852

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

Learning-Based Application-Agnostic 3D NoC
Design for Heterogeneous Manycore Systems

Biresh Kumar Joardar™, Student Member, IEEE, Ryan Gary Kim~, Member, IEEE,

Janardhan Rao Doppa
Diana Marculescu

, Member, IEEE, Partha Pratim Pande
, Fellow, IEEE, and Radu Marculescu

, Senior Member, IEEE,
, Fellow, IEEE

Abstract—The rising use of deep leaming and other big-data algorithms has led to an increasing demand for hardware platforms that
are computationally powerful, yet energy-efficient. Due to the amount of data parallelism in these algorithms, high-performance
three-dimensional (3D) manycore platforms that incorporate both CPUs and GPUs present a promising direction. However, as systems
use heterogeneity (e.g., a combination of CPUs, GPUs, and accelerators) to improve performance and efficiency, it becomes more
pertinent to address the distinct and likely conflicting communication requirements (e.g., CPU memory access latency or GPU network
throughput) that arise from such heterogeneity. Unfortunately, it is difficult to quickly explore the hardware design space and choose
appropriate tradeoffs between these heterogeneous requirements. To address these challenges, we propose the design of a 3D
Network-on-Chip (NoC) for heterogeneous manycore platforms that considers the appropriate design objectives for a 3D
heterogeneous system and explores various tradeoffs using an efficient machine leaming (ML)-based multi-objective optimization
(MOO) technique. The proposed design space exploration considers the various requirements of its heterogeneous components and
generates a set of 3D NoC architectures that efficiently trades off these design objectives. Our findings show that by jointly considering
these requirements (latency, throughput, temperature, and energy), we can achieve 9.6 percent better Energy-Delay Product on
average at nearly iso-temperature conditions when compared to a thermally-optimized design for 3D heterogeneous NoCs. More
importantly, our results suggest that our 3D NoCs optimized for a few applications can be generalized for unknown applications as well.
Our results show that these generalized 3D NoCs only incur a 1.8 percent (36-tile system) and 1.1 percent (64-tile system) average

performance loss compared to application-specific NoCs.

Index Terms—Heterogeneous architectures, manycore systems, multi-objective optimization, network-on-chip

1 INTRODUCTION

NEURAL Networks, graph analytics, and other big-data
applications have become vastly important for many
domains. This has led to a search for proper computing sys-
tems that can efficiently utilize the tremendous amount of
data parallelism that is associated with these applications.
Recently, platforms using both CPUs and GPUs have signifi-
cantly improved the execution time for such applications [1].
However, existing discrete GPU systems use off-chip inter-
connects (e.g., PCle) to communicate with the CPUs. These
interconnects give rise to high data transfer latency and
become performance bottlenecks for applications that involve
high volumes of data transfers between the CPUs and GPUs.
A heterogeneous manycore system that integrates many
CPUs and GPUs on a single chip can solve this problem and

e B. K. Joardar,]. R. Doppa, and P. P. Pande are with the Washington State
University, Pullman, WA 99164.
E-mail: {biresh.joardar, jana.doppa, pande }j@wsu.edu.

e R.G. Kim is with the Colorado State University, Fort Collins, CO 80523.
E-mail: Ryan.G.Kim@colostate.edu.

e D. Marculescu and R. Marculescu are with the Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213. E-mail: {dianam, radum }J@cmu.edu.

Manuscript received 18 May 2018; revised 30 Nov. 2018; accepted 13 Dec.
2018. Date of publication 20 Dec. 2018; date of current version 16 May 2019.
(Corresponding author: Partha Pratim Pande.)

Recommended for acceptance by V. Piuri.

For information on obtaining reprints of this article, please send e-mail to:
reprints@iece.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2018.2889053

0018-9340 © 2018 |EEE. Personal use is permitted, but r
See http://www.ieee.org/publications_standards/publ

avoid such expensive off-chip data transfers [2], [3]. In addi-
tion, these single-chip systems require a scalable intercon-
nection backbone (Networks-on-Chip (NoCs)) to facilitate
more efficient communication.

To further reduce data transfer costs, three-dimensional
(3D) integrated circuits (ICs) have been investigated as a pos-
sible solution and have made significant strides towards
improving communication efficiency [4], [5]. By connecting
planar dies stacked on top of each other with through
-silicon vias (TSVs), the communication latency, throughput,
and energy consumption can be further improved [6].

3D ICs together with NoCs, enable the design of highly
integrated heterogeneous (e.g, CPUs, GPUs, accelerators)
manycore platforms for big-data applications. However, the
design of 3D NoC based manycore systems pose unique
challenges. Due to the heterogeneity of the cores integrated
on a single chip, the communication requirements for each
core can vary significantly. For example, in a CPU-GPU
based heterogeneous system, CPUs require low memory
latency while GPUs need high-throughput data transfers
[7]. In addition to the individual core requirements, 3D ICs
allow dense circuit integration but have much higher power
density than their 2D counterparts. Therefore, the design
process must consider reducing temperature hotspots as an
additional objective. Overall, the design of a 3D heteroge-
neous manycore architecture needs to consider each of these
objectives and satisfy all of them simultaneously [8]. Hence,

ublication/redistribution requires IEEE permission.
tions/rights/index. html for more information.

https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0001-9249-3292
https://orcid.org/0000-0001-9249-3292
https://orcid.org/0000-0001-9249-3292
https://orcid.org/0000-0001-9249-3292
https://orcid.org/0000-0001-9249-3292
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-5930-8531
https://orcid.org/0000-0002-5930-8531
https://orcid.org/0000-0002-5930-8531
https://orcid.org/0000-0002-5930-8531
https://orcid.org/0000-0002-5930-8531
https://orcid.org/0000-0002-5734-4221
https://orcid.org/0000-0002-5734-4221
https://orcid.org/0000-0002-5734-4221
https://orcid.org/0000-0002-5734-4221
https://orcid.org/0000-0002-5734-4221
https://orcid.org/0000-0003-1826-7646
https://orcid.org/0000-0003-1826-7646
https://orcid.org/0000-0003-1826-7646
https://orcid.org/0000-0003-1826-7646
https://orcid.org/0000-0003-1826-7646
mailto:
mailto:
mailto:

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS

3D heterogeneous manycore design can be formulated as a
multi-objective optimization (MOO) problem.

In this work, we incorporate appropriate analytical models
for each of the relevant objectives (i.e., throughput, latency,
temperature, and energy). We also demonstrate that it is nec-
essary to consider all objectives to achieve the optimal trade-
off between temperature and performance. We examine the
differences between performance-only and performance-
thermal-joint optimization as an example. However, the com-
plexity of the design space and the high number of objectives
make this design optimization problem difficult. Widely-
used MOO techniques (e.g., NSGA-II [9] or simulated anneal-
ing based AMOSA [10]) can require significant amounts of
time due to their exploratory nature. Therefore, more efficient
and scalable optimization techniques are required.

To this end, in this work, we propose a new MOO algo-
rithm, MOO-STAGE, which extends the machine learning
framework STAGE [11]. As opposed to traditional MOO
algorithms that only consider the current solution set when
making search decisions, MOO-STAGE learns from the
knowledge of previous search trajectories to guide the search
towards more promising parts of the design space. This signif-
icantly reduces the optimization time without sacrificing the
solution quality. Using MOO-STAGE, we can take advantage
of the traffic characteristics of different applications and incor-
porate appropriate design objectives to enable quick design
space exploration of 3D heterogeneous systems. In addition,
through careful analysis, we notice that several applications on
heterogeneous platforms exhibit similar traffic patterns. Subse-
quently, we propose that an application-agnostic heteroge-
neous 3D NoC can be designed to achieve similar performance
as designs that are optimized for a specific application. We
evaluate the feasibility and performance of these application
-agnostic designs across all considered benchmarks.

Below we summarize our main contributions in this
work:

1. We undertake a comprehensive study of the traffic
patterns from multiple applications taken from vari-
ous domains running on 3D heterogeneous systems.

2. Based on the observed traffic patterns, we propose a
generalized application-agnostic heterogeneous 3D
NoC design that achieves similar levels of perfor-
mance (latency, throughput, energy, and tempera-
ture) as application-specific designs.

3. We propose a new MOO framework MOO-STAGE
and apply it to the problem of manycore 3D hetero-
geneous NoC design. Our findings show that MOO-
STAGE can find the same quality of solutions as
AMOSA and a branch-and-bound based algorithm
(PCBB [12]) while significantly reducing optimiza-
tion time and improving scalability.

2 RELATED WORK

In this section, we present some of the most relevant prior
works on 3D heterogeneous NoC design and related MOO
algorithms.

2.1 3D Heterogeneous NoCs
Due to its heterogeneity, CPU-GPU based systems exhibit
several interesting traffic characteristics, for instance, GPUs

853

typically only communicate with a few shared last level
caches (LLCs) which results in many-to-few traffic patterns
(i.e, many GPUs communicate with a few LLCs) with negligi-
ble inter-GPU communication [7], [13], [14]. This can cause
the LLCs to become bandwidth bottlenecks under heavy net-
work loads and lead to significant performance degradation
[7]. In addition, since heterogeneous systems share the mem-
ory resources, the GPUs can monopolize the memory and
cause high CPU memory access latency [15]. Conventional 2D
architectures, such as mesh NoCs, cannot efficiently handle
this many-to-few traffic or fulfill the quality of service (QoS)
requirements for both CPU and GPU communication [7].

In recent years, designers have taken ad vantage of 3D IC’s
higher packing density and lower interconnect latency to
improve the performance of manycore systems [4], [5]. The
advantages of 3D integration for CPU and GPU based many-
core systems have been demonstrated in [16], [17] where the
authors have principally focused on improving the through-
putand energy efficiency by using the benefits of 3D integra-
tion for homogeneous systems (all CPUs or all GPUs) only.

Due to the differences in the thread-level parallelism of
CPUs and GPUs, the NoC designed for heterogeneous
systems should satisfy both CPU and GPU communication
constraints [18]. Hence, designing the 3D NoC for heteroge-
neous systems is more complicated than homogeneous sys-
tems; this aspect has not been explored adequately. On top
of this, 3D ICs suffer from thermal issues due to higher
power density [8], [19]. One of the common methodologies
for reducing the peak temperature in a 3D architecture
includes proper core placement to prevent high power con-
suming cores from being placed on top of each other [19].
However, it is not possible to implement such a strategy for
heterogeneous systems with many GPU cores [8]. Other
techniques to reduce temperature include suitable floorplan-
ning [20] and temperature-aware task scheduling [21]. In
contrast to these prior works, we propose a MOO algorithm
to intelligently place the cores and links within a 3D hetero-
geneous system that jointly considers all relevant design
metrics, e.g., latency, throughput, energy, and temperature.

For a given workload, application-specific NoCs are
known to outperform conventional architectures, e.g., mesh
NoCs [7]. A MOO formulation for 3D NoCs is presented in
[8] for accelerating deep learning workloads. In [22], the
authors have explored heterogeneous NoC design for multi-
media applications. However, these works have only focused
on one class of workloads to design the NoC and ignored the
correlation in the traffic patterns of other applications.

2.2 Multi-Objective Optimization Algorithms
Basic MOO algorithms such as genetic algorithms (GA), e.g.,
NSGA-II [9], or simulated annealing-based algorithms, e.g.,
AMOSA [10], have been used in different optimization
problems. AMOSA has been demonstrated to be superior to
GAs or simulated annealing [10] and has been applied for
the problem of heterogeneous NoC design in [7], [8]. How-
ever, since AMOSA is based on simulated annealing, it
needs to be annealed slowly to ensure a good solution,
which does not scale well with the size of the search space.
In [23], the authors have used a heuristic-based MOO
for multicore designs. However, they focus mainly on opti-
mizing individual cores in smaller systems with up to 16

854
TABLE 1
List of Applications and Their Respective Domains
Applications Domain/Usage
Back Propagation (BP) Pattern Recognition
Breadth-First Search (BFS) Graph Algorithm
CNN for CIFAR -10 (CDN) [28] Image Classification (RGB)
Gaussian Elimination (GAU) Linear Algebra
HotSpot (HS) Physics Simulation
CNN for MNIST (LEN) [27] Image Classification (Grayscale)
LU Decomposition (LUD) Linear Algebra
Needleman-Wunsch (NW) Bio-Informatics
k-Nearest Neighbors (KNN) Data Mining
PathFinder (PF) Grid Traversal

processors. Latency and area have been optimized using
GAs to design NoC architectures in [24]. The authors in [25]
have used machine learning techniques like linear regres-
sion and neural networks for MOO on different platforms.
A learning-based fuzzy algorithm has been proposed to
reduce the search time in [26]. However, this methodology
requires a threshold to be decided for each application sepa-
rately. A recent work [12] proposed a branch-and-bound-
based algorithm, priority and compensation factor-oriented
branch and bound (PCBB) for task mapping in a NoC-based
platform [12]. However, this work only considers task map-
ping on a relatively smaller system size, where calculating
the bound for each node is significantly easier. These works
have mainly considered homogeneous platforms with
smaller system sizes and fewer number of objectives.

3D heterogeneous NoC design is far more complex since
the design must consider the requirements for each compo-
nent. With additional constraints such as temperature and
energy, the required optimization time can become tremen-
dously high. Therefore, as systems become more complex,
algorithms that are scalable with the size of the search space
and can reduce optimization time without sacrificing solu-
tion quality will be needed.

In this work, we show that multiple applications exhibit sim-
ilar traffic patterns on heterogeneous platforms. Leveraging

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

this observation, we investigate the design of application-
agnostic NoC architectures and propose a machine-learning
inspired algorithm MOO-STAGE for 3D heterogeneous NoC
design. Together, using MOO-STAGE and our observations of
application traffic characteristics, we significantly reduce the
design time of 3D heterogeneous NoCs and create optimized,
application-agnostic architectures.

3 TRAFFIC PATTERN ANALYSIS

In this section, we present an in-depth study of the character-
istics of the traffic patterns generated by a variety of applica-
tions that run on a heterogeneous platform. To this end,
applications from multiple domains were selected, e.g., phys-
ics, data mining, and bio-informatics. Two of these bench-
marks, LeNet [27] and CDBNet [28], are commonly used
neural networks for image classification while the rest of
these applications come from the Rodinia benchmark suite
[29]. This allows us to study the traffic patterns and the corre-
sponding communication requirements of commonly used
applications from different fields. Table 1 lists the applica-
tions along with their corresponding domains/usages. To
obtain accurate traffic characteristics, we run each application
on a detailed architecture simulator, Gem5-GPU [30]. The
traffic characteristics are measured in the number of flits per
cycle. Full experimental details are elaborated in Section 6.1.

Fig. 1 shows the traffic heat map for BP, BFS, NW, and PF
applications running on a generic 64-tile heterogeneous sys-
tem (8 CPUs, 16 LLCs, and 40 GPUs). Each row represents a
different source, while each column represents a different
destination. Since CPU and GPU cores have different require-
ments for delivering high performance, we show their respec-
tive traffic patterns separately, CPU-LLC communication in
the top section and GPU-LLC communication in the bottom
section (of note, CPU-GPU communication is negligible).

We observe that these heterogeneous systems exhibit
several interesting traffic patterns:

e In every application, we observe that one CPU (the
master core) exhibits higher traffic intensity compared

. CPU

DESTINATION
o CPU LLC C_F"_U . uc
= D I- : "B B | : i
S 5% = -2.6%° |5 = 0.2%
)
o
=By 9
2 = — =
(] -
Amount of Communication:
DESTINATION
) LLC GPU GPU
©
& B
(]
BFS

Fig. 1. Traffic pattem heat map for four applications (BP, BFS, NW, and PF) running on a 64-tile heterogeneous manycore system. The numbers indi-
cate percentage of total traffic contributed by that section (e.g., CPU-LLC communication results in 2.6% of total traffic for BP).

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS

B CORE-LLC

BP BFS CDN GAU HS LEN LUD NW KNN PF
(@)

CORE-CORE

-

Percentage of traffic
[[=1] (=]
g § 88§

855

M CORE-LLC

BP BFS CDN GAU HS LEN LUD NW KNN PF
(b)

100% CORE-CORE

g §

Percentage of traffic
[B
g =2

0%

Fig. 2. Traffic breakdown showing the percentage of traffic between (in either direction) LLC and either CPU or GPU (CORE-LLC) and between
CPUs and GPUs (CORE-CORE) for a (a) 36-tile and (b) 64-tile manycore system.

to the other CPUs. The master core is easy to spotsince
it contributes a majority of the CPU traffic.

e Contrary to CPUs, GPU-LLC pairs exhibit nearly
uniform high traffic due to well distributed and par-
allelized GPU workloads. The large number of GPUs
can cause the GPU traffic to significantly congest the
network. Communication between the other pairs of
cores, e.g., GPU-GPU is much lower.

e The majority of all traffic is associated with the LLCs.
Fig. 2 shows percentage of total traffic going to/from
the LLCs. On average, more than 80 percent of the
total traffic is associated with the LLCs. Since hetero-
geneous systems typically have a small number of
LLCs, this generates many-to-few communication pat-
terns, especially between the GPUs and LLCs [7].
Without proper architectural support, LLCs can eas-
ily become network hotspots.

All applications considered (Table 1) exhibit such traffic
behaviors and have similar traffic heat maps. Based on these
observations, we conjecture that these characteristics are
more dependent on the heterogeneous architecture than
any specific application. Even though there exists some
amount of application-specific variations among the cores,
these differences are relatively insignficant compared to the
heavy many-to-few communication going to/from the LLC
blocks. As a result, the traffic patterns of any new applica-
tion can be expected to exhibit similar features as those in
Fig. 1. Therefore, an NoC optimized for any of these appli-
cations can potentially be re-used for other applications
without significant loss of performance.

To demonstrate that the above-mentioned traffic patterns
are not specific to any particular system size, we consider a
different system size of 36 tiles (4 CPUs, 8 LLCs, and 24
GPUs). The traffic patterns generated by this system size
exhibit the same characteristics as the 64-tile system across
all applications, i.e., a highly active master core, little CPU-
GPU communication, nearly uniform GPU-LLC communi-
cation, and most of the communication is based around the
LLCs (Fig. 2). We do not replicate Fig. 1 for the 36-tile sys-
tem for brevity. This reinforces our previous observation
that the traffic characteristics are more dependent on the
elements of the heterogeneous architecture and is not lim-
ited to one system size or configuration. Hence, we can
design the 3D NoC architecture by primarily considering
the constituents of the heterogeneous system rather than
any specific traffic patterns.

4 MuLTI-OBJECTIVE OPTIMIZATION FORMULATION

4.1 Drawbacks of Mesh NoCs

Mesh NoC is the preferred design for on-chip communica-
tion due to its simplicity. Intel’s Xeon Phi and Tilera’s TILE
processors are examples of architectures with a mesh NoC.
However, as the number of cores on a single chip increases,
mesh NoCs inevitably require more hops for each network
traversal. These added hops lead to increased network
latency and energy consumption. Therefore, despite its sim-
plicity, mesh NoCs do not scale well with system size.

Mesh NoCs are especially ill-suited for heterogeneous
systems. In [7], the authors have shown that links closer to
the LLCs are highly over-utilized due to the many-to-few
communication in mesh NoCs. Even an optimized 3D mesh
can have links carrying 3X the average link traffic [8]. This
can lead to network congestion, which results in higher
latency and decreased throughput, negatively affecting the
overall system performance. To combat these issues, we
look to define a general methodology for designing 3D
NoC-based heterogeneous systems.

4.2 MOO Formulation for 3D Heterogeneous NoCs
In this section, we discuss the necessary objectives to design
an efficient 3D heterogeneous system. Fig. 3 illustrates an
example 3D heterogeneous architecture with two layers.
For these systems, it is important that we 1) optimize both
CPU and GPU communication; 2) efficiently balance the
load of the 3D NoC under many-to-few traffic patterns seen
in Section 3; 3) minimize the network energy; and 4) mini-
mize the peak temperature of the system. The design meth-
odology should optimize the system for individual core
requirements along with other design constraints for high-
performance NoC architectures. There may be additional
design objectives based on specific design cases which can
be similarly included in the design process. In this work,
the design methodology focuses on the placement of the
CPUs, GPUs, LLCs, and planar links. We elaborate on how
the methodology satisfies each objective next. It should also
be noted that the objectives considered here are generic and
can be used for homogeneous 3D NoC design as well. For
example, in a GPU-only system, we should optimize
throughput while for a CPU-only system we should opti-
mize the overall latency. Apart from these, other design
objectives considered in this work, e.g., energy, temperature
are also applicable in a homogeneous setting.

856

TSV commmmmm Planar link e

CPU TILE GPU TILE LLCTILE
f’ S
4

o
=]
_

Mn mory
Controller

Fig. 3. Overview of the TSV-based 3D system considered in this work.
The system is divided into CPU, GPU, and LLC tiles. Tiles are intercon-
nected via a planar link (intra-layer) or a TSV (inter-layer). This figure is
for illustration purpose only; it is not optimized for any metric.

4.2.1 CPU Communication Objective

CPU cores use instruction-level parallelism to achieve high
performance on a limited number of threads. If any of these
threads stall, CPUs incur a large penalty. Therefore, mem-
ory access latency is a primary concern for CPUs. For C
CPUs and M LLCs, we model the average CPU-LLC latency
using the following equation [5]:

M
Z h*a_] +dx_] ,ﬁa_} (]-}

J=1

Ma

Lat =

I

Il
-

T

Here, r is the number of router stages, h;; is the number
of hops from CPU i to LLC j, d;; indicates the total link
delay, and f;; represents the amount of interaction between
core i and core j. The path from core 7 to core j is deter-
mined by the routing algorithm (given in Section 6.1). It
should be noted here that the above equation is not limited
to our specific routing technique and can be used with other
routing algorithms as well.

4.2.2 GPU Communication Objective

Unlike the CPUs, GPUs rely on high levels of data parallel-
ism. Massive amounts of parallelism coupled with quick
context switching allow the GPU to hide most of its memory
access latency. However, to do so, GPUs need lots of data
and rely on high throughput memory accesses.

We maximize the throughput of GPU-related traffic by
load-balancing the network to allow more messages to uti-
lize the network at a time. In other words, given a frequency
of traffic interaction and the routing paths, we want to bal-
ance the expected link utilization across all links. This does
not change the total number of packets to be communicated.
Instead, it reduces the number of heavily congested links by
redistributing traffic flows. This reduces the amount of con-
tention for heavily utilized links. As a result, links are more
readily available, there is less network congestion, and
hence, network throughput is improved.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

For more intuition, load-balancing the network by adjust-
ing link and tile placement tries to bring highly communi-
cating tiles closer together and place links such that path
diversity between highly communicating pairs is created. In
other words, this load-balancing approach attempts to
improve throughput by utilizing the given resources more
efficiently. To balance the expected link utilization (load-
balance the network), we consider minimizing both the
mean (U) and standard deviation (o) of expected link utili-
zation as suitable objectives.

The expected utilization of link & (Uy) can be obtained by
the following equation:

R

R
=zz .faj pajk (2)

i=1 j=1

Here R is the total number of tiles and p;j, indicates
whether a planar/vertical link k is used to communicate
between core i and core jrespectively, i.e.,

|1, ifcoresi,jcommunicate along planar [vertical link k
Pigk 0, otherwise,

Ppiji: can be determined by using the network connectivity
and routing protocols.

Then, the mean (U) and standard deviation (o) of link
utilization can be determined from the following equations:

_ o1&
U=Izuk (3}

@

Model Validation: Throughput can be accurately measured
from network simulations. However, repeated simulations
require significant amounts of time and increase total optimi-
zation time [26]. Existing network throughput models have
only considered regular networks [31] and hence cannot be
applied to the networks we generate (there are no regularity
constraints). In this work, we have modeled maximizing
throughput as minimizing Egs. (3) and (4). We validate our
proposed throughput model using detailed cycle-accurate
network simulations. Figs. 4a and 4b show the throughput
trend for different values of mean (Eqn. 3) and standard
deviation (Eqn. 4) of link utilization for BFS and HS. Similar
behavior is observed for all other applications. The plots
have been restricted to regions which had enough data
points for a faithful representation. It is clear from these fig-
ures that network throughput has an inverse relation with
the mean and standard deviation of link utilization. Reduc-
ing the mean and standard deviation simultaneously leads
to a monotonic increase in throughput. Therefore, increasing
throughput can alternatively be expressed as minimizing
mean and standard deviation of the expected link utilization,
validating our throughput model.

4.2.3 Thermal Requirements

One of the key challenges in 3D integration is the high-
power density and resulting temperature hotspots. High
temperature not only affects performance but also the

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS 857

_a
E B

= =
]

Throughput

014 -]

,_I....._.,..
Tz s ..
o0 0.8 08 7 o N | ‘
: [} I |

(a)

03

=
-
/

Throughput

Mean o8 ~_ <
1 o7 0TS

(b)

Il.ns_ ”TM 3 0.9&_
standard Deviation

Fig. 4. Throughput with respect to mean (Eq. (3)) and standard deviation (Eq. (4)) of link utilization for (a) BFS and (b) HS. The plots have been gen-
erated by NoCs that were visited while optimizing for throughput only (Section 6.2, Case 1).

lifetime of the device. Cores that are further away from the
sink tend to have higher temperatures than those close to
the sink. Therefore, cores must be properly placed, e.g., high
power consuming cores should be placed close to the sink
to reduce temperature.

To estimate the temperature of a core, we use the fast
approximation model presented in [32]. It considers both
horizontal and vertical heat flow to accurately estimate the
temperature. A manycore system can be divided into N
single-tile stacks, each with K layers, where N is the num-
ber of tiles on a single layer and K is the total number of
layers. The temperature of a core within a single-tile stack n
located at layer k from the sink (7, ;) due to the vertical heat
flow is given by:

k i k
Tor =Y (Pm- > Rj) +Ry» P (5
i=1 i=1 i=1

This represents the vertical heat flow in a manycore sys-
tem [32]. Here, P, ; is the power consumption of the core i
layers away from the sink in single-tile stack n,R; is the ver-
tical thermal resistance, and E; is the thermal resistance of
the base layer on which the dies are placed. The values of
R; and R, are obtained using 3D-ICE [33]. The horizontal
heat flow is represented through the maximum temperature
difference in the same layer k(A T'(k)):

AT(k) = maxT,; — min T, . (6)

The overall thermal prediction model includes both ver-
tical and horizontal heat flow equations. Following [32], we
use T' as our comparative temperature metric for any given
3D architecture:

T= (n:‘s]t{xTn‘k) (mﬁx.’l T(k)) ™

4.2.4 Energy Requirements

A few long-range links added to the NoC can improve per-
formance [5]. However, these long-range links are costlier
in terms of energy. Routers with a higher number of ports
can improve path diversity and throughput, however,
larger routers are difficult to design and are power hungry.
Therefore, router size and link length must be optimized

during design time to deliver high performance without
consuming high amounts of energy. For a system with N
tiles, R routers, L planar links, and V vertical links, the
approximate network energy consumed is obtained using
the following equation.

N N R
E‘r‘mr,te‘r = Z Z f's_} Z Tijk - (E Pk) ®
i=1 j=1 k=1
N N
Ejin. = Z Z f;j ZP@J& dk Epfﬂm‘r + Zf_ﬁjk E@fmcaf)
i=1 j=1
9)

E = E‘r‘mr,ter + Eimk, (10)

Here E, denotes the average router logic energy per port
and P, denotes the number of ports available at router k. The
total link energy can be divided into two parts due to the dif-
ferent physical characteristics of planar and vertical links. f;;
represents the frequency of communication between core i
and core j and can be extracted from Gem5-GPU simulations
while dj, represents the physical link length of link k. Here, g;;s,
and r;j, is defined similarly as p;. (Eqn. 2) to indicate if a verti-
cal link or router £ is utilized to communicate between core i
and core j respectively. Epjnor and E,icq denote the energy
consumed per flit by planar metal wires and vertical links
respectively. All the required power numbers were obtained
using Synopsys Prime Power for 28nm nodes. The total net-
work energy E is the sum of router logic and link energy.

4.2.5 Overall MOO Formulation

In the end, our aim is to find a 3D heterogeneous manycore
design that minimizes the mean link utilization (U7, stan-
dard deviation of individual link utilizations (o), average
latency between CPU and LLCs (Lat), temperature (T') and
energy (E). It is important to note that the analytical models
for these objectives only need to be accurate in determining
which designs are better relative to one another, e.g., lower
values of T result in better temperatures. This allows us to
quickly compare designs without performing detailed sim-
ulations during the optimization search. Since optimizing
one objective may negatively affect another, it is important
that these objectives are optimized simultaneously. For
example, a thermal-only aware placement would move

858

high-power cores closer to the sink [8] and possibly further
away from cores they highly communicate with, negatively
affecting performance and energy. We write our combined
objective as follows:

D* = MOO(OBJ = {U(d),o(d), Lat(d),T(d), E(d)}), (11)
where, D* is the set of Pareto optimal designs among all possi-
ble 3D heterogeneous manycore system configurations D, i.e.,
D* € D, MOO is a multi-objective solver, and OB.J is the set
of all objectives to evaluatea candidate design d € D. A candi-
date design d consists of an adjacency matrix for the links
(designates which pair of tiles are connected via a link) and a
tile placement vector (designates which core is placed at
which tile). We also ensure that for all d € D, all source
-destination pairs have at least one path between them. Since
mesh is the most commonly used NoC architecture, any design
d has an equal number of links as that of a 3D mesh NoC.

In the following section, we describe the machine learn-
ing based MOO-STAGE, that we use as the multi-objective
problem solver. However, any other MOO algorithm can
also be used.

5 DESIGN OPTIMIZATION USING MACHINE
LEARNING

In this section, we present a machine learning based optimi-
zation algorithm called MOO-STAGE that is scalable with
the size of the search space. STAGE [11] is an online learn-
ing algorithm originally developed to improve the perfor-
mance of local search algorithms (e.g., hill climbing) for
single objective optimization problems. In [5], authors have
shown that STAGE can significantly outperform traditional
optimization techniques, namely, simulated annealing (SA)
and genetic algorithms (GA) for NoC design optimization
with homogenous cores.

Inspired by this success of STAGE for single objective
NoC design optimization, we extend it to a multi-objective
optimization setting. In this work, we propose MOO-
STAGE, a multi-objective optimization algorithm, and apply
it to 3D manycore heterogeneous NoC design. The key idea
behind MOO-STAGE is to intelligently explore the search
space such that the MOO problem is efficiently solved.
More precisely, MOO-STAGE utilizes a supervised learning
algorithm that leverages past search experience (Local
search) to learn an evaluation function that can then estimate
the outcome of performing a local search from any given
state in the design space (Meta search). In practice, the
MOO-STAGE algorithm iteratively executes Local and Meta
searches in a sequence as shown in Fig. 5.

Fig. 5 shows a high-level overview of how MOO-STAGE
works. The first stage (Local search) performs a search from a
given starting state, guided by a cost function considering all
objectives. Then, the search trajectories collected from the
Local search is used for the next stage (Meta search) to learn an
evaluation function. This evaluation function attempts to
learn the potential (quantified using the cost function) of per-
forming a Local search starting from a particular state.
This allows the algorithm to prune away bad starting states
to reduce the number of local search calls needed to find
(near-) optimal designs in the given design space. Unlike

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

New search trajectory to
improve the evaluation function

Local Search Meta Search
Search guided by {0;, 03, ..., 0} Learn evaluation function and
from starting state search for promising starting states

&

. Evaluation e
© - m) Rl mp < @ Poor
@ ® Goo
Good starting states to —t Pote!'ltial
' . ® - starting
find better solutions ®
states

Fig. 5. Overview of the MOO-STAGE algorithm.

MOO-STAGE, other MOO algorithms based on random
restarts do not leverage any such knowledge and spend sig-
nificant time searching from states that would otherwise be
rejected by MOO-STAGE. Therefore, MOO-STAGE explicitly
guides the search towards promising areas of the search
space much faster than conventional MOO algorithms.
Below we describe the details of the MOO-STAGE algorithm.

5.1 MOO-STAGE: Local Search

Given an objective, the goal of a local search algorithm (e.g.,
greedy search or SA) is to traverse through a sequence of
neighboring states to find a solution that minimizes the
objective. To accommodate multiple objectives, we employ
the Pareto hypervolume (PHV) [34] metric to evaluate the
quality of a set of solutions (higher is better). The PHV is the
hypervolume of the dominated portion of the objective space
as a measure for the quality of Pareto set approximations
[34]. A design P is dominated by design Q (P<Q) when

Wi - Obj.g (P) S Objg(Q) A i Obj.g (P) < Obj.g (Q)

Local search guided by the PHV heuristic has two strong
advantages over other metrics for comparing solutions [35]:
1) The PHV captures the improvement in any objective. If a
new set of solutions has a better PHV than the current set of
solutions, then the new set of solutions covers more of
the objective space and better captures the trade-offs between
objectives. 2) PHV allows the handling of any number of
objectives as part of the MOO problem (i.e., generality) since
PHV maps to a single output (cost). This is particularly
useful for learning the evaluation function via a regression
learning algorithm.

To compute the PHV, we employ a fast and scalable
PHYV algorithm called hypervolume by slicing objectives
[36]. It employs the divide-and-conquer principle to
achieve efficiency: it repeatedly divides the PHV computa-
tion into simpler problems with fewer objectives and
aggregates the solutions of simpler problems to compute
the total hypervolume.

In this work, we use a simple greedy search with the
objective of maximizing PHV with respect to the input
objective set (PHVy,) as the local search procedure
(Algorithm 1). However, it should be noted that greedy
search has been employed as an example case only. Any
other local search method, e.g., SA, can be used to similar
effect. Starting from the initial state dg, we find the best
neighboring state (neigh(d..)) that improves the PHV

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS

heuristic at each greedy search step (Algorithm 1, line 3). In
the context of designing 3D heterogeneous systems, a neigh-
boring state is where exactly one planar link is repositioned
or two tiles are swapped (both irrespective of layers). If this
best neighboring state improves the PHV value, we add this
state to the set of local optima (Sj,c,;) while ensuring that all
designs in Sjpei are non-dominated (Algorithm 1, lines 4-5).
This is repeated until the best neighboring state does not
improve the PHV value, at which point, we return the local
optima set, search trajectory (Siq;j = dsart ,---,dus), and
the final search state (djus). Essentially, the local search explores
the neighborhood of the current solutions to expand the Pareto
front to dominate as much of the objective space as possible.

Algorithm 1. Local Search: local(Obj, dsart)

Input: Obj (Set of optimization objectives),
Output: Sjecr (Non-dominated set of designs),
Siraj (Trajectory set), djqs (Last design)
1: Initialize: Sjpcar < {dstart}, Straj — {dstart},
Aevrr — dstart

2 While 1:
3: nezt “— ATEMAXdeneigh (dorr) PH VObj(Stocar U {d})
4: If PHVpyi(Siocat U {dnect}) > PHVopi(Sioca):
5 Stocal < Stocal I {next }

S{om,f — {d [S{deEl-‘iﬁ' € S{ma()[-"ﬁ - d]}
Else:

Return (Sfom,b Strajf diast — drurr)
deyrr +— dnext
Stmj — Stmj U {dru'rr}

R A A

5.2 MOO-STAGE: Meta Search

The second and key component of MOO-STAGE is the learn-
ing phase, also known as the meta-search. For standard local
search procedures, one of the key limitations is that the qual-
ity of the local search critically depends on the starting point
of the search process (dst.,). Although algorithms like SA try
to mitigate this effect by incorporating some random explo-
ration, they are still limited by the local nature of the search.
If the search repeatedly begins near poor local minima, it is
possible that the search will never find a high-quality solu-
tion. MOO-STAGE attempts to solve this problem by learn-
ing a function approximator (evaluation function) using
previous local search data that can predict the outcome of a
local search procedure from a particular starting point. Using
this evaluation function MOO-STAGE intelligently selects
starting states with a high potential to lead to better quality
solutions and subsequently, significantly reduces the com-
putation time. We discuss the details of this procedure in the
following paragraphs.

After completing the local search, we add the local
optima set to the global optima set (Sgiar) ensuring that
all states in the global optima set are non-dominated
(Algorithm 2, lines 3-4). If the local optima set didn’t add
any new entries to the global optima set, MOO-STAGE com-
pletes and returns the global optima set (Algorithm 2,
lines 5-6). Otherwise, we add the local search trajectory (Ssy;)
and PHYV of this trajectory (PHV o(Stj)) as a training exam-
ple to the aggregated training set (Siiy) and learn the
evaluation function Eval using Sirqin (Algorithm 2, lines 7-8).

859

In this work, we employ Regression Forest as the base learner
for creating Eval. Regression Forest is only used as an exam-
ple here and other regression learners that are quick to evalu-
ate and sufficiently expressive to fit the training data can be
used to similar effect.

Algorithm 2. MOO-STAGE

Input: Obj (Set of optimization objectives),
iter,, (Maximum iterations), D (Design space)
Output: Sy (Non-dominated set of designs)
1: Initialize: Sgobar < 0, Strain < 0, dstart < rand(D)
2: Fori = 0 to iterpe:
3: (Stocats Straj» iast) < local(Obyg, dgtart)
4: Maintain non-dominated global set:
Sgiobal +— Sgiopat U Stocal
Sgiobat +— {d € Sgiobat|(B k € Sgiovar) [k < d]}
If Syoba N Stocar = 02 [If algorithm converged]
Return Sg(om(
Add training example for each design d € Sy
Strain Strain U {(d! PHL?)bj(Sth))}
8: Train evaluation function: Eval < train(Siyen)
9: Greedy Search: drestart < greedy(Bval, diast)
10: If dipot = drestare:

N

11: dstart — rand(D)
12: Else
13: start < Grestart

14: Return Sgopal

Given the function Ewval, we use a standard greedy
search to optimize Ewval beginning at the last state of the
local search (di.:) to find the starting state for the next
local search iteration (drestart). If diast = drestart, We choose a
random design from the design space instead (rand(D))
(Algorithm 2, lines 9-13). Using these two computational
search processes (Local search and Meta search), MOO-
STAGE progressively leamns the structure of the solution
space and improves Eval. Essentially, the algorithm attempts
to learn a regressor that can predict the PHV of the local optima
from any starting design and explicitly guides the search towards
predicted high-quality starting designs.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

To obtain network- and processor-level information, we use
the Gem5-GPU full-system simulator [30]. The CPU cores
are based on the x86 architecture while the GPUs are based
on the NVIDIA Maxwell architecture. Here, each GPU core
is analogous to a Streaming Multiprocessor (SM) in Nvidia
terminology. Within each GPU core, we have 32 shader pro-
cessors. The architecture of an individual GPU core is simi-
lar to a GPU Compute Unit (CU) described in [30]. The
CPUs operate at 2.5 GHz while the GPUs operate at
0.7 GHz. The core power profiles have been extracted using
GPUWattch [37] and McPat [38]. The core temperatures
have been obtained using 3D-ICE [33]. Due to the high-
power densities in 3D ICs, we incorporate microfluid-based
cooling techniques to reduce core temperatures. In this
work, we also adopt Reciprocal Design Symmetry (RDS)
floor-planning [20] to reduce the direct overlap of core areas
as much as possible.

860 IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019
T T e s et
. . | I
13 E13 7hres || }HLl_ ‘.‘ E 13 9 hrs || 85 hrs “‘
g 1.2 91.2 I 0 1 |} 212 |.,r A
511 S11 e - F | e
E 1 E 1 | === £ 1 1 ==
209 S0.9 1 Z0.9 |
0 1 2 3 4 5 &6 0 4 8 12 16 20 24 0 6 20 24
Time (hrs) Time (hrs) Tlme ﬁ'irs

(a)

(b) ()

Fig. 6. Nomalized quality of NoC solutions (EDP) obtained using AMOSA and MOO-STAGE for (a) two objectives ({U, ¢}), (b) three objectives
({U.o. Lat}), and (c) four objectives ({U, o, Lat, E}) for the BFS benchmark.

To implement different NoC topologies, we modified the
Garnet network [39] in Gem5-GPU. It should be noted that
Garnet [39] includes a detailed cycle-accurate interconnec-
tion network model that incorporates appropriate flow con-
trol, effects of link/buffer contention, etc. In this work, we
use a standard three-stage router, however, the proposed
design methodology is independent of the number of router
stages. The 3D mesh NoCs use XYZ-dimension order rout-
ing while the proposed architectures use ALASH routing
[40]. It should be noted here that the proposed architectures
do not have a regularity constraint and hence XYZ
-dimension order routing cannot be employed as in the case
of 3D Mesh NoCs. The memory system uses a MESI Two-
Level cache coherence protocol. Each CPU and GPU have a
private L1 data and instruction cache of 32 KB each. Each
LLC consists of 256 KB memory.

To evaluate our proposed MOO-STAGE, we consider
two reference algorithms, AMOSA [10] and PCBB [12].
AMOSA is a widely employed algorithm for multi-objective
optimization due to its ability to achieve near optimal solu-
tions [10]. On the other hand, PCBB is a recently proposed
branch-and-bound based technique used for task mapping
in an NoC-based system considering multiple objectives
[12]. PCBB outperforms standard branch and bound
techniques due to two key features: a) a prioritization strat-
egy that prioritizes more prominent tasks to help prune
branches earlier in the process and reduce computational
complexity; and b) a compensation factor that allows trade-
offs between bound computational overhead and accuracy.
We have adapted PCBB for heterogeneous 3D NoC design
as follows. First, we divide the branching decisions into two
stages, node placement followed by link placement. Second,
we estimate the bound of a branch using a roll-out proce-
dure by virtually placing the remaining unplaced cores and
links following several well-known mapping strategies (i.e.,
greedy, random, and small-world). Lastly, similar to [12],
we combine the objectives into a single metric. We prune a
branch only if the bounds are worse even after being
adjusted by a compensation factor, indicating that the
branch is unlikely to produce a good solution even after
accounting for bound estimation error [12].

We evaluate the algorithms based on runtime and qual-
ity of solutions. Given the set of Pareto-optimal solutions D*
specified by (11) for each MOO solver considered here (ie.,
AMOSA, PCBB, and MOO-STAGE), we run detailed simu-
lations on this subset of solutions to get absolute values for
energy, performance, and temperature. Here, the NoC solu-
tion is characterized using network energy-delay product

(EDP) as an example. The network EDP is a combined met-
ric for performance and energy. Here, network EDP is
defined as the product of network latency and energy con-
sumption. All experiments have been run on an Intel Xeon
CPU E5-2620 @ 2 GHz machine with 16 GB RAM running
CentOS 6. The code for MOO-STAGE, AMOSA, and PCBB
have been made available on GitHub [41].

6.2 Optimization Parameters

System designers often have many different and perhaps
conflicting objectives. Therefore, we look at several cases
with different number of objectives for the proposed 3D het-
erogeneous architecture. As an example, we consider three
different cases:

Case1- {U,o} We consider mean (Eq. (3)) and standard
deviation of link utilization (Eq. (4)).

Case2- {U,o, Lat} We add CPU-LLC latency (Eq. (1)) to
Case 1.

Case3- {U,o, Lat, E} We add energy (Eq. (10)) to Case 2.

However, new objectives can be judiciously added to fit
the designer goals and constraints.

Also, since both AMOSA and MOO-STAGE rely on the
structure of the design space, we define what constitutes a
neighboring design. In the context of designing 3D heteroge-
neous systems, a neighboring state is where exactly one pla-
nar link is repositioned or two tiles are swapped (can be
between tiles in the same or different layers). On the other
hand, since PCBB is based on branch-and-bound, itdoes a sys-
tematic enumeration of the candidate solutions. Finally, our
goal here is to optimize the placement of CPUs, LLCs, GPUs,
and planar links such that they improve the design objectives.

6.3 Finding Better Solutions Using Machine
Learning

In this section, we investigate PCBB, AMOSA, and MOO-
STAGE's performance for the problem of 3D heterogeneous
NoC design. More specifically, we investigate their abilities
to optimize the core and planar link placement for 3D het-
erogeneous architectures. Here, we consider a 64-tile system
with 8 CPUs, 16 LLCs, and 40 GPUs. The number of planar
links and number of TSVs are kept the same as a similar
size 3D mesh NoC. When comparing the two algorithms,
we present the average EDP of multiple runs from the same
starting NoC configuration.

For brevity, in Fig. 6 we present the BFS results averaged
over multiple runs as a representative example. Similar

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS 861

TABLE 2
MOO-STAGE Speed-Up Over PCBB and AMOSA

Application Two-obj Three-obj Four-obj

PCBB AMOSA AMOSA AMOSA
BP 130 1.5 6.4 125
BFS 135 2.0 5.0 9.4
CDN 146 1.5 5.8 13.7
GAU 134 13 6.0 7.2
HS 144 1.5 8.0 10.0
LEN 145 20 5.8 142
LUD 140 1.3 5.0 10.0
Nw 150 1.5 5.0 114
KNN 148 1.2 6.4 7.5
PF 142 1.2 5.0 114
Average 141.4 1.5 5.8 10.7

observations are made for all other applications as well.
Fig. 6 shows the evolution of the best solution’s EDP over
time for AMOSA and MOO-STAGE for all three optimiza-
tion cases. Since PCBB is not an anytime algorithm, we can
only show the total run-time needed to complete the
branch-and-bound enumeration. This is discussed later in
Table 2.

Itis evident from Fig. 6 that MOO-STAGE achieves lower
EDP values significantly faster than AMOSA. To further
demonstrate this, we define two metrics: Thyoo_srage which
is the time required for MOO-STAGE to converge and
Tamosa which is the time needed for AMOSA to generate
similar quality of solutions. However, AMOSA never finds
the best solution that MOO-STAGE obtains even after signifi-
cantly longer durations for the three- and four-objective opti-
mization. For these cases, Tapyps4 is defined as the time
AMOSA takes to reach within 3 percent of the best solution
quality of MOO-STAGE in terms of EDP. It is clear from
Fig. 6 that the amount of speed-up MOO-STAGE achieves
increases as the number of objectives increase. With four
objectives, MOO-STAGE converges approximately after
Troo-stage = 9 hours while AMOSA takes approximately
Tamosa = 85 hours to come within 3 percent of MOO-
STAGE's solution quality. Therefore, MOO-STAGE achieves
an approximate 9.4 times optimization time speed-up com-
pared to AMOSA.

The significant improvement in optimization time can be
attributed to the fact that MOO-STAGE performs active
learning. In machine learning literature, it is well-known
that the active learning paradigm is exponentially more effi-
cient than passive supervised learning [42]. Similar to other
active learning algorithms, e.g., DAgger [43], MOO-STAGE
aggregates learning examples over multiple iterations to
reduce the number of training data needed to learn a target
concept. This guarantees that only a small number of trajec-
tories are needed to achieve good generalization behavior
with the learned function [43] and accurately evaluate the
entire input design space. As a result, after a few iterations
MOO-STAGE achieves a near-accurate evaluation function
to speed-up the optimization process.

Table 2 shows the speed-up with MOO-STAGE compared
to AMOSA and PCBB for all applications under Cases 1, 2,
and 3 (Section 6.2). MOO-STAGE achieves significant gains
in convergence time for all applications and number of

Placement: Core Link Core Link

: &7 cpu
15 £7uc
& GPU

AMOSA

MOO-STAGE

Fig. 7. Comparison of physical placement of tiles and planar links in solu-
tions obtained using MOO-STAGE and AMOSA.

objectives. Note that due to the large execution time for
PCBB, we only show the two-objective optimization case
(Case 1) for PCBB. However, increasing the number of objec-
tives will reduce the number of branches that are pruned
and exponentially increase the run-time. This would result
in even worse three- and four-objective run-times for PCBB.

As seen from Table 2, even for the simpler two-objective
optimization, PCBB takes 141x longer on average to find the
similar quality of solution as MOO-STAGE. This is mainly
due to the sheer size of the design space of 3D NoCs. For
more intuition, in a 4x4x4 (64-tile) system with 144 links
(96 planar + 48 vertical), the total number of possible tile
placements is 64 factorial. Then, each of these tile place-
ments has C(C(16, 2) 4, 96) different ways to place the pla-
nar links. Although PCBB manages to prune significantly
over 99.99 percent of this solution space, the tiny fraction
that is left consists of several millions of possible solutions.
This is significantly more than MOO-STAGE or AMOSA
leading to worse execution times.

On the other hand, MOO-STAGE reduces the optimiza-
tion time over AMOSA by 1.5X, 58X, and 10.7X on average
for the two-, three-, and four-objective cases respectively.
Table 2 also shows that, MOO-STAGE can obtain high
-quality solutions in a shorter amount of time irrespective of
the application. For further analysis, Fig. 7 shows the tile
placement and number of planar links in each layer for the
NoC configurations obtained using MOO-STAGE and
AMOSA at time Tsrage. The BFS benchmark considering
four-objectives (Case-3 described in Section 6.2) is shown as
an example. Here, we do not consider using PCBB as it takes
orders of magnitude more time to generate a good
NoC design compared to both MOO-STAGE and AMOSA.
From Fig. 7, we note that in the NoC obtained using
MOO-STAGE, LLCs tend to remain in the middle layers.
This allows the LLCs to access the vertical links in both
directions and reduce the average hop count to the other
tiles. Also, we observe that more links are concentrated in
layers with LLCs. The presence of more links enables
greater path diversity and reduces the amount of traffic con-
gestion under many-to-few traffic pattern leading to better
performance. Of note, it is interesting to see that AMOSA
and MOO-STAGE both achieve nearly similar tile place-
ment configurations but very different link placements.
This is due to the link placement search space being much

862
——Two =———=Three Four

20 |
i5 |
315 |
c |
§1o II
85 |

w

1 3 11 13 15

5 7 9
Time (hrs)
Fig. 8. Prediction error for MOO-STAGE (64-tile system, BFS).

larger than the tile placement search space. Therefore,
AMOSA fails to explore it adequately within Tspace time
and ends up with a solution similar to the initial starting
NoC, i.e., 3D Mesh (Starting state for all searches is 3D
Mesh which has uniform distribution of links among layers
as well). These analyses justify the approximately 9.5 per-
cent difference in EDP (Fig. 6¢c) between the best solutions
obtained using the two algorithms at time T'spage Therefore,
by learning the search space, MOO-STAGE is able to
achieve better quality solutions in a shorter span of time.

To demonstrate MOO-STAGE's ability to learn a function
that accurately maps the design space to the objective space,
we show the prediction error of the evaluation function
Ewval (Algorithm 2, lines 7-8) as a function of time for all con-
sidered cases (Section 6.2, Cases 1-3) in Fig. 8 considering
BFS as an example. The prediction error (in %) represents
the difference between the estimated PHV value obtained
by Ewval and the actual PHV value obtained by the subse-
quent local search. From Fig. 8, we note that irrespective of
the number of objectives, after only a few hours, the predic-
tion error is less than 5 percent. This low error rate indicates
that the evaluation function Ewval can accurately predict
good starting points for the local search. Hence, MOO-
STAGE continuously improves its search by choosing
promising starting points. As seen in Fig. 6 and Table 2, this
allows MOO-STAGE to reduce the total number of searches
necessary and find solutions much more quickly than
AMOSA'’s relatively random explorations and PCBB’s sys-
tematic enumeration of the entire candidate set.

In Section 3, we studied the traffic patterns generated by
different applications. We found that the traffic patterns of
different applications on heterogeneous platforms exhibit a
set of similar characteristics. Therefore, we conjectured that
we could utilize a heterogeneous platform optimized for one
application to run other applications. Taking advantage of
the similarities in application traffic characteristics seen in
Section 3, we undertake the design of application-agnostic
NoC architectures using MOO-STAGE in the next sections.

6.4 Application-Agnostic NoC Design

In this section, we validate our observations and show that
NoCs optimized for one application can show similar per-
formance for other applications as well. Here, we consider
the four-objective optimization problem (Section 6.2, Case
3) as an example to reduce network energy and CPU-LLC
latency, while improving the GPU-LLC throughput. So,
principally we focus on enhancing the network efficiency
(performance) here. To show our approach’s applicability
to different system sizes, we consider the optimization of a

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

36-tile (4 CPUs, 8 LLCs, and 24 GPUs arranged in four
layers of 3x3 cores) and a 64-tile system (8 CPUs, 16 LLCs,
and 40 GPUs arranged in four layers of 4x4 cores).

To design an application-agnostic NoC, we consider two
cases: generate an NoC optimized for a) each application
(denoted by its application) and b) a set of several applica-
tions, using an aggregated traffic profile (AVG). For each of
the N applications, we create a different AVG NoC (a total
of N AVG NoCs) using the set of remaining N — 1 applica-
tions (leave-one-out).

The optimized NoCs are then used to execute all appli-
cations, e.g., an NoC optimized for BFS is used to execute
all ten applications, and the performance is normalized to
the application’s respective application-specific NoC. For
example, the EDP of an NoC optimized for BFS running
BP is normalized with respect to the EDP of the NoC opti-
mized for BP, running BP. Each AVG NoC executes the
application that was left-out during optimization (other-
wise unknown to the optimization). Fig. 9a shows normal-
ized EDP of 64-tile NoCs. From Fig. 9a we note that on
average, only 3.2 percent degradation is observed for all
applications when compared to application-specific NoCs
with a worst case reaching only up to 9.8 percent. How-
ever, the averaged NoC (AVG) only shows a 1.1 percent
average degradation compared to the application specific
NoC architectures.

In Fig. 9b we also provide a comparative study with a
36-tile system. Here, we see similar evaluation results for
the 36-tile system as well. From Fig. 9b, we note that even
for a different system size, the performance degradation is
only 3.8 percent on average, with worst case difference
going up to 11 percent for NoCs optimized with a single
application. Similar to previous case, AVG performs better
with an average degradation of 1.8 percent.

By aggregating the characteristics from multiple appli-
cations, AVG can better generalize to the unknown appli-
cation. Therefore, an NoC optimized for a subset of
applications can be reused for a new application on 3D
heterogeneous systems without significant performance
penalty. These implications can be helpful for future
applications and NoC designs. For example, an NoC opti-
mized using BFS and GAU can be used to execute neural
network architectures like LeNet or CDBNet as shown in
Fig. 9a. Similarly, other neural network architectures, e.g.,
AlexNet [44], is likely to exhibit similar performance
improvements. Hence, irrespective of system size, it is
possible to design high-performance 3D heterogeneous
NoCs without prior knowledge of the application we
intend to run.

6.5 Thermal Aware Application-Agnostic NoC
Design

Up until this point, we have only optimized 3D heteroge-
neous systems for network efficiency (network perfor-
mance). However, 3D ICs have higher packaging densities,
resulting in higher temperature. High on-chip temperature
is detrimental to the performance of the IC. Hence, it is
essential to include the thermal characteristics in the optimi-
zation process. In this section, we extend our evaluation of
application-agnostic 3D heterogeneous NoC design by
including temperature into the optimization process as

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS

mBP M BFS W CDN N GAU W HS

1.2
1.1

=

0.9
0.8

Normalized EDP

0.7
0.6

W LEN HLUD B NW B KNN W PF HAVG

LEN

Appllcatlons being executed

HBP
1.2

11

H BFS [CDN HGAU B HS

[

0.9
0.8
0.7
0.6

Normalized EDP

GAU

(a)
W LEN HLUD HNW B KNN H PF HAVG

LEN

Appllcatmn being executed

(b)

Fig. 9. Normalized EDP of (a) 64-tile and (b) 36-tile NoCs optimized for network efficiency only (Section 6.2, Case 3) to study the performance degra-

dation with respect to application specific designs.

well. We introduce two new optimization cases (extending
from the cases in Section 6.2) for this purpose:

Case4- {T'} Thermal only optimization. We consider
peak core temperature (Eq. (7)) only.
Case 5—- {U,o0,Lat,T, E} Joint performance-thermal opti-
mization. We add temperature (Eq. (7)) to Case 3.
Like the previous section, we consider two system
sizes with single application optimized NoC and the
averaged NoC. However, optimizing only for the ther-
mal profile can lead to performance degradation since it
doesn’t consider any performance objectives during the
design process. We show the performance-thermal trade-
offs in Fig. 10.
In Fig. 10, we compare the results of NoCs optimized for
Case 3 (network efficiency/performance), Case 4 (thermal-
only), and Case 5 (joint network performance-thermal)

M Perf Mloint W Therm

M Perf MJoint © Therm

normalized to the Case 3 NoC. Figs. 10a and 10b show the
Full-system execution time and EDP respectively. Fig. 10c
shows the temperature of the 3D NoC configuration in all
three NoC cases. Here, Full-System EDP (FS-EDP) is defined
as the product of Full-System execution time and Energy.
The full-system execution time is obtained via detailed
Gem5-GPU simulations. It is clear from Fig. 10 that incorpo-
rating only thermal in the optimization process leads to the
best temperature profile but a significant degradation of
more than 7 percent in full-system execution time on aver-
age. Similarly, the NoC optimized for network efficiency
(Case 3) achieves the best EDP but at a 20°C average degra-
dation of temperature compared to the only-thermal opti-
mized NoC (Case 4). On the other hand, the jointly-
optimized NoC exhibits temperature improvements of 18°C
on average while sacrificing only 2.3 percent in overall exe-
cution time. Therefore, it is important that we jointly

W Perf MJoint = Therm

ELZ 1.3 120
= o
£11 g 12 o 100
= » F2
§ = 1.1 g
= 1 & 2 80
3 ! g
gL
"250.8 0.8 40 I
v 2w =z 2 & wzow=zo03 2 n_ m Z : m
s g gTY3 z° ms Iﬂazz

(a)

-I

(b) (0

Fig. 10. Performance-thermal trade-offs for 64-tile NoCs: (a) Full-System Execution time, (b) Full-System EDP, (c) Temperature comparison for three
optimization cases: network efficiency/performance-only (Perf), joint performance-thermal (Joint) and thermal-only (Therm).

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

1.2 mBP HBFS W CDN HGAU B HS W LEN ELUD B NW B KNN H PF HAVG
a 1.1
a
— 1
a
= 0.9
m
E os
o
Z 0.7
0.6
BP BFS CDN GAU HS LEN LUD NW KNN PF
Application being executed
(a)
12 mBP H BFS = CDN HGAU mHS W LEN ELUD ENW H KNN mPF HAVG
a 1.1
a8
- 1
a
N 09
]
E os
o
< 0.7
0.6
BP BFS CDN GAU HS LEN LUD NW KNN PF

Applications being executed

(b)

Fig. 11. Normalized EDP of (a) 64-tile and (b) 36-tile NoCs optimized jointly for performance-thermal to study the performance degradation with

respect to application-specific designs.

optimize both performance and thermal to reduce on-chip
temperature while delivering high performance.

Next, we show that it is also possible to design
application-agnostic NoC architectures for jointly-optimized
thermal-performance case. To this end, we perform similar
experiments as in Fig. 9. Fig. 11a (64-tile system) and Fig 11b
(36-tile system) show the normalized EDP for applications exe-
cuted on different application-specific and traffic-averaged
NoCs. Exactly like Fig. 9, the application-specific NoC for each
application has been chosen as the baseline for comparison. On
average, only 2.8 percent degradation is observed for the appli-
cation-specific NoC running other applications, when com-
pared to the application-specific NoCs on its application, with
a worst case of 8.5 percent. Similarly, for the 36-tile NoCs, the
average EDP degradation becomes 4.5 percent and worst
case is 11 percent. Like the previous case, the traffic-averaged

Placement: Core

24

24 21
[Sink] [Sink] [)
Mesh-perf Het-Perf Het-Joint

&F(PU &FLUC & GPU

Fig 12. Distribution of tiles and links in different architectures considered
in this work.

NoCs perform better with an average degradation of 2 and
2.1 percent for 64-tile and 36-tile NoCs respectively.

From the above observations, we find that due to the
similarities in the traffic pattern of applications on a
heterogeneous platform, it is possible to optimize the NoCs
for any known application(s) and have them perform well
with unknown applications. We have seen that optimizing
on a small set of applications reduces both the average
and worst-case degradation even further. Looking deeper,
we study the physical core and link distributions for each of
the application-specific NoCs. In Section 3, we noted
that the traffic patterns are similar for multiple applications.
As a result, the optimized NoCs are expected to be similar
as well.

To this end, we evaluate the link distribution among the
four layers and the associated tile placements for the
heterogeneous NoCs. Fig. 12 shows the distribution of tiles
and links in the performance-only optimized Het-perf
(Section 6.4), joint performance-thermal optimized Het-
joint (Section 6.5), and Mesh-perf (3D Mesh NoC with tile
placement that has been performance-only optimized simi-
lar to Het-perf). Please note that Het-perf in Fig. 12 is the
same NoC obtained using MOO-STAGE shown in Fig. 7
and is repeated here to easily observe the differences
among NoCs optimized considering different objectives.
Due to the uniform link distribution across all layers,
mesh NoCs cannot handle many-to-few traffic efficiently
(Section 4.1). On the other hand, both heterogeneous NoCs
designed following the framework presented in Section 4
produce an irregular topology with more links near the
LLCs. Compared to Het-perf, the placement of cores and
links are greatly affected by doing a temperature-aware

JOARDAR ET AL.: LEARNING-BASED APPLICATION-AGNOSTIC 3D NOC DESIGN FOR HETEROGENEOUS MANYCORE SYSTEMS

optimization (Fig. 12). Unlike Het-perf (which places LLCs
mostly in the middle two layers), to reduce core tempera-
tures, high power consuming cores, i.e., GPUs, are placed
closer to the sink in Het-therm. As a result, the LLCs and
CPUs are placed mostly in the upper layers. Also, similar
to Het-perf, more links are observed in the layers with a
higher number of LLCs. In both these cases, the physical
distribution of cores and links are observed to be similar
for all considered applications. Hence, the optimized
NoCs share similar characteristics in the physical place-
ment of cores and links as well.

7 CONCLUSIONS

3D NoC-enabled CPU-GPU based heterogeneous architec-
tures provide an opportunity to design high-performance,
energy-efficient computing platforms to meet the growing
computational need in deep learning and big-data applica-
tions. However, 3D heterogeneous architectures present
several new design challenges: a) multiple potentially con-
flicting design requirements; b) 3D integration induced
thermal hotspots; and c) significantly larger design spaces.

In this work, we have shown that we can generate
thermally-efficient high-performance 3D NoCs that are
application-agnostic by analyzing the on-chip traffic,
designing suitable objectives, and using efficient MOO tech-
niques. Our study shows that applications on heteroge-
neous systems with many GPUs and few LLCs, generate
similar traffic patterns. Experiments demonstrate that our
design framework can generate generic 3D NoC configura-
tions which experience an average performance loss of
1.1 percent for 64-tile systems and 1.8 percent for 36-tile sys-
tems compared to application-specific NoCs by considering
an aggregated traffic pattern of several applications. Similar
observations were made for a performance-thermal joint
optimized case. These observations were made irrespective
of system size, system configuration, and available training
application sets, demonstrating that we can create NoCs
that generalize well to unknown applications using a small
subset of available applications.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) grants CNS-1564014, CNS-1564022, CCF
1514269 and USA Army Research Office grant W911NE-17-
1-0485.

REFERENCES

[11 D.Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability
of GPU-based convolutional neural networks,” in Proc. Euromicro
PDP, 2010, pp. 317-324.

[2] J. Power, et al, “Heterogeneous system coherence for integrated
CPU-GPU systems,” in Proc. IEEEJACM MICRO, 2013, pp. 457-467.

[3]1] Hestness, 5. W. Keckler, and D.A. Wood, “GPU computing pipe-
line inefficiencies and optimization opportunities in heterogeneous
CPU-GPU processors,” in Proc. IEEE ISWC, 2015, pp. 87-97.

[4] W.R. Davis, et al, “Demystifying 3D ICs: The pros and cons of

oing vertical,” IEEE D&T Comput., vol. 22, no. 6, pp. 498-510,
Nov./Dec. 2005.

[5] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty, “Design-
space exploration and optimization of an energy-efficient and reli-
able 3-D small-world network-on-chip,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 36, no. 5 pp. 719-732,
May 2017.

[6]

[71

[81

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

865

B.S. Feero and P. P. Pande, “Networks-on-Chip in a three-dimen-
sional environment: A performance evaluation,” IEEE Trans. Com-
put., vol. 53, no. 1, pp. 32-45, Jan. 2008.

W. Choi, et al., “On-chip communication network for efficient
training of deep convolutional networks on heterogeneous many-
core systems,” IEEE Trans. Comput., vol. 67, no. 5, pp. 672-686,
May 2018.

B. K. Joardar, et al., “3D NoC-enabled heterogeneous manycore
architectures for accelerating CNN training: performance and
thermal trade-offs,” in Proc. 11th IEEE/ACM Int. Symp. Netw.-on-
Chip, 2017, Art. no. 18.

K. Deb, A. Pratap, and S. Agarwal, “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-IL” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multi-objective optimization algorithm: AMOSA,"”
IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 269-283, May 2008.

J. A. Boyan and A. W. Moore, “Learning evaluation functions to
improve optimization by local search,” J. Mach. Learn. Res., vol. 1,
Pp- 77-112, 2001.

C. Wu, et al, “A multi-objective model oriented mapping
approach for NoC-based computing systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 3, pp. 662-676, Mar. 2017.
A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-
chip networks for manycore accelerators,” in Proc. IEEE[ACM
MICRO, 2013, pp. 457-467.

H. Jang, et al., “Bandwidth-efficient on-chip interconnect designs
for GPGPUs,” in Proc. 52nd ACM/EDAC/IEEE Des. Autom. Conf.,
2015, pp. 1-6.

O. Kayiran, et al., “Managing GPU concurrency in heterogeneous
architectures,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarch-
itecture, 2014, pp. 114-126.

C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the
processor-memory performance gap with 3D IC technology,”
IEEE Des. Test Comput., vol. 22, no. 6, pp. 556-564, Nov./Dec. 2005.
A. Al Maashri, G. Sun, X. Dong, V. Narayanan, and Y. Xie, “3D
GPU architecture using cache stacking: performance, cost, power
and thermal analysis,” in Proc. IEEE Int. Conf. Comput. Des., 2009,
pp- 254-259.

J. Lee, S. Li, H. Kim, and S. Yalamanchilli, “Design space explora-
tion of on chip ring interconnection for a CPU-GPU heteroge-
neous architecture,” J. Parallel Distrib. Comput., vol. 73, no. 12,
pp- 1525-1538, 2013.

F.Li, et al, “Design and management of 3D chip multiprocessors
using network-in-memory,” in Proc. 33rd Int. Symp. Comput.
Archit., 2006, pp. 130-141.

S. M. Alam, R. E. Jones, S. Pozder, and A. Jain, “Die/wafer stack-
ing with reciprocal design symmetry (RDS) for mask reuse in
three-dimensional (3D) integration technology,” in Proc. 10th Int.
Symp. Quality Electron. Des., 2009, pp. 569-575.

X. Zhou, Y. Xu, Y. Du, Y. Zhang, and]. Yang, “Thermal manage-
ment for 3D processors via task scheduling,” in Proc. Int. Conf. Par-
allel Process., 2008, pp. 115-122.

A. Jarrah and M. M. Jamali, “Energy analysis and NoC design for
heterogeneous MPSoC platform for a video application,” in Proc.
IEEE 56th Int. Midwest Symp. Circuits Syst., 2013, pp. 437440

G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “OSCAR: An
optimization methodology exploiting spatial correlation in multi-
core design spaces,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 31, no. 5, pp. 740753, May 2012.

A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali,
“Multi-objective optimization for Networks-on-Chip architectures
using genetic algorithms,” in Proc. IEEE Int. Symp. Circuits Syst.,
2010, pp. 3725-3728.

B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Efficient system
design space exploration using machine learning techniques,” in
Proc. 45th ACM/IEEE Des. Autom. Conf., 2008, pp. 966-969.

G. Ascia, V. Catania, A. G. Di Nuovo, M. Palesi, and D. Patti,
“Efficient design space exploration for application specific systems-
on-a-chip,” J. Syst. Archit., vol. 53, no. 10, pp. 733750, 2007.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324,1998.

A. Krizhevsky, “Learning multiple layers of features from tiny
images,” MSc Thesis, University of Toronto, 2009.

S. Che, et al, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44-54.

[301

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[401

[41]
[42]

[43]

[44]

]. Power, J. Hestness, M. Orr, M. Hill, and D. Wood, “gem5-gpu: A
heterogeneous CPU-GPU simulator,” IEEE Comput. Archit. Lett.,
vol. 14, no. 1, pp. 34-36, Jan.-Jun. 2015.

S. Koohi, M. Mirza-Aghatabar, S. Hessabi, and M. Pedram, “High-
level modeling approach for analyzing the effects of traffic models
on power and throughput in mesh-based NoCs,” in Proc. 21st Int.
Conf. VLSI Des., 2008, pp. 415-420.

J. Cong,]. Wei, and Y. Zhang, “A thermal-driven floorplanning
algorithm for 3D ICs,” in Proc. IEEE/ACM Int. Conf. Comput. Aided
Des., 2004, pp. 306-313.

A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and
D. Atienza, “3D-ICE: Fast compact transient thermal modeling for
3D ICs with inter-tier liquid cooling,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2010, pp. 463-470.

E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indica-
tor revisited: On the design of pareto-compliant indicators via
weighted integration,” in Proc. Int. Conf. Evol. Multi-Criterion Opti-
mization, 2007, pp. 862-876.

A. Auger,]. Bader, D. Brockhoff, and E. Zitzler, “Theory of the
hypervolume indicator: optimal mu-distributions and the choice
of the reference point,” in Proc. ACM FOGA, 2009, pp. 87-102.

L. While, P. Hingston, L. Barone, and S. Huband, “A faster algo-
rithm for calculating hypervolume,” IEEE Trans. Evol. Comput.,
vol. 10, no. 1, pp. 29-38, Feb. 2006.

J. Leng, et al,, “GPUWattch: Enabling energy optimizations in
GPGPUs,” in Proc. 40th Annu. Int. Symp. Comput. Architect., 2013,
pp- 487-498.

S. Li, et al, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in Proc. 42nd Annu. IEEEJACM Int. Symp. Microarchitecture, 2009,
Pp- 469-480.

N. Agarwal, T. Krishna, L. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2009, pp. 33-42.
O. Lysne, T. Skeie, S.A. Reinemo, and 1. Theiss, “Layered routing
in irre networks,” IEEE Trans. Parallel Distrib. Syst., vol. 17,
no. 1, pp. 51-65, Jan. 2006.

B. K. Joardar, TC_2018_code, Github Repository, [Online]. Avail-
able: https://github.com /CSU-rgkim/TC_2018 _code

B. Settles, Active Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. San Rafael, CA, USA: Morgan & Claypool
Publishers, 2012.

S. Ross, G.]. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,”
in Proc. AISTATS, 2011, pp. 627-635.

A. Krizhevsky, 1. Sutskever, and G.E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. 25th Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1106-1114.

Biresh Kumar Joardar is working toward the
PhD degree in Washington State University,
Pullman, under the guidance of Dr. Partha Pratim
Pande and Dr. Janardhan Rao Doppa. His cur-
rent research interests include novel interconnect
architectures for multicore chips, near memory
computing and machine learning for electronic
design automation. He is a student member of
the IEEE.

Ryan Gary Kim is an assistant professor in the
Electrical and Computer Engineering Department
at Colorado State University, Fort Collins. His
current research interests include electronic
design automation techniques for scalable, fully-
adaptive manycore systems and domain-specific
architectures. He is a member of the IEEE.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.6, JUNE2019

Janardhan Rao Doppa received the PhD degree
in computer science from Oregon State University,
in 2014. He is an assistant professor in the School
of Electrical Engineering and Computer Science at
Washington State University. His research inter-
ests include machine leaming and data-driven
science and engineering with a special focus on
electronic design automation and computer archi-
tecture. He is a memberofthe IEEE.

Partha Pratim Pande (M'05, SM'11) is a profes-
sor and holder of the Boeing Centennial Chair in
computer engineering at the school of Electrical
Engineering and Computer Science, Washington
State University, Pullman, USA. His current
research interests include novel interconnect
architectures for multicore chips, on-chip wireless
communication networks. He is a senior member
of the IEEE.

Diana Marculescu is a professor of Electrical and
Computer Engineering at Carnegie Mellon Univer-
sity. She has won several best paper awards in top
conferences and joumnals in the area of low power
design and design automation. Her research inter-
ests include sustainable and energy-aware com-
puting, and computing for sustainability and other
applications. She is a fellow of the IEEE.

Radu Marculescu is a professor in the ECE
Department at Camegie Mellon University. He
has received several Best Paper Awards in top
conferences and journals covering design auto-
mation of integrated systems and embedded sys-
tems. His current research focuses on modeling
and optimization of embedded and cyber-physical
systems. He is a fellow of the IEEE.

= For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://github.com/CSU-rgkim/TC_2018_code

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

