prior
modules [32] by assuming monotonicity. This assumption
allowed them to achieve scalability of O(N®) [19]. To miti-
gate the state space explosion problem, most of the existing
solutions try to reduce the dependency among vulnerabilities
by using logical representation [27]. Hong et. al. [18] apply
a hierarchical strategy to reduce the computing and analysis
complexity of constructing and using AGs by grouping and
dividing the connectivity of the system into hierarchical ar-
chitecture. The performance time is, however, ~ 50s for 50
services, whereas our framework generates scalable attack
graph of similar scale in 2.2s.

Kaynar and Sivrikaya [23] proposed a framework for dis-
tributed AG generation that utilizes a shared memory ap-
proach. The graph generation time is of order 2-3 minutes
for 450 hosts, which cannot be used for real-time security
analysis. Chowdhary et. al. [5], use distributed hypergraph
partitioning for Attack Graph generation. The research work
has however not considered application of DFW for further
optimizing the size of Attack Graph. Cao et. al. [2] proposed
an approach to compute AG in parallel. The division is based
on the privileges inside the hosts. The experimental analysis
in this work shows that the required generation time for ~ 500
hosts is ~ 20 sec, while in our work it takes only ~ 6.5 sec.

Mjihil et. al. [25] used a parallel graph decomposition
approach. The evaluation in this research work tests the effect
of the number of vulnerabilities on the AG generation time,
which is not reliable since it does not explain how the number
of vulnerabilities is related to each service in the system as
we did in this paper. The research work tested a maximum of
50 vulnerabilities in which they obtaind an AG in ~ 10 sec,
while in our work we obtain an AG in ~ 2 sec.

Distributed Firewall: Some researchers have addressed
DFW in SDN [20] [30] [28]. Yet, they only consider stateless
firewall which does not leverage the full advantage of both
SDN and DFW. VMware has proposed a distributed firewall
for their NSX model, by using a central object that manages
the distributed firewall’s policies [26]. Unfortunately, this ar-
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Figure 1: Representation of vulnerability information and corresponding attack graph in a multi-tenant data-center network.
Distributed Firewall (DFW) can be implemented at each tenant/segment.

chitecture is only applicable to the NSX model and cannot be
adopted to OpenFlow standards because NSX comprises of
both stateful and stateless components. The firewall rules of
the host machines are also controlled by the NSX manager,
whereas the OpenFlow protocol based SDN framework im-
plements a stateless firewall. There are no existing research
works, which attempt to control the security state explosion
in attack representation methods using better security policy
design and management framework. In S3 framework, we
utilize design principles based on VMWare NSX architecture,
and the programming flexibility afforded by the SDN, in order
to limit the connections between different logically separated
regions of a data-center.

3 Background

3.1 Threat Model

In this section, we describe threat model, AG model, and
AG scalability challenge in order to motivate the need for a
scalable attack representation framework and allow the reader
to have a comprehensive understanding of AG scalability
issue.

To explain the attack graph more clearly, we show Figure |
(a), which illustrates a simple multi-tenant data-center based
on Openstack framework. The network in this example con-

sists of 4 virtual machines (VM1-4), but this general model
can be applied to large scale cloud networks. The OpenStack
management framework can be used by the security adminis-
trator in order to insert DFW policies or monitor the status of
each VM present on tenant nodes.

The attacker is located on the Internet. The attack model
here is vulnerability exploitation to achieve privilege esca-
lation. There are several attack paths the attacker may take
to achieve their goal, which is to ex-filtrate data from the
MySQL server, by obtaining root privileges on VM4, i.e., ex-
ecCode(VM4).

Lateral Movement: The scope of security enforcement
offered by a traditional firewall is limited to north-south traf-
fic, i.e., firewall serves as a sentry between trusted and un-
trusted networks. Once the attacker has managed to breach
the security restrictions at the network edge, they can laterally
move inside the network (east-west traffic) and exploiting key
resources virtually unchecked. Centralized firewalls do not
protect networks from multi-stage attacks using lateral move-
ment. Since everyone on the internal networks is trusted and
the traffic within these trusted networks is not rigorously in-
spected by the traditional firewall based defense mechanisms.

The volume of east-west traffic in the datacenter environ-
ment is around 76%, as compared to north-south traffic -
17% [7]. As shown in Figure | (a), if the attacker can com-
promise Web Service on VM1 in Step (1) of the multi-stage



attack, they can use this attack as a pivot for compromising
VM3, and VM4 in steps (2) and (3). The lateral movement is
hard to detect and prevent using traditional security architec-
ture since in most cases its intended purpose is to defend the
network system against outsider adversaries.

3.2 Attack Graphs and Scalability Challenge

Data-center networks are scaling up at a fast pace. For ex-
ample, Amazon Web Services (AWS) has on average between
50,000 servers, to 80,000 servers, according to [22]. An ef-
ficient security analysis of such data-center is expected to
be scalable and granular. Hence, there is a need for scalable
security analysis, and AG serves this purpose to module the
critical paths in the system.

In this paper, our research uses the exploit dependency
graph [4], since it directly models dependencies between the
vulnerabilities in a computer networked system. Also, all
services for application-based on networked-based attacks are
related in this graph and it shows what are the pre-requisites
(pre-conditions) and post-conditions for those attacks. Nodes
in such an AG are not the network states, but rather, they are
vulnerabilities. AG can be formally defined as follows:

Definition 1. (Attack Graph (AG)) An attack graph is repre-
sented as a graph G = {V,E}, where V is the set of nodes and
E is the set of edges of the graph G, where

1. V. = NcUNp UNg, where Nc denotes the set of con-
Jjunctive or exploit nodes (pre-condition), Np is a set of
disjunctive nodes or result of an exploit (post-condition),
and Ny, is the set of a starting nodes of an attack graph,
i.e. root nodes.

2. E = E,UEpy are sets of directed edges, such that
e € Epe C© Np X N, i.e., Nc must be satisfied to obtain
Np. An edge e € E,oy C Nc x Np means that condition
Nc leads to the consequence Np.

An example of vulnerability information, network service
information, and Host Access Control List (HACL) repre-
sented in datalog format is shown below:

vulExists (ipaddr, cve-id, service)
networkServicelInfo (ipaddr, service, prot, port)
hacl (srcip, dstip, prot, port)

Attack graph uses HACL tuples to model network and
firewall configurations, in which it uses a general rule to test
and specify reachability information (i.e., any host can access
any host using any port and protocol).

Attack Graph Scalability Challenge: As can be seen in
the Figure 1 (b), a network consisting from 4 hosts resulted
in a graph of 13 nodes. Large data-center networks have thou-
sands of services, servers, and VMs. The expected AG size of
such system is huge due to representing network state using a

conditional or combination of conditional and exploit repre-
sentation of security situation, which will lead to huge number
of nodes and edges in the AG [24,34]. Therefore, an efficient
and scalable methodology is needed to help the administrator
in representing and analyzing the security situation in the
system.

4 System Model and Architecture

4.1 S3 System Architecture

Application Plane

Attack Graph
Generator

Vulnerability

Scanner Database

Northbound
REST API

| SDN Controller (Control Plane)

I
I
Security Policy :
I
|

|
|
|
|
|
|
|
|
|
|
APl i
Network !
|

|

|

|

|

|

|

|

L

|

|

|

|

Data Plane :

|

= |

) .

I | |

v i I

o e o N |
End Host End Host End Host End Host :

Figure 2: S3 System Architecture and operating layers
We consider the cloud infrastructure shown in Figure 2 as

the architecture for framework S3, where the networking in-
frastructure is based on Software Defined Networking (SDN)
solutions. SDN is an emerging technology aiming to enhance
the current networking protocols by separating control-plane
from data-plane. The Application Plane comprises of vulner-
ability scanner (Nessus) which collects vulnerability infor-
mation from each network host. The vulnerability scanner,
on the other hand, interacts with the individual hosts at data
plane using API network.

The Security Policy Database (SPD), as shown in Figure 2,
creates security policies to define micro-segmentation poli-
cies. These policies dictate how segments are created. The
traffic between segments is regulated using security policies
defined by SPD. The SPD interacts with SDN controller using
northbound REST APIs to update security policy information.

The Attack Graph Generator module, which is a wrapper
program we developed for the generation of sub-AGs at the
level of each segment. This module interacts with a vulnera-
bility scanner and SPD to create segments using an algorithm,
and finally, utilize merge algorithm to merge segments into
fully connected AG.

S3 framework utilizes OpenFlow southbound APIs to pro-
vide flexible and programmable micro-segmentation archi-
tecture. The SDN framework utilizes OpenFlow protocol to



communicate with switches at the Control Plane level. As
shown in the Figure 2, the SDN controller (control plane) col-
lects connection information from software switches situated
at the data plane using getConnlnfo() AP1. The security poli-
cies are implemented on each switch using addFlow() API as
shown in the communication channel between controller and
switch - Figure 2.

Each OpenFlow switch has flow tables, which are used to
store incoming/outgoing flow rules based on packet header
match. The rules are stored in the Ternary Content Address-
able Memory (TCAM) format.

struct flow_entry{ Request
match; /* packet header match*/ POST https://sdfw-ip/api/add/controller
priority: /*precedence of rule application*/ Request Body
counter; /*received packets and bytes*/ <cspec>
action; /*actions applied to matching flows*/ <name> POX </name>
timeout; /*maximum flow expiration time*/ <desc> SDN python controller </desc>
} <ipAddr>192.168.1.x</ipAddr>
<networkld>group-1</networkld>
<password>testpass</password>
</cspec>

(a) flow entry structure in flow table (c) S3 controller connection API

struct header{
IN_PORT; /* input port from host or internet*/
MAC_SRC: /*L2 source address*/

Request
GET https://sdfw-ip/api/config/segments/

MAC_DST; /*L2 destination address*/ ;ng:s::leDBodv
e - *
DL_TYPE; /*Type of L2 frame-ARP, RARP*/ <segmentRange>

VLAN_ID; /*VLAN ID*/

VLAN_PCP; /*VLAN priority*/

IP_SRC; /*IP source address*/

IP_DST; /*IP destination address */
IP_PROTO; /*IP protocol*/

IP_TOS; /*IP type of service*/

PORT_SRC; /*transport source address*/
PORT_DST; /* transport destination address*/
}

<id> 10 </name>

<name> int-net segment </name>

<desc>Internal network</desc>

<begin> 192.168.1.25:80-40000 </begin>

<end> 192.168.1.89:80-40000</end>
</segmentRange>

(b) Header structure in flow table (d) S3 segment query API

Figure 3: S3 data structures utilzed by control plane software
(a), (b) and application plane REST API used by network
admin (c), (d).

Flow Table consists of other important fields besides match
and action fields. Each flow entry also has priority, counter,
and timeout fields, as shown in the Figure 3 (a). The header
structure - Figure 3 (b) of each flow is used for matching traf-
fic against incoming traffic. The REST API at the application
plane help in management of the distributed control plane. For
instance, if a new controller needs to be added to the control
plane, the POST API - Figure 3 (c) is used by controller in
order to announce intent to join DFW. The application plane
checks the vulnerability, network topology, and reachability
information periodically in order to update the network seg-
ments. Information about each segment can be obtained using
GET API as shown in Figure 3 (d). The network segment
generated by S3 framework in this case int-net segment, with
segment ID /0 consists of services present on ports 80-40000
on all machines in range 192.168.1.25-89.

5 DFW and Micro-Segmentation

Micro-segmentation based on SDN-framework is a method
of creating secure zones in data centers and cloud deploy-

ments to isolate workloads from one another and secure them
individually to make network security more granular.

We utilize distributed firewall (DFW) functionality based
on micro-segmentation architecture to control the reachability
across different network segments, and in effect, reducing the
AG scalability. By leveraging the [DFW | rules, as shown in
Figure 1 (a), we can control the access between Web Server
(VM1) and FTP Server (VM2) in Segment 1. Similarly, a gran-
ular security policy can enforced to control the connection
requests from LDAP Server (VM3) to SQL Server (VM4).

Table 1: Example of Network topology vulnerabilities and
connectivity information.

Seg VM Service Vulnerability Attack Path
Seement 1 VMI | WebServer Cross-Site Scripting Internet- VM1 port 80
© VM2 FTPServer Remote Code Execution | VMI - VM2 port 25
VM3 | LDAP Server | Local Buffer Overflow Segment 1 via DFW
Segment 2

VM4 | SQL Server SQL Injection VM3 - VM4 port 3306

When the DFW is absent, the attacker can reach to any
virtual machine from the internet and exploit it since it has a
vulnerability as shown in Table 1. The resulted AG for this
topology is shown in Figure 1 (b). The provided Figure is just
a simple example to illustrate multi-stage attacks that can be
launched in a cloud network. In reality, the graph will have
more nodes and edges to illustrate connectivity information.
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Figure 4: Flow Diagram of S3 Segmentation and AG Genera-
tion.

5.1 Implementation

Segmentation can also be achieved by considering security
requirements. The requirements, however, are not analyzed
and do not take into account the existing vulnerabilities and
the connectivity between those vulnerabilities (vulnerability
dependencies). Therefore, the goal of S3 is to provide a seg-
mentation solution to enhance system security and ensure fine-
grained security rules between vulnerable and mission-critical
services. S3 utilizes the system administrator’s knowledge
about the existing vulnerabilities residing in the system and
provides a methodology to build logical segments containing
services based on their vulnerability and reachability infor-
mation. The flow diagram of S3 is presented in Figure 4. The



Algorithm 1 Segmentation and Scalable AG Generation Al-
gorithm

procedure SEGMENT ESTABLISHMENT

V « {1,n} > list of vulnerabilities
R+ {1,m} > distributed firewall rules
S+ {1,1} > network services

for all service € S, vuln € V, rule € R do
sort (service, type)
if connected (service;, service;, ruley) & vuln
€ (service;, service;) then

A o e

8: update (segment, service;, service;)
9: else if type (service;) == type (service;) then
10: update (segment, service;, service )
11: end if
12: end for
13: procedure ATTACK GRAPH GENERATION
14: for all Segments do
15: Compute sub-AG for segment;
16: end for
17: for all subAGs do
18: if connected (subAG;, subAGj, ruley) then
19: merge (subAG;, subAG )
20: end if
21: end for

network services are first analyzed and sorted according to
the service type and connectivity between the services based
on the |DFW| rules. If the services are of the same type, then
we append them to segments. If the services are connected
by [DFW| rule, and there is a vulnerability in the connected
services, then we also append the services into different sepa-
rate segments. We separated the segments because we want
to keep services of same type in one segment and separated
from other ones having different type. After that, we compute
the sub-AG of all the segments and check for connectivity
between the sub-AG based on the |[DFW/| as well. Finally, the
sub-AG from individual segments are merged and Compos-
ite Attack Graph (CAG) is created. The graph is frequently
updated, based on changes in network and vulnerability con-
figurations, which are monitored by SDN controller. Next,
we present an Algorithm 1, which explains more on how the
segmentation is achieved for the of building scalable CAG.

5.1.1 Algorithm Analysis

S3 segmentation and AG generation approach is shown in
Algorithm 1. The algorithm first starts by obtaining all vul-
nerabilities, running services, and |[DFW | rules in the system
lines 2-4. Next, the algorithm span over all of these gathered
information and sorts the services by their type as shown in
line 5. After that, the algorithm checks for services that are
of the same type and put them in the same logical segment.
Also, if there are two services connected to each other by a

|[DFW | rule such that there is a vulnerability in service; al-
lowing the attacker to exploit a vulnerability in service;, then
these two services are aggregated in the same segment. To
avoid redundancy, if the services have been already added to
an existing segment, the algorithm continues. After sorting
and aggregating services, vulnerabilities, and [DFW| rules,
we now have a number of segments that contain services of
similar type, or vulnerable services connected by |DFW | rule.
The next step is to compute an AG for each of these segments
to check and the critical paths inside each of these segments -
lines 13-15. Next, the sub-AG needs to be merged together to
allow the system administrator to see the relationship between
these segments and how an adversary can move from one seg-
ment to another one to achieve their final goal. The merge
procedure, as shown in line 16-19 is based on the connectivity
of the separated segments.

5.1.2 Complexity Analysis

The sort operation over services in algorithm 1 can be per-
formed using quick sort algorithm [9] which has average
complexity of O(Slog(S)), where S is the number of ser-
vices. Computing the sub-AG is a linear time operation as the
computation is being performed in parallel with the help of
S3 SDN controller. The merge operation requires searching
among the segments and their connectivity, thus the search
can be done using divide and conquer approach which has
the complexity of O(Klog(K)) [9], where K is the number of
segments. As a result, the complexity of computing the global-
view of AG is based on the total number of vulnerabilities
in the system N, divided by the number of segments K, plus
the complexity for the merge operations, a total of O((¥)?)
+ O(Klog(K)) + O(Slog(S)) ~ O((¥)?) when N >> K and
N>>S§.

To make the full picture more clear about the resulting AG,
we present the following abstraction representation definitions
of AG:

Definition 2. Composite Attack Graph (CAG) is a tuple
CAG={S, E, Nj.

e Sdenotes the set of all segments. Each segment has a sub
attack graph (sub-AG), i.e., sub-AGy, sub-AG, € S. If
there is a connectivity (|DFW/| rule) from one service in
segment s to service present in segment s', s # s', where
this connection is the one required to exploit a vulnera-
bility present on service in s', then this information (post
and pre-condition, vulnerability and connectivity) are
appended and concatenated in a segment.

o N denotes the nodes the set of all nodes present in the
CAG. A node in an individual segment s can be denoted
by N°. The nodes can be conjunct nodes N, disjunct
node Ny, or root node Nj,. A link from segment s to seg-
ment s' indicates reachability to a vulnerability in the



target segment s', or a |DFW | rule that exists based on
the Service Level Agreement (SLA). In other words, this
link is the result from exploiting segment s which we call
post-condition that is needed for the attacker to reach
and exploit s'. Hence the post-condition from s becomes
a pre-condition s'.

o E QE[SM UE[S,OS, is the edges present across all seg-

ments. If an edge from segment (sub-AG) s creates a
!’

post-condition in segment (sub-AG) s, we denote the

.. . J . J
post-condition using edge Ey,, = N¢. X Nj.

5.2 Optimal Micro-Segmentation and Valida-
tion

In a large cloud network, when creating segmentation, the
natural question is to identify the quality of segmentation. The
network administrator needs to identify the optimal number
(K) of segments and the basis of segmentation. We use a
heuristic approach based on service similarity, vulnerability
weight, and DFW rules, in order to validate segment quality
and optimal number (K). We define segmentation properties
used in S3 framework as follows.

1. Segment Compactness: Evaluates how closely the ser-
vices in the same segment are related to each other. For
instance, all Web Server (http/https) services can be put
in the same segment. We represent this using variable

Scom-

2. Separation: The separation can be decided based on
the number of |[DFW| rules currently present between
two segments. The higher the number, the higher the
distance will be between the segments. Variable s, is
used for representing separation measure.

3. Connectivity: The connectivity depends on dependen-
cies between vulnerabilities in the same segment as de-
scribed in Definition 2. The connectivity is denoted using
variable s.op.

The segmentation procedure aims at finding segmentation
with high separation across segments, and high connectivity
between nodes in the same segment. We utilize Segmentation
Index (SI), an indexing measure based on Dunn Index [11],
often used in K-Means clustering [15] approach in order to
validate the quality of our micro-segmentation. Using the
variables enumerated above, we define segmentation index
as,

0 X {Scom + Scon }
SI= = wBe@1] e
where o and P are indexing parameters, their values are cho-
sen based on the administrator’s need. This indexing equa-

tion can help the system administrator to decide the optimal

number of segments based on the desired requirements. If
o > [, it means the SI places higher weight on connectivity
between services in the same segment. On the other hand
if oo < B, the SI places higher weight on |DFW/| rules be-
tween the segments. High segmentation index value indicates
optimal number of segments, since this equation is derived
from Dunn Index, which also aims at finding the maximum
distance between clusters [11]. We show in the Evaluation
section 6.4 through experimental results how SI has been used
for identifying optimal number of segments.

5.3 DFW Dynamic Traffic Match and Flow

Update
——
---E
E ]
-
77777 Update Flow Table- — — — —
Rule processing 1
. and validation Flow ID |[Flow Entry Index Rule ID
X 1 Flow 1 1 Rule 1
—————— »| 2 Flow 2 L Flow not_| 2 Rule 2
3 Flow 3 found 3 Rule 3
4 Flow 4 4 Rule 4
5 tuple
rule match (a) Switch Flow Table (b) Security Policy
3 Database (SPD) rules
[ DFW Filter
T
v = Source Destination Service Direction Action  Tags
\:| dmz-segment  intnet-segment https,ssh inout ALLOW  TLSv10
intnet-segment extnet https,ssh inout DENY TLSv10
End Host (c) Security Policy Database (SPD) rule example- matched Rule 3
(192.168.1.12)
Switch vian mac mac ip ip ip 14 14 .
action
Port 1D src dst src dst proto sport dport
event. . . . OFPP_
port 192.168.1.12 172.16.0.14 tcp 22,80 22,80 NORMAL

(d) Inserted Flow 4 Openflow Rule

Figure 5: Distributed Firewall (DFW) security policy rule
match and flow table update.

The DFW utilizes OpenFlow and REST API network to
match the traffic based on five tuples, i.e., {srcip, dstip, sport,
dstport, protocol}. We use the example Figure 5, to illustrate
DFW traffic match and rule update operations.

e Step 1: The end-host (192.168.1.12) from intranet-
segment, attempts to send http traffic to port 80 and ssh
traffic to port 22 of host (172.16.0.14) situated in another
segment dmz-segment.

e Step 2: Initially, when flow table is checked using ta-
ble_lookup, there is no rule present for the matching
traffic rule. The flow table only has rules with Flow ID
{1-3} - Figure 5 (a). The packet is sent to the controller
using action=0OFPP_CONTROLLER.

e Step 3: The controller checks the security policies
defined by the Security Policy Database (SPD) rules
present in application plane, using northbound REST
API. The traffic pattern matches the Rule ID {3} - Fig-
ure 5 (b), (c). The action defined in the SPD for this
traffic is ALLOW.



e Step 4: The flow table is updated with new OpenFlow
rule - Flow ID {4}. The fields corresponding to layer 3,4
are updated and layer 2 fields are wildcarded - Figure 5
(d). Thus communication is enabled between two hosts.
If there is no match for the traffic, in either flow table or
SPD, the traffic is discarded based on whitelisting policy.

5.4 Scalable Attack Graph Generation Cost
Analysis
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Figure 6: Distributed Firewall-based Multi-Level AG Genera-
tion.

We consider the mapping between the physical network
and virtual network shown in Figure 6 (a). The physical topol-
ogy consists of two segments, i.e., Segment I and Segment
2, with VM ,VM, € Segment1 and VM3 € Segment2. Each
VM consists of a number of services such as apache2, mysql,
etc. The connectivity relation between the VMs are used to
determine the AG for the entire network. For instance, if the
firewall rules are defined between VMs and segments in a
coarse grained manner, the AG will be huge in size as shown
in Before DFW case in the above Figure 6. The traffic across
each segment according to whitelisting policy might be lim-
ited, whereas, if we enforce white-listing policy at segment
and service (SSH, MySQL) level as shown in Figure 5 (c),
the amount traffic can be scale of attack graph generated can
be finite for security analysis. Once the DFW is enforced at
different levels of network, i.e., at the granularity of per-VM,
per-segment, or entire network, we obtain a sparse AG, as
shown in After DFW in Figure 6 (a). We define the Incidence
and Laplacian matrices for the attack graph G below,

Definition 3. Incidence Matrix The incidence matrix In(G) of
graph G{V.E} is a |V| x |E| matrix, as shown in the Figure 6
(b), with one row for each node and one column for each edge.
For each edge (i, j) € E, column entry e of In(G) is zero,
except for i'" and j' entries, which are +1 and -1, respectively
(if there is an edge from i to j, the value is + 1, whereas it is -1
if there is an edge from j to i in the graph, the value is zero if
there is no edge e(i,j)).

Definition 4. Laplacian Matrix The Laplacian matrix L(G)
of graph G{V,E} as shown in the Figure 6 (c), is a |V| X |V|
symmetric matrix, with one row and column for each node. It
is defined by

o L(G) (i,i): is the degree of node I (number of incident
edges).

o L(G)(i,j): -1ifi# jand there is an edge (i,j).

e 1(G) (i,j): 0 otherwise.

The application of DFW at different levels of the physical

and logical network increases graph sparsity. The aggregated
graph has reduced state space compared to the original AG.

5.5 Sparse Graph Connectivity using DFW

The incidence graph In(G) and laplacian graph L(G) have the
following properties.

o L(G) is symmetric, i.e., eigenvalues of L(G) are real and
its eigenvectors are real and orthogonal. For example, let
e=[1,...,1]7 be a column vector. Then L(G) x e = 0.

e Matrices are independent of signs chosen for each col-
umn of In(G), In(G) x In(G)T = L(G).

e Let L(G) x v=Axvand A # 0, where v is eigenvector
and A is eigenvalue of L(G),
A= lIn(G)" —v|P/IIvI?
Yo jyer (i) —v(j))? )

A R

e Eigenvalues of L(G) are non-negative, i.e., 0 = A} <
... <A,

e The number of connected components of G is equal to
number of A; equal to 0. In particular, Ay # 0 if & only if
G is connected.

Using the properties defined above, we check the algebraic
connectivity of two graphs G and G’, which can be compared
to check the density reduction. The graph G'{V' E’} obtained
in the case of After DFW scenario, is composed on sub attack
graphs (sub-AGs), G1,G;...,Gy, ie., G{V E'} =UY G, as
shown in Figure 6 (d). Since G'{V’,E’} is obtained from
G{V,E} after collapsing vertices and edges at different layers
using a multi-level DFW, it naturally follows that G’ is a
subgraph of G, i.e., G’ C G. We utilize an important corollary
from spectral bisection algorithm [33] and the properties of
laplacian matrix discussed in this subsection to derive the
equation A, (L(G")) < M (L(G)).

Result: G'{V' E'} C G{V,E} = M(L(G")) < M(L(G)),
i.e., on application of DFW, the algebraic connectivity, and in



effect, density of the AG reduces. Thus, our approach, helps in
creating scalable AGs (CAG) in a multi-tenant cloud network.

Cost Analysis: Upped bound on the cost can be obtained
by considering that graph G{V,E} is fully connected, in which
case, the micro-segmentation will not be able to achieve no-
ticeable benefit. The cost of generating the full AG in the
absence of DFW, Cost(G), is much higher than in the case
of using DFW. The goal of micro-segmentation, however,
is to ensure that the graph is sparsely connected based on
white-listing approach.

Consequently, Cost(G') = V¥, Cost(G;) + Cost(DFW) -
Figure 6 (d) and Cost(G') << Cost(G) since the effort
for generation of graphs Gi,..,G; is computed in parallel
with the help of SDN controller. The only additional effort
Cost(DFW) is needed for checking DFW rules, and maintain-
ing synchronization between different DFW agents present
on individual segments.

6 Performance Evaluation

In order to evaluate and measure the performance of our pro-
posed approach. First, we created the system is shown in
Figure 2, which is a OpenStack [31] based system that is
running SDN controller and a number of virtual machines
(VMs) connected to OpenFlow switches. Our evaluation con-
sists of evaluating the scalability of AG when the number
of vulnerabilities increases, in which S3 proved to have a
reduced number of nodes and edges compared to not using
S3. Our second experimental evaluation is to measure the AG
generation time when the number of services increase, tak-
ing into account the generated number of segments as shown
in Table 2. Moreover, since S3 is utilizing SDN computing
capabilities, we conducted experiments to check how much
overhead our algorithm and AG module consume from the
SDN controller, which turned out not exceed 11% from the
overall SDN bandwidth and an optimal number of segments
in a scalable AG.

6.1 Attack Graph scalability Evaluation

As we mentioned in the introduction, the number of vulner-
abilities have a direct influence on the AG solubility due to
the overhead of managing and analyzing all the security state
those vulnerabilities cause. To show how scalable S3 is, we
simulated a system with a different number of vulnerabilities
as shown in Figure 7, the vulnerabilities in the OpenStack
based cloud system. The Figure 7 emphasizes on the relation-
ship between the number of vulnerabilities and the size of the
resulted AG in terms of nodes and edges, where the x-axis
shows the total number of vulnerabilities in the entire system,
and the y-axis shows the number of nodes and edges in the
AG. The black and blue lines show the number of nodes and
edges in the AG before using our approach (which is equiva-
lent to MulVAL’s [27] approach), respectively. The red and
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Figure 7: Comparison for the number of Nodes and Edges be-
fore and after Using S3. Marked reduction in density achieved
using DFW

yellow lines show the number of nodes and edges in the AG
after using our approach, respectively. The total number of
nodes and edges before using S3 when the system has over
1000 vulnerabilities is about /3k nodes and 22k edges. This
is due to the absence of [DFW | rules affecting the reachabil-
ity between the individual components in the system. After
using S3, where the exact reachability information that is be-
ing enforced by the |DFW/| is stated, the number of nodes
drop to about 5k and the number of edges is 7k, respectively -
Figure 7. This is a significant reduction compared to an AG
without any |DFW/| rules.

6.2 Attack Graph Generation Time and den-
sity Reduction Evaluation

It is crucial to generating AG in a timely manner. We created
several test cases to test the time required to generate the AG
when we have a different number of segments, and a differ-
ent number of services in each of those segments. We first
started to measure the generation time of AG in a system that
contains 50-100 services, we inserted a mixture of vulnera-
bilities in the hosts such that we obtain the provided number
of segments shown in Table 2. Thus, in the first experiment,
we are testing how much time is needed to generate an AG
for a system having 50-100 services with a various number of
vulnerabilities on those services that resulted in 5 segments.
Moreover, we are measuring the graph density of the resulted
AG using the following formula [10]:

| E |
vVIi(v|-1)
where | E | is the total number of edges for the AG, and | V | is
the total number of nodes or vertices in the AG. Our evaluation

and approach show scalable AG generation. For instance, in
the last case in Table 2 where the system has 300-500 services

Density = (3)



Table 2: Sub-AG generation time, graph density, and the number of nodes and edges for each sub-AG when increasing the
number of services.

# Services 50-100 Services 100-200 Services 200-300 Services 300-500 Services

#Segments 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Time (sec) 222 3.88 5.925 8.22 2.386 4.93 7.2112 | 10.229 3.56 7.15 10.6 13.96 6.46 11.05 15.91 19.7
# Edges 6552 12186 18990 27450 14400 28494 40698 52956 18819 44100 63918 88065 34242 65922 93117 | 128580
# Nodes 5829 10842 16895 24420 12805 25338 36191 47092 18101 39210 57951 79668 32533 60698 85623 | 116304
Density 19.3E-05 | 10.4E-05 | 6.6E-05 | 4.6E-05 | 8.8E-05 | 4.44E-05 | 3.1E-05 | 2.4E-05 | 5.7E-05 | 2.9E-05 | 1.9E-05 | 1.4E-05 | 3.2E-05 | 1.8E-05 | 1.3E-05 | 9.5E-06

and it was divided based on the vulnerabilities in the system
into 20 segments, the AG generation time is about 20 seconds,
which is rational time for such a large system. In Table 3, we
show the average time for AG generation and the standard
deviation for the 5, 10, 15, and 20 segments cases respectively.

To prove the effectiveness of our DFW-based segmentation
approach, S3, we conducted additional experiments to exam-
ine the generation time by not considering the segmentation
and using a Firewall (centralized one); and segmentation by
DFW. Table 4 shows the AG generation time with and with-
out segmentation, for the specified number of hosts where
the vulnerabilities are simulated to give the shown number
of segments. The results when using [DFW| are significantly
better than when not using segmentation and using a central-
ized firewall. This is due to the absence of east/west traffic
among running services, which did not specify reachability in-
formation between running services. Hence, AG is computing
centrally and resulted in a magnificent time.

Table 3: Mean and standard deviation for the AG generation
time for the displayed number of segments in Table 2.

#Segments 5 10 15 20
Mean time 3.66 | 6.75 | 9.91 | 13.03

service disruption for end users. Specifically, our proposed al-
gorithm 1 line 15 relies on the SDN controller to compute the
sub-AGs for all the obtained segments. Hence, we measure
the effect of this operation to the SDN controller bandwidth.

To do this, we used the first case in Table 2, where the
system has 50-100 services (~ 4000 vulnerabilities) running
and emulated the scenario. We utilized network throughput
measurement tool iperf to assess end-to-end bandwidth. Fig-
ure 8 shows a comparison of the SDN controller bandwidth
overhead before the AG computation takes place and during
computation. The evaluation results are an average of three
runs. The network throughput for a network with 5 segments
was around ~11.3 Gbps without micro-segmentation. On in-
corporating micro-segmentation, the throughput decreases to
9.95 Gbps. Similarly, for the case with 10, 15 and 20 network
segments, the throughput drops slightly, as expected.

This drop can be explained as the overhead induced by
AG generation in each network segment, and the computation
required to merge individual segments into full AG. The worst-
case throughput impact on SDN controller was ~10% (20
segment case). This experiment shows that on an average
the scalable AG generation process will not impact the SDN
controller’s performance in a large data-center network.

standard deviation | 1.96 | 3.17 | 446 | 5.04 SDN Controller Overhead
o . . . = 16.395 g3
Table 4: sub-AG scalability generation time by using DFW, 216 -
and both with and without Segmentation 9 1
‘g_ 1 113
Generation Time Generation time 310 995
# Services | # Segments | without Segmentation | using Segmentation b= ’7
8 6.95
(sec) (sec) = ‘ 6.27
750 5 351 0.872 26 | f 4.54 4 08
1450 10 17.344 2.083 g e | | |
2490 15 4980 4.468 S 2
3360 20 6720 10.027 O 0 ‘ ‘ |
=
9, 5 segments 10 segments 15 segments 20 segments

6.3 SDN Controller Overhead

Since S3 is based on an SDN-managed data-center network,
evaluating the overhead of computing AG using SDN con-
troller is necessary to ensure that the AG generation does
not overwhelm the SDN controller, since this may result in

Number of Segments

B Avg Overhead before computing ® Avg Overhead during computing
Figure 8: Evaluation of SDN Controller overhead when before

computing segmented AG and during computation shows
limited overhead
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6.4 Optimal Number of Segment Experiments

We conducted a simulation experiment to identify an optimal
number of segments in a large network with 50 services and
50 vulnerabilities. We varied the number of segments from 5
to 25, with an increasing number of DFW rules (3 in case of 5
segments, 17 in case of 25 segments), induced by the increase
in the number of segments.

In section 5.2, we showed and discussed a heuristic ap-
proach to evaluate what is the optimal number of segmenta-
tion based on the derived equation for Segmentation Index
(SD) 1. The equation showed, depending on the system ad-
ministrator requirement, how to obtain the optimum number
of segments, i.e. whether connectivity is more important or
|[DFW| rule. The Figure 9 shows our experiments, where the
blue line indicates the segments have high connectivity, i.e.
Scon + Scom > 54 (00 = 0.877,B = 0.105) between services in
one segment, the orange line indicates higher separation be-
tween the segments based on the number of |DFW| rules, i.e.,
Scon + Scom < 84 (0= 0.4, = 0.877). Finally, the black line
shows an equal weight for connectivity and number of |DFW |
rules, i.€, Scon + Scom = sq (= 0.5, = 0.5).

For a small number of segments (5), the connectivity influ-
ences the segmentation index (SI=8.0 high connectivity, SI<1
when DFW rules are dominant). This is because of the high
degree of intra-segment traffic. As the number of segments,
increase (15) the connectivity becomes much less of a factor
and drops drastically (SI=2.0 for 15 segments).

From Figure 9, it is shown that the optimal number of seg-
ments turned out to be 20 since the SI > 10 for high connec-
tivity and SI also increases steadily for cases where firewall
rules weight is high. This can be explained by the fact that
dependencies between vulnerabilities in each segment are
reduced, using traffic regulation provided by DFW. Finally,
increasing the number of segments more (25) turned out to
have a low SI value for all 3 lines, which indicates segments
are disconnected from each other.
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7 Discussion

Cycle Detection: The dependencies between services in a net-
work can cause cycles in the directed AG. Homer et. al. [17]
discussed the problems of cycles that can limit the scalability
of AGs. The research work takes about /50 ms for cycle de-
tection over a network with /0 hosts and 46 vulnerabilities.
S3 utilizes the network connectivity and vulnerability depen-
dency information to detect any cycles present in the final
directed AG. We use parallel nested Depth First Search [16]
over each sub-AG in order to identify the cycles present within
each segment. The algorithm scales linearly with the number
of vulnerabilities present in each network segment. We omit
details on cycle detection in the paper for the sake of brevity.

Segment Validation and Segmentation Heuristics: We
utilized a Segmentation Index based sub-AG (segment), that
has a validation heuristic approach. The algorithm provides
information about the appropriate size of each segment, such
that not only the complexity concerns for AG generation are
addressed, but also each segment is highly cohesive (has the
same type of services and vulnerabilities). This will help in the
application of security patches to the entire segment. There are
other segmentation heuristics, classified under graph cluster-
ing algorithms, e.g., k-spanning tree, which creates k-groups
of non-overlapping vertices, shared nearest neighbor (SNN)
graph. We plan to compare the optimal segmentation heuris-
tic discussed in Section 5.2 with other state-of-the-art graph
segmentation heuristics in future work.

Policy Conflicts and SLA Impact: It is important taking
into account the Service Level Agreement (SLA) that states the
relationship between a service provider and client. This SLA
will have an impact on the [DFW | rule that the system admin-
istrator will enforce to create segments and isolate vulnerable
services from protected ones. After applying segmentation
and deriving a new |[DFW| rules, a conflict might exist be-
tween the SLA and the |DFW| rules. In effect, the |DFW |
rule might cause a service disruption for users. Security policy
conflict [14,29] handling, howeyver, is another area of research
that will be considered as a part of future work.

8 Conclusion

Attack graph scalability and granular security enforcement
are key problems in data-centric networks today. We provide
a SDN-based micro-segmentation approach using S3 frame-
work for addressing these issues. S3 enforces granular security
policies in the data-center network to deal with threats such
as lateral movement of the attack. S3 reduces the number
of security states in the network by reducing attack graph
density and generation time as evident from section 6.2. The
micro-segmentation approach is capable of establishing and
generating a scalable AG for a large network - Section 6.1.
Moreover, the impact on the SDN controller because of miro-
segmentation is limited, as proved from the experimental



analysis in Section 6.3. We also identified optimal number of
segments using Segmentation Index (SI) method, which can
ensure high-quality (cohesive) segments with fine-grained
access control policies across segments - Section 5.2. The
current research work doesn’t identify the security policy con-
flicts that can be induced by co-dependency between micro-
segmentation policies. Additionally, we have not compared
our segmentation method with a diverse set of graph segmen-
tation/clustering heuristics. In the future, we plan to address
these limitations.
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