Taming Extreme Heterogeneity via Machine Learning based
Design of Autonomous Manycore Systems

Special Session Paper

Paul Bogdan', Fan Chen®, Aryan Deshwal?, Janardhan Rao Doppa?, Biresh Kumar Joardar?, Hai
(Helen) Li?, Shahin Nazarian’, Linghao Song?, and Yao Xiao!
University of Southern California!, Washington State University?, and Duke University®
{pbogdan,shahin,xiaoyao}@usc.edu,{jana.doppa,biresh.joardar,aryan.deshwal}@wsu.edu,{hai.li,fan.chen,1s334}@duke.edu

ABSTRACT

To avoid rewriting software code for new computer architectures
and to take advantage of the extreme heterogeneous processing,
communication and storage technologies, there is an urgent need
for determining the right amount and type of specialization while
making a heterogeneous system as programmable and flexible as
possible. To enable both programmability and flexibility in the
heterogeneous computing era, we propose a novel complex net-
work inspired model of computation and efficient optimization
algorithms for determining the optimal degree of parallelization
from old software code. This mathematical framework allows us to
determine the required number and type of processing elements,
the amount and type of deep memory hierarchy, and the degree of
reconfiguration for the communication infrastructure, thus opening
new avenues to performance and energy efficiency. Our framework
enables heterogeneous manycore systems to autonomously adapt
from traditional switching techniques to network coding strategies
in order to sustain on-chip communication in the order of terabytes.
While this new programming model enables the design of self-
programmable autonomous heterogeneous manycore systems, a
number of open challenges will be discussed.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

KEYWORDS

Model of computation, self-programming computing architectures,
manycore systems, machine learning, ReRAM, processing-in-memory,
autonomous design optimization

ACM Reference Format:

Paul Bogdan', Fan Chen®, Aryan Deshwal?, Janardhan Rao Doppa?, Biresh
Kumar Joardar?, Hai (Helen) Li*, Shahin Nazarian!, Linghao Song?, and Yao
Xiao'. 2019. Taming Extreme Heterogeneity via Machine Learning based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODESISSS °19 Companion , October 13-18, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6923-7/19/10...$15.00
hitps://doi.org/10.1145/3349567.3357376

RIGHTS LI N Kiy

Design of Autonomous Manycore Systems: Special Session Paper. In Interna-
tional Conference on Hardware/Software Codesign and System Synthesis Com-
panion (CODES/ISSS 19 Companion), October 13-18, 2019, New York, NY, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3349567.3357376

1 INTRODUCTION

Edge, fog, and exascale computing (EC) are essential for validating
scientific theories and developing revolutionary biological, nano-
or neuro-technologies to tackle 2157 century challenges (e.g., pre-
cision medicine, energy crisis, climate change, and smart, safe
and secure cities). Advanced scientific and engineering investi-
gations call for revolutionary EC design approaches that break the
hardware-software boundary and propose breakthroughs for het-
erogeneous scalable computing platforms and memory storage. For
example, graph analytics decodes the links among heterogeneous
data streams and offers insights to ensure accurate prediction and
decision-making. Inferring causal and higher-order complex rela-
tionships from unstructured time-varying data calls for a paradigm
shift in EC design.

Today’s general-purpose manycore computing systems are widely
used in industry and research. However, due to synchronization
overhead, load imbalance, and resource sharing, parallel program-
ming models such as pthreads and OpenMP can exacerbate ap-
plication performance, making it non-ideal to design scalable sys-
tems. Moreover, these platforms are based primarily on the stored-
program computer concept and are implemented using von Neu-
mann computing architecture, which separates the computation
and storage into two distinct components connected by an off-chip
bus. Data is frequently exchanged between the computing units
(e.g., CPUs/GPUs) and the memory units. Due to the disparity be-
tween processing and memory technologies, the latency and energy
of data movement are generally a few orders of magnitude higher
than the computation in both servers [29] and mobile devices [43].
Hence, data communication cost dominates computation cost and
becomes the major bottleneck for improving the overall system per-
formance and execution efficiency, which is a phenomenon widely
known as the “memory wall". The situation is more severe when
dealing with big-data applications (e.g., training of deep neural
networks) with intense demand in computation and memory ac-
cesses [8, 9, 41].

We therefore propose several state-of-the-art design method-
ologies and architectures to address the afore-mentioned issues.
Section 2 introduces some challenges for edge, fog, and exascale
computing. Section 3 describes mathematical and algorithmic tools
for building dynamic MoCs that support complex reasoning about

https://doi.org/10.1145/3349567.3357376
https://doi.org/10.1145/3349567.3357376

the nature and type of computations, their interactions with the
data (numerical algorithms) and their memory requirements, thus
enabling new pathways for performance and energy optimization.
Section 4 presents memory-centric architectures to address the
memory wall issue. Section 5 introduces machine learning based
design space exploration and optimization algorithms for optimiz-
ing heterogeneous manycore systems. Section 6 presents dynamic
resource management using machine learning techniques. Section
7 concludes the paper and offers some future directions.

2 EDGE, FOG, AND EXASCALE COMPUTING
CHALLENGES

EC desiderata can be achieved via a cross-layer understanding of
performance and energy inefficiency from high-level algorithms (in-
cluding programming languages, compilers, and software libraries)
to lower-level hardware and operating system. Towards this end,
the EC challenges coming from the application-algorithm side are:
(1) How to decide and design the EC (deep machine) hierarchy
in terms of hardware partitioning (how many cores per tile, how
to interconnect tiles, blocks, units, sockets, modules, racks) and
heterogeneous memory allocation (e.g., DRAM, SRAM, MRAM)?
How to determine the data layouts and execution schedules on this
hierarchical EC architecture for running applications/programs? (2)
How to couple the concurrency structure and dynamic behavior of
applications with opportunities for dynamic voltage and frequency
scaling (DVFS) on die? Can we develop new models of computation
(MoC) that enable the computing architectures and applications
to self-program and self-manage to achieve high performance and
energy efficiency? (3) How can we construct a MoC for emerg-
ing applications (from scarce or possibly poorly written software
code) to better understand the concurrency structure (e.g., data
and inter-task dependencies) and dynamics (e.g., data reuse, data
movement, fine-grained synchronization)? Can this MoC enable
the identification of true computation and communication require-
ments (management of memory and data movement)? Can the MoC
help in minimizing the data movement and I/O operations?

3 MOC AND ALGORITHMS FOR AIECS

Imagine a future in which scientists formulate algorithms to pro-
cess unseen (and potentially) uncertain type of streaming data yet
they leave their realization to an autonomous intelligent exascale
computing system (AIECS) [62]. Accomplishing this grand vision
requires a radical paradigm shift in designing ATECS capable of
exploiting extreme heterogeneity through artificial intelligence and
machine learning (AI/ML) strategies for addressing the following
grand challenges:

(1) Self-programming: How can an automated intelligence inte-
grated within future computing systems discover the MoCs that en-
able the determination of optimal degree of parallelism and support
heterogeneous processing at run-time from existing code written
for past or current programming models or architectures? How
can we construct a hierarchical MoC representation of massive
parallelism in evolvable applications and codes [56, 59]7?

(2) Self-introspection [55]: How to endow computing platforms
with performance analysis capabilities that inform online self-
optimizing intelligence of potential bottlenecks for taking proactive

RIGHTS LI N Kdy

measures [55]?

(3) Self-reconfiguration and self-optimization [19, 24, 45, 57, 58]:
What MoCs, metrics and algorithmic tools are required to deter-
mine which code regions perform well on which processor type and
adaptively map codes to hardware resources while also support-
ing the reconfiguration of hardware to match the input problem
and data dependent variations? How to endow AIECS with self-
learning and self-optimizing capabilities to capture the nuances of
complex memory hierarchies, support efficient data and instruc-
tion movement and support code changes in emerging evolvable
applications?

Designing efficient programmable heterogeneous computing
architectures partially relies on understanding the sophisticated
high-level languages. The structure of each application is character-
ized by its size, composition and task topology [59]. Usually, static
compiler analysis such as data and control dependency analysis is
required to construct the corresponding task graph. However, such
static compilation fails to capture the dynamic nature of memory
operations and loop count, making it difficult to balance the work-
loads efficiently. This requires a compiler to build a dynamically
learned MoC during the execution time. Consequently, the goal
of this programming model is to build an application abstraction
that enables the optimal parallelization of applications running on
heterogeneous computing architectures. This captures run-time be-
haviors of tasks in applications and on-chip communication, which
could alleviate three primary issues in performance degradation:
load imbalance, resource sharing, and synchronization overhead
[56]. Each task i can be represented as a graph of dynamic instruc-
tion traces which are classified as i. The structure of tasks can be
denoted as inter-task and intra-task communication, i.e., data de-
pendency and control dependency. Therefore, we introduce the
following definitions to mathematically characterize the program-
ming model.

Definition 1: A dynamic task P(i) is defined as P(N{(t), E(t), L, O,
T|type=i) where T represents the time horizon t starting from 0;
N(t) represents a sequence of nodes (instructions) generated for this
task over time t; E(t) represents a collection of edges (dependencies
among instructions) inside each task; I and O represent the finite
disjoint sets of inputs and outputs for each task, respectively.

I and O are finite alphabet of inputs and outputs to provide a
task IO abstraction for inter-task dependency modeling. We use
English alphabet from a to z to prevent any architecture-specific
assumptions such as the number and size of registers. This allows us
to run applications with this model without concerning the specific
machine architecture. Time horizon T is introduced to capture the
true dependencies of instruction traces including memory opera-
tions. Due to its dynamic compilation, N(t) and E(t) are required to
represent the various number of nodes and edges over time T. We
associate a task with a specific type, indicating all of instructions
N(t) are inside the task, which helps to mathematically define the
task formulation problem.

For instance, we can consider N(t) as a sequence of instructions
arranged in an interconnected two-layer network [54]. One layer
contains compute instructions to represent model of computa-
tion. This could facilitate designers to implement more efficient het-
erogeneous processing elements. The other layer consists of mem-
ory operations, i.e., load-store instructions, which forms model

of communication to explore the design space of heterogeneous
memory systems and design the memory architecture.

Definition 2: An application trace Tr is defined as a sequence
of instructions (computation and communication) running with
different representative inputs.

Definition 3: An application graph AG can be mathematically
described as AG(N’(P), E'(P), C) where N’(P) represents the number
of tasks; E’(P) represents the number of inter-task edges; and most
importantly, C represents an autonomous intelligent classifier to
identify communities of strongly interacting instructions (tasks).

The autonomous intelligence sitting between software and hard-
ware can be regarded as a function to map instructions into different

types in definition 1. Mathematically speaking,
C: N(t) — type = i,Vi (1)

This intelligence determines (1) which instructions could be com-
bined into a processing community or task under different objec-
tives (e.g., performance maximization or energy minimization); (2)
the number of tasks generated due to synchronization overhead.
The novelty is that we associate the mathematical model of each
application with an intelligence to generate suitable tasks in terms
of different systems, which can be implemented as community de-
tection in complex network or machine learning techniques for
traffic-aware NoC based platforms or self-programmable heteroge-
neous computing systems, respectively.

Therefore, the programming model decides the choice of the
intelligence C. The goal is to choose the best intelligence model
C to maximize performance improvement and on-chip traffic re-
duction in programmable heterogeneous computing architectures.
Mathematically, we can formulate the problem (task extraction
from probabilistic reasoning of compiler analysis and task graph
partitioning) as the following:

Given an application trace Tr, find the intelligence C to
maximize a user-defined function f

f = w1PS(AG) + w2ER(AG) + w3TC(AG) + w4LB(AG) (2)
where PS, ER, TC, LB represent performance speedup, en-

ergy reduction, traffic congestion, and load balancing, re-
spectively; wq, w2, wa, and wy are user-defined parameters.

r

The following sections relate it with the traditional program-
ming model and describe a number of intelligence models we can
consider.

3.1 Threads and Processes

In traditional parallel programming [12, 35, 46], pthreads in POSIX
and OpenMP are widely utilized to develop performance efficient
applications for platforms from manycore systems to supercom-
puters. Our programming model is trying to assign different types
to different threads or processes which lead to parallel execution.
For example, in OpenMP, the pragma "omp parallel for’ is used to
split up loop iterations among threads. The programming model
captures it by assigning different types to different loop traces. How-
ever, there are two main issues: First, locks are commonly deployed
to prevent different threads from updating the shared variables

RIGHTS LI N Kdy

simultaneously. If threads are not properly spawned, this could po-
tentially exacerbate performance due to synchronization overhead.
Second, it is not aware of how much information is transferred
among threads. Sometimes, this could cause traffic congestion or
deadlock issue. Therefore, a more clever approach to designing
the classifier in parallel programming is required to improve our
objectives.

3.2 Optimal Parallelization Discovery

Applications can be described as weighted directed acyclic graphs.
Nodes represent computations/memory load-store instructions, and
edges represent dependencies. Graph partitioning remains vital in
parallel computing to divide the computations among cores. One
approach guarantees the number of clusters produced such as k-
way partitioning [4]. However, in complex networks, community
detection [21] is widespread in identifying communities with dense
connection internally and sparser connections between groups.
Inspired by complex network theory, we can find optimal paral-
lelism from community structures by an optimization framework.
In other words, one realization of traffic reduction on chips is by
minimizing the amount of messages transferred among different
communities/tasks.

Energy consumption on the interconnect has reached up to 40%
of the total energy. One method to reduce the amount of energy is
to transfer fewer messages among cores. On the other hand, there
is a diminishing return in performance improvement over the in-
creasing number of cores due to synchronization overhead and
load imbalance. Therefore, in order to overcome these issues, an
optimization framework [56] is proposed to automatically paral-
lelize complex programs, while balancing the workloads among
cores and constraining the cluster count approximately equal to the
core count at the same time. Therefore, identification of optimal
parallel community structures can be achieved by maximizing the
following function.

0= YW S p1- aum - ik ®
P=1 "
Ri= o ;[w.: — We+1) mod n)? (4)
Ry = iz(n — N)?H(n - N) (5)
"

where n represents cluster count; N represents core count; wi©) de-
notes the sum of weights connected within a cluster ¢ (W(C) =
Yiecc XLjec Wij); W is the sum of all weights in a graph (W =
i Xjwijh 5() js the sum of all weights adjacent to a cluster ¢
(W(C) = Yiec Lj¢c Wij); A1 and A3 are regularization parameters;
H(x) is Heaviside step function (H(x) = f_ xm 8(s)ds); 8(x) is Dirac
delta function.

The function in eq(3) can be regarded as a specific intelligent
model C which maps instructions to different clusters. The first
term discovers the parallel dense clusters with sparse interdepen-
dent connection. The second term is a regularization term to make
sure the workloads between pairs of clusters (W and Wic1) mod n)
are balanced. The third term is another term to confine cluster size
n to core count N.

4 MEMORY-CENTRIC ARCHITECTURES

A key promising approach of solving the memory wall issue is to
shift the previous processor-centric paradigm towards memory-
centric, which enables the opportunity of performing processing
close to or in memory and avoid unnecessary data movement. As
demonstrated in Figure 1(b), the memory can be developed as an
accelerator such that data is processed in-situ where it is stored.
Processing-in-memory (PIM) accelerator eliminates a large amount
of data movement, and thereby, significantly reduces the processing
latency and system energy. Various PIM architectures have recently
been adopted to multiple different applications [1, 5-7, 10, 20, 28,
49, 51-53].

In this section, we present our recent research that aims to prac-
tically enable computation in memory for deep learning (DL) ap-
plications. We first review the in-memory processing unit designs,
followed by our approach of a parallel dataflow for scalable accel-
erators. Specifically, we proposed a layer-wise pipeline for PIM
architectures incorporating the inter-layer execution and intra-
layer parallelism to accelerate the processing of DNNs. Then we
consider DNNs and large-scale dataset that cannot fit into a sin-
gle accelerator, which is the inevitable consequence of the ever
growing complexity at the algorithm level. We present a novel
communication model to investigate the fundamental mechanism
of data movement in such cases. Based on the investigation, we
present a hybrid parallelism scheme, which partitions the feature
map and the weight across layers to achieve high performance and
high energy efficiency on an array of PIM accelerators.

4.1 In-Memory-Processing Engines

As illustrated in Figure 1(c), the processing of DNNs are typically
executed recursively on the same computational blocks (a.k.a., pro-
cessing engines, or PEs) which are designed to support the basic
vector-matrix multiplication (VMM) operations. PIM accelerators
use logic inside memory systems or the memory itself to imple-
ment PEs. The former approach is primarily used in traditional
CMOS-based designs, while the implementations based on emerg-
ing technologies typically adopt the latter by taking advantage of
the computation capabilities of new types of devices. Here, we pro-
vide a brief review of PE designs for VMM based on the resistive
random access memory (ReRAM), and refer interested readers to
other emerging technologies based designs [33, 47, 64].

Hu et al. [22] proposed to map the matrix weights to the con-
ductance states in a ReRAM array and encode the voltages on the
wordlines as the input vector. Then the accumulated currents from
the bitlines are the results of the VMM. That is the primary para-
digm for the computation of VMM in ReRAM, i.e. ReRAM VMM
processing engines. In 2016, Hu et al. [23] fabricated a 4 x 4 ReRAM
VMM PE. Yan et al. [63] implemented VMM PE by integrating 64Kb
binary ReRAM and scalable nonlinear spike-based data converter
monolithically, which fuses analog/digital conversion and activa-
tion function by leveraging its nonlinear working region. Based on
the ReRAM VMM PEs, accelerators for the multilayer perceptron
(MLP), a.k.a. fully connected (FC) layer, can be designed. RENO
[39], building on the ReRAM VMM PEs, is an on-chip accelerators
for fully connected neural networks. An instruction set architecture
(ISA) was designed to coordinate the execution of the CPU and the

RIGHTS LN Ky

accelerator in [39]. However, the performance, energy efficiency
and supported applications of on-chip design are very limited.

4.2 Optimal Data Placement

In PIM, memory bandwidth inside each vault is much higher than
that between different vaults. Due to this unconventional architec-
ture compared to DRAM systems, three issues need to be addressed
before this technology is adopted in industries: (1) How to design
an MoC to exploit the new PIM architecture? (2) How to scale up
future PIM systems to have hundreds of vaults? (3) How to place
data on different vaults to reduce data movement and utilize inter-
nal memory bandwidth?

Prometheus [54] describes an optimization framework to decide
optimal data placement in the context of PIM systems. First, it
models both computation and communication for each application
to exploit the PIM architecture. It constructs a two-layer network
where one layer represents model of computation with compute
nodes and the other layer represents model of communication with
memory load-store instructions. In this way, we can design a spe-
cialized logic accelerator for each vault and decide the optimal data
placement. Second, it presents a scalable NoC based PIM system
to efficiently transfer packets to the destination vaults. Third, an
optimization model is proposed to identify community structures
from the network as follows. Each community structure consists
of one layer of model of computation and one layer of model of
communication to guide us for logic design and data placement.

max F=Q—alB (6)
_ 1 = Y186
0= ,Zf[w” ~ 5w 18€.C))
1

LB= o D |Wu—Wol6(dy,do) (®)

1=u=n,

1<v<n.

u#v

where W is the sum of the total weights; W; is the sum of weights
in the community i; Wjj is the weight between nodes i and j; s;, the
strength of a node i, is the sum of the weights of edges adjacent
to the node i; C; is the community to which node i belongs; n. is
the number of communities; d; is the depth of community i; (i, j)
equals 1 when i = j; @ is the user-defined parameter to control load
balancing.

One can extend this approach to consider the heterogeneous
memory systems consisting of traditional DRAM, PIM, and NVM
such as ReRAM and STT-RAM. Each emerging memory technology
has its own benefits. For example, PIM has better memory band-
width but also higher power. NVM is much denser compared to
others. From our model of computation and communication, De-
ciding the types and sizes of memory technologies for each cluster
under the objective of maximizing performance is an open question
waiting to be resolved.

4.3 Parallel Dataflow for Scalable Accelerators

Neural networks are inherently parallel algorithms with the po-
tential for data sharing. Our goal is to organize PEs and on-chip
memory in a parallel or pipelines fashion in order to exploit the par-
allelism in DNNs. According to our research, there are inter-layer
and intra-layer, two levels of parallelism in DNN applications.

— —— 1 ——— —1 1 I
cgmpute\, = [@u][eu] ! [Row3!
: core core : l core core : :: 1
] (S0 e (28] [/ T
Data (..-f?_“_e____f?_r?__l Compute||-S2€| LCOTE [}| i 1[Row] A / I
(e o i e
E E E E
%tm %‘tm %tm : E Row?2 |:| WEIght “
g outpue P [pccHinee
Memory —>/[DIMM| [DIMM], [DIMM]; {[eMAccl, | ____ " ____ D P

(a) Memory Wall
Figure 1: (a) Von Neumann architecture and memory wall.

{b) Memory as an Accelerator

(c) Dataflow between PEs (d) Accelerator array in an H-tree
Data movement is 2~3 orders of magnitude the latency/energy

consumption of computation; (b) PIM accelerator; (c) PE array and dataflow; (d) acclerator array in an H-tree.

data : | | | | :. Ell.i.l
B 'HEEE@-B |y]
= v U
wumm@mmmggm
i e DY
n| ElFE B Bk E) |

T, T, T, T, Ts Tg T; Ty time

Figure 2: Inter-layer pipeline.

Ty

Inter-layer Parallelism. Previous work [9, 49] pipeline the
processing of DNNs to improve system throughput. However, they
focus only on the inference phase while not being able to support
more sophisticated and challenging training phase which involves
weight updates and complex data dependencies. We propose a
DNN model parallel scheme in which multiple training data can
be processed in an efficient pipeline. The proposal is based on an
important observation: input data are normally processed in a large
batch size B (e.g., 128). The weights applied on the inputs within a
batch remain unchanged which will be updated only at the end of a
batch. Therefore, no dependency exists among data inputs in each
batch. Based on this observation, we demonstrate the inter-layer
pipeline execution for a 3-layer DNN model in Figure 2. In this
example, the calculation of the forward path processing, backward
error propagation and weight partial derivatives for layer i are
respectively denoted as F;, B;, D; (i € 1,2, 3). In the execution, a
new input can enter the pipeline every cycle within a batch. At the
end of a batch, a new input belonging to the next batch cannot enter
the pipeline immediately, but wait until all inputs in the current
batch are processed and the weights are updated. In another word,
a new batch has to wait the “tai” of the previous batch to drain from

the pipeline.
G: Parallelism Granularity; L: Number of Layers;
B: Batch Size; N: Total Number of Input Images.
Non-pipelined Pipelined
Forward Cycles LN
Backward Cycles | (L+1)N + N/B (N/B)(2L+B+1)
PE Clusters GL+G(2L - 1) GL+G(L-1)+BL

Table 1: Latency and cost of the proposed architecture.

Intra-layer Parallelism. Because of the imbalance in com-
pute/memory requirements for each layer, we discussed how to
improve system performance by adjusting the degree of parallelism

RIGHTS LI N Kdy

for each layer. We define an auxiliary metric called parallelism
granularity, denoted as G, indicating the number of the duplicated
copies of PE clusters that store the same weights. Essentially, par-
allelism granularity allows to explore the trade-off between the
hardware resource and performance. A good trade-off involves a
carefully chosen G. Our experimental results show that the perfor-
mance (i.e., latency) increases monotonically with G, while the chip
area increases. Therefore, choosing the suitable G to explore the
balance between speedup and area is critical. Table 1 compares the
latency and hardware overhead of non-pipelined and the proposed
pipelined architectures. More detailed discussion and explorations
can be found in [52].

4.4 Hybrid Parallelism for Accelerator Arrays

As the complexity of deep learning models continues to increase,
it is difficult to meet the throughput and energy requirements of
the training procedure with a single accelerator. Figure 1(d) demon-
strates an example of 16 accelerators connected as an H-tree. Pre-
vious works only considered the layer-wise parallelism within an
accelerator in fine grain. For the first time, we conducted system-
atic studies to seek a coarse-grain parallelism among an array of
accelerators.

Parallelism Types. Existing works can be divided into two
categories based on parallel types: data parallelism (dp) [38] and
model parallelism (mp) [16]. In data parallelism, data is partitioned
into portions and run simultaneously on multiple accelerators with
the same model copy; in model parallelism, the model is divided
and distributed among multiple accelerators and each processes
the same training data on the sub-model it holds.

Communication Model. Unlike the previous empirical approach
[34], we developed a communication model that analytically ex-
plains the source and amount of communications. We consider a
fully-connected layer with 70 input and 100 output neurons, re-
spectively. Assume that there are two accelerators and the batch
size is B = 32, Figure 3 illustrates the shapes of tensors held by the
two accelerators. Each layer performs three multiplications for the
forward, error backward, and gradient computation. In each mul-
tiplication, three tensors are involved. Thus, nine tensors in total
need to be considered. Following the aforementioned intra-layer
and inter-layer idea [52], we decouple the communication into two
parts: 1) intra-layer communication by kernel updates within a layer
(marked by a & in Figure 3); and 2) inter-layer communication by
conversions of L and R tensors of feature maps and errors between

Fi 7 Wi Fiy1 o0
Forward 161 — ?l{% =|>1BI [l

w/ Eitt g0
.
L

E; -
s S]

F 6 70 Eiit g
=
Gradient A 18] B
Computation TUI %I ’&W: i L
g
[T,

(a) data parallelism

Fi 35 TFi i
Forward 32 351 % =D'§BZI % E
— m
Ei 35 ’ Eipy
- i
caoors < B] o 0 %I sl
F/ 32 = Ein1
Gradient 3EI %
Computation -

351‘ /“—“

({b) model parallelism

Figure 3: Forward, Backward and Gradient Computation in (a) data parallelism and (b) model parallelism [51] (Note that all of
the rectangles with shadow lines are held by one accelerator and all of the white rectangles are held by the other.).

layers. Due to the page limit, we omit the detailed analysis, but
summarize the conclusion in Table 2. It shows that, for the DNN
inference, the data parallelism is better because the intra-layer com-
munication in inference is zero and the inter-layer communication
of dp-dp is also zero. However, the conclusion does not hold for the
DNN training, where the parallelism becomes a critical concern. A
Naive approach would be to get a parallelism type for each layer
and enumerate all possibilities to determine the best performance,
resulting in O(2V) time complexity.

Type Communication Amount
dp A(AW])
Intra-Layer
Y [mp X
dp-dp 0
dp-mp 0.25A(F; ;) + 0.25A(E;4)
Inter-Layer
Y Tmpmp | 0.5A(EL)
mp-dp 0.5A(Ep4)

Table 2: Communication cost in data parallelism (dp) and
model parallelism (mp).

Hybrid Parallelism. We propose a more practical partitioning
algorithm which reduces the O(2") time complexity to O(N). The
proposed approach is based on three observations: 1) the parallel
mode of each layer may only be data parallelism or model par-
allelism; 2) the inter-layer traffic depends only on two adjacent
layers; and 3) the intra-layer communication is exclusively depen-
dent on the parallelism of that layer, completely independent of
other layers. Thus, we can use a layer-wise dynamic programming
method to search for the optimal partition of each layer. Specifically,
intra-layer communication of dp and mp and inter-layer communi-
cation of dp-dp, mp-dp, dp-mp, mp-mp are looked up in Table 2.
Based on these data, the minimum accumulated communication of
data parallelism or model parallelism for this layer can be obtained.
Qur partitioning scheme ultimately outputs the minimum total
communication between two accelerators and a list of parallelism
methods we could chose to realize such a minimal communication.
Expanding to the partition for an array of accelerators, we use a
hierarchical approach which essentially is a recursive function. In
each recursion, the minimal communication (com_h) at the cur-
rent hierarchical level is calculated as described above. Then, it

RIGHTS LN Ky

calls itself with the input hierarchy levels (h) changed to hierar-
chy levels (h — 1) and seeks for the total minimal communication
(com_n) for the lower hierarchy levels. At last, it returns the total
communication com by adding the current communication com_h
and 2 X com_n.

To evaluate the effectiveness of the proposed methods, we de-
signed an HMC-based DNN training architecture and tested it with
various DNN models from the classic Lenet to VGGs in larger sizes.
Our results achieved significant improvements on the performance
and energy efficiency. More detailed design explanation and evalu-
ation can be found in [51].

5 DESIGN SPACE EXPLORATION AND
OPTIMIZATION

The design of optimized heterogeneous manycore systems for spe-
cific application workloads is challenging for a number of reasons.
First, the heterogeneity of processing elements (PEs) including
CPUs, GPUs, various accelerators, processing-in-memory (PIM)
cores, and standard memory results in a very large and complex
design space that grows with the system size. Second, we need an
optimized network-on-chip (NoC) as the interconnection backbone
that can handle the communication requirements of heterogeneous
PEs efficiently [25, 26]. For example, in a CPU-GPU based heteroge-
neous system, CPUs require low memory latency while GPUs need
high-throughput data transfers. Moreover, GPUs typically only
communicate with a few shared last-level caches (LLCs), which
results in many-to-few traffic patterns (i.e., many GPUs communi-
cate with a few LLCs) with negligible inter-GPU communication
[11]. This can cause the LLCs to become bandwidth bottlenecks
under heavy network loads and lead to significant performance
degradation [11]. Third, to design optimized heterogeneous many-
core systems, we need to trade-off multiple objectives including
power, performance, thermal, and reliability resulting in a complex
multi-objective design space exploration (MO-DSE) problem. The
design optimization process should also account for the specific
characteristics of emerging technologies [36, 37].

Multi-Objective Design Space Exploration Problem. For a fixed
system size, we are provided with resources in the form of different

types of processing elements (PEs) and communication links. For
example, different types of PEs can include CPUs, GPUs, and spe-
cialized accelerators. For N PEs and M communication links, we
get a fully-specified design space in the form of all possible many-
core design configurations 9. For example, each manycore design
d € D corresponds to a specific placement of PEs and communi-
cation links. To evaluate each design d € D, we are given a set of
k > 1 objectives O = {01,02, - -- , O }. Some example objectives
include power, performance, and thermal. To come up with practi-
cal and feasible designs, we are given a set of physical constraints
C. An example constraint is as follows: the overall communication
network should have a path between any two PEs.

Qur goal is to find the Pareto set (i.e., non-dominated set of
designs) D* from D¢ C D, where D is the set of designs that
satisfy all the physical constraints C. A design d; is dominated by
design d, if Vi, Oj(d;) < Oji(dz); and 3j, Oj(d;) < Oj(dz). Once the
Pareto set D* is computed, the designer employs some decision-
making criteria (e.g., energy-delay-product from simulations) to
select the best design d* from the pareto set D*. We perform the
entire optimization process at the design-time. Solving MO-DSE
problems for the design of optimized hetergeneous manycore sys-
tems poses several challenges: 1) Large design space that grows
in size and complexity with increasing system size and diversity
of PEs; 2) Hardness and complexity of design-time optimization
problem grows with the number of objectives; and 3) Pareto front of
designs is non-convex and complex for large number of objectives.

5.1 Guided Design Space Exploration

Common algorithms to solve design-time optimization problems
include AMOSA [3] and NSGA-II [17]. Typically, these algorithms
execute many unguided and independent searches, from different
starting points, to increase the chance of reaching global optima.
These algorithms do not leverage the knowledge gained from past
design space exploration in an explicit manner and do not allow to
leverage the training data from simulations to evaluate the quality
of the designs. There is a rich body of literature focusing on solving
constrained combinatorial problems (CCPs), especially for the sys-
tem synthesis [44]. SAT-decoding [40] is the dominant state-of-the-
art approach in tackling CCPs. The key idea behind this approach is
to use a SAT solver to generate valid solutions in the design space
from the genotypes searched over by an evolutionary algorithm.
The valid solutions are represented by a set of Pseudo-Boolean
(PB) constraints, formulated using binary variables. This approach
works very-well in multiple scenarios. However, non-linear con-
straints cannot be represented by the PB functions formulation
used by the SAT-decoding procedure.

Towards the goal of addressing some of the design-time opti-
mization challenges, machine learning (ML) techniques can be used
as part of the design optimization framework [31, 32]. Machine-
learning techniques can enable the problem-solver (a computational
search procedure) to make intelligent search decisions to achieve
efficiency for finding (near-) optimal solutions over non-learning-
based algorithms. We refer the family of algorithms to solve MO-
DSE problems that learn knowledge from designs explored in the
past to intelligently explore the design space as guided design space

RIGHTS LI N Kdy

exploration framework. In what follows, we list two instances of
this framework, namely, MOO-STAGE [27] and MOOS [18].

MOO-STAGE and MOOS algorithms are designed to improve the
accuracy of local search based solutions to solve MO-DSE problems.
One of the main drawbacks of local search based methods is that the
accuracy of solutions produced by them critically depends on the
starting designs. Intuitively, if we can select starting designs that
will lead the local search procedure to high-quality local optima,
it will allow local search algorithms to find (near-) optimal solu-
tions with significantly less number of restarts. ML and data-driven
algorithms can be employed to learn search control knowledge
from the training data obtained from past local search executions.
Subsequently, the learned knowledge can be used to identify the
most promising parts of the design space, thereby eliminating a lot
of unnecessary exploration.

MOO-STAGE [27] generalizes a machine learning based opti-
mization algorithm called STAGE that was shown to be very ef-
fective for single-objective homogeneous manycore design opti-
mization problems [13-15]. The key idea behind MOO-STAGE is
to intelligently explore the input design space to improve the effi-
ciency of solving MO-DSE problems. MOO-STAGE is an iterative
learning algorithm that leverages the past search experience (Lo-
cal search) to learn an evaluation function E that can estimate the
outcome of performing local search from any given state in the
design space (Meta search). The goal of local search (e.g., greedy
search) from a given starting design is to traverse through a se-
quence of neighboring states to find a solution that optimize the
given set of objectives O. To accommodate multiple objectives, it
employs the Pareto Hyper-Volume (PHV) heuristic to evaluate the
quality of a set of solutions. Essentially, the PHV is the size of the
objective space that is dominated by a set of solutions. Using the
learned evaluation function E, MOO-STAGE intelligently explores
the design space by selecting good starting designs for local search.
Regression training examples are generated from each design d
along the local search trajectory (input is the design d and output
is the PHV of local search) and the evaluation function E is induced
by giving the aggregate training examples to a supervised learner.

MOOS multi-objective optimistic search (MOOS) [18] further im-
proves the scalability and accuracy of solving MO-DSE problems
over MOO-STAGE. MOOS performs adaptive design space explo-
ration based on the principle of optimism in the face of uncertainty
[2] to improve the speed and accuracy of design optimization pro-
cess. The principle of optimism suggests exploring the most favor-
able region of the design space based on the experience gained from
past exploration. The key insight is that MOOS performs efficient
search guided by a data-driven tree-based model over scalariza-
tion parameters (small and simple search space) when compared to
MOO-STAGE that performs data-driven search guided by learned
evaluation function over input design space (large and complex
search space). MOOS is an iterative two-stage optimization algo-
rithm. In each iteration, it employs a scalarized objective to select
the starting solution for a local search procedure. The parameters
of scalarization are chosen adaptively based on a data-driven tree-
based model. Local search is performed from the selected starting
solution and the tree-based model is updated using the quality of
the resulting Pareto set. MOOS was employed to design optimized
NoC-enabled homogeneous and heterogeneous manycore systems

[18]. Experimental results demonstrated that MOOS improves the
speed of finding solutions similar to state-of-the-art methods (MOO-
STAGE and AMOSA) by upto 13X and uncovers solutions that are
upto 20% better in terms of NoC. The optimized NoC-enabled 3D
manycore systems improve the EDP up to 38% when compared to
a 3D mesh-based design optimized for the placement of PEs.

6 DYNAMIC RESOURCE MANAGEMENT

With a rise of machine learning and artificial intelligence, it is com-
mon that manycore platforms cannot efficiently execute these algo-
rithms. Different architectures such as GPUs, TPUs, and hardware
accelerators are designed and integrated into manycore systems
to resolve this issue. The ultimate goal is to maximize resource
utilization, performance improvement, and energy efficiency. This
requires us to rethink hardware stack as well as software stack
to accommodate the increasingly complicated platforms. For the
hardware stack, we should combine the benefits of programmability
in general-purpose machines, performance efficiency in domain-
specific accelerators (DSAs), and parallel computing in GPUs/TPUs.
For the software stack, we should consider how to generate tasks
in such a way to maximize resource utilization in heterogeneous
computing systems. Self-introspection should also be taken into
consideration. We should think about how updates and patches of
complicates applications can influence hardware design. Therefore,
we propose a self-optimizing and self-programming computing
system (SOSPCS) framework [55] which provides flexibility, pro-
grammability, performance and energy efficiency. It, at compile
time, relies on neural network classifiers to generate suitable tasks
for different hardware platforms. At run-time, we design reinforce-
ment learning (RL) and imitation learning (IL) based intelligent
schedulers to map tasks onto hardware to provide optimal resource
utilization and performance speedup.

Compile-time resource allocation via neural networks. Ap-
plications have some hidden attributes waiting to be discovered.
For example, in neural network algorithms, designers can identify
some important tasks such as matrix multiplication and Sigmoid
activation function to better implement efficient DSAs. To enable
self-optimization, problem formulation is as follows: Given an ap-
plication graph, find all specialized tasks which can be implemented
as DSAs. SOSPCS uses two neural networks to recognize tasks in
each application. The first neural network determines the feature
type, e.g., matrix multiplication, Sigmoid, or neurons; on the other
hand, the second decides the coordinates of each feature, which
helps us extract such feature out of the application graph. Once all
specialized tasks are identified, we apply some graph partitioning
algorithms discussed in Section 3.2 to create tasks with minimal
communication cost.

Run-time resource management via reinforcement learn-
ing and imitation learning. To enable self-programmability, the
next goal is to find a optimal mapping of tasks onto PEs to maxi-
mize performance. However, two issues need to be considered: (1)
Each task is mapped to its suitable PE set (e.g., FFT tasks should
be mapped to FFT accelerators rather than neuron accelerators.).
(2) Communication cost among PEs has to be minimal. Therefore,
SOSPCS applies a distributed Q-learning algorithm where multi-
ple agents interact with environment independently. These agents,
considered as intelligent schedulers, learn to map tasks assigned

RIGHTS LI N Kdy

onto suitable PEs. If one PE is occupied by another task, we per-
form local search by selecting the available PE nearby to reduce the
communication cost. The reward function is designed to prevent
agents from assigning wrong tasks to hardware, which could lead
to performance degradation.

Recent advances in Imitation Learning (IL) [48] provides an alter-
native framework to potentially address the above drawbacks of RL.
In traditional IL, expert demonstrations are provided as supervised
training data (e.g., demonstrations of a human expert driving a car).
Then the learner tries to imitate the behavior of the expert in a
way that generalizes to similar tasks or situations. These charac-
teristics make IL an exponentially better framework than RL for
solving sequential decision-making problems. At a high-level, the
difference between IL and RL is same as the difference between
supervised learning and exploratory learning. The main caveat of IL
is that it assumes the availability of a good Oracle (expert) policy to
drive the learning process. Kim et al., [30] constructed an efficient
Oracle towards the goal of dynamic power management in voltage
frequency island (VFI) based homogeneous manycore systems. Sim-
ilarly, Mandal et al., [42] constructed efficient Oracle policies for
dynamic resource management in heterogeneous mobile platforms.
Subsequently, supervised learning is employed to replicate the de-
cisions made by the Oracle policy. Often the supervised learning
problem corresponds to learning a classifier or regressor to map
states to actions. To learn a robust policy, adavanced IL algorithms
such as DAgger can be employed. Due to the nature of sequential
decision-making problems, if the control policy makes a mistake,
it can cause error propagation and exhibit poor behavior. DAg-
ger mitigates this problem by generating additional training data
demonstrating how the Oracle recovers from potential mistakes.

7 CONCLUSIONS AND FUTURE WORK

To enable a paradigm shift in the edge, fig, and exascale computing,
we need to develop machine learning and artificial intelligence
based approaches to tackle the following challenges:

(1) Analyze the concurrency of algorithms (e.g., degree of paral-
lelization) in relation to the type, size, and dynamics of the data they
run on to compensate for hardware features (e.g., deeply-scaled
FinFET technologies, near threshold voltage (NTV) induced core
slowdown, NTV induced variability of core-to-core throughput).

(2) Evaluate the impact of emerging applications and algorithms
(graph analytics, approximate computing algorithms) on the design
of ATECS architectures. Communication avoiding linear algebra,
randomized numerical linear algebra, and multipole methods have
control and data flows that benefit from NoC-based manycore sys-
tems. Approximate computing algorithms can self-tune their pre-
cision to reduce energy based on mixed precision. Can we build
new models of computation for such approximate computing algo-
rithms that allow us to capture variable precision floating point and
identify trade-offs between precision and the degree of parallelism?

(3) It is common to update and patch buggy and potentially
malicious applications to improve user experience and security.
For example, we can view applications as interconnected graphs
that evolve over time in terms of structure and characteristics as
a function of both needs of end-users and system enhanced func-
tionality requirements. With more updates made on the software

running on autonomous manycore systems, how can we recon-
struct a time-varying graph from a partially observed sequence of
graphs corresponding to various interacting and evolving applica-
tion codes? We envision that even with some unknown components
hidden in the application graphs, their fractal properties may not
change [50, 60, 61] significantly such that we can construct complex
multi-layer graph based models.

(4) After reconstruction of the underlying graph based model
of dynamic applications, we need to predict the graph structures
that will potentially emerge in the future. For example, future work
should consider how several updates done in the software running
on the self-driving car or the unmanned aerial / underwater vehi-
cles can impact the models of computation and how they influence
the design of next-generation efficient hardware platforms. More
specifically, how can machine learning and artificial intelligence
methods infused in the manycore systems stack predict the up-
coming possible updates, patches, and changes in the time varying
graphical model of interacting applications in order to dynamically
reconfigure the hardware.

ACKNOWLEDGMENTS

Bogdan gratefully acknowledge the support by the National Sci-
ence Foundation Career award under Grant No. CPS/CNS-1453860,
the NSF award under Grant CCF-1837131, the U.S. Army Research
Office (ARO) under Grant No. W911NF-17-1-0076, the Okawa Foun-
dation award, and the Defense Advanced Research Projects Agency
(DARPA) Young Faculty Award under Grant No. N66001-17-1-4044
support. Doppa was supported in part by the National Science Foun-
dation under Grant OAC-1910213 and Grant IIS- 1845922, and in
part by the U.S. Army Research Office under Grant W911NF-17-1-
0485 and Grant W911NF-19-1-0162. Li was supported in part by the
National Science Foundation under Grant CSR-1717885 and in part
by the Air Force Research Lab under Grant FA8750-18-2-0121. The
views, opinions, and/or findings contained in this article are those
of the authors and should not be interpreted as representing the
official views or policies, either expressed or implied by the Defense
Advanced Research Projects Agency, the Air Force Research Lab,
the Department of Defense or the National Science Foundation.

REFERENCES

[1] J. Ahn, 5. Hong, S. Yoo, O. Mutlu, and K. Choi. 2015. A scalable processing-
in-memory accelerator for parallel graph processing. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA). 105-117. https:
//doi.org/10.1145/2749469.2750386

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of
the Multiarmed Bandit Problem. Machine Learning 47, 2-3 (2002), 235-256.

[3] Sanghamitra Bandyopadhyay, Sriparna Saha, Ujjwal Maulik, and Kalyanmoy
Deb. 2008. A Simulated Annealing-based Multiobjective Optimization Algorithm:
AMOSA. IEEE Transactions on Evolutionary Computation (TEC) 12, 3 (2008),
269-283.

[4] Pak K Chan, Martine DF Schlag, and Jason Y Zien. 1994. Spectral k-way ratio-
cut partitioning and clustering. IEEE Transactions on computer-aided design of
integrated circuits and systems 13, 9 (1994), 1088-1096.

[5] Fan Chen and Hai Li. 2018. EMAT: An Efficient Multi-task Architecture for

Trannsfer Learning Using ReRAM. In Proceedings of the International Conference

on Computer-Aided Design (ICCAD '18). ACM, New York, NY, USA, Article 33,

6 pages. https://doi.org/10.1145/3240765.3240805

E. Chen, L. Song, and Y. Chen. 2018. ReGAN: A pipelined ReRAM-based accelera-

tor for generative adversarial networks. In 2018 23rd Asia and South Pacific Design

Automation Conference (ASP-DAC). 178-183. https://doi.org/10.1109/ASPDAC.

2018.8297302

[6

—

RIGHTS LI N K

[7] Fan Chen, Linghao Song, Hai Helen Li, and Yiran Chen. 2019. ZARA: A
Novel Zero-free Dataflow Accelerator for Generative Adversarial Networks
in 3D ReRAM. In Proceedings of the 56th A I Design Aut tion Confer-
ence 2019 (DAC "19). ACM, New York, NY, USA, Article 133, 6 pages. htips:
//doi.org/10.1145/3316781.3317936

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Ac-

celerator for Ubiquitous Machine-learning. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS '14). ACM, New York, NY, USA, 269-284. htips:

//doi.org/10.1145/2541940.2541967

Y. Chen,]. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA). 367-379. https:

//doi.org/10.1109/ISCA.2016.40

[10] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-based Main Memory. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA '16). IEEE
Press, Piscataway, NJ, USA, 27-39. https://doi.org/10.1109/ISCA.2016.13

[11] Wonje Choi, Karthi Duraisamy, Ryan Gary Kim, Janardhan Rao Doppa, Partha Pra-
tim Pande, Diana Marculescu, and Radu Marculescu. 2018. On-Chip Commu-
nication Network for Efficient Training of Deep Convolutional Networks on
Heterogeneous Manycore Systems. IEEE Transactions on Computers (TC) 67,5
(2018), 672—686.

[12] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-standard API
for shared-memory programming. Computing in Science & Engineering 1 (1998),
46-55.

[13] Sourav Das, Janardhan Rao Doppa, Daehyun Kim, Partha Pratim Pande, and
Krishnendu Chakrabarty. 2015. Optimizing 3D NoC Design for Energy Efficiency:
A Machine Learning Approach. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 705-712.

[14] Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Krishnendu
Chakrabarty. 2017. Design-space Exploration and Optimization of an Energy-
efficient and Reliable 3-D Small-world Network-on-Chip. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 36, 5 (2017),
719-732.

[15] Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Krishnendu
Chakrabarty. 2017. Monolithic 3D-Enabled High Performance and Energy Effi-
cient Network-on-Chip. In Proceedings of IEEE International Conference on Com-
puter Design (ICCD). 233—240.

[16] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and
Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1223-1231. http://papers.
nips.cc/paper/4687-large-scale- distributed-deep-networks.pdf

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-IL. IEEE Transactions on
Evolutionary Computation (TEC) 6, 2 (2002), 182-197.

[18] Aryan Deshwal, Nitthilan Kannappan Jayakodi, Biresh Kumar Joardar, Janard-
han Rao Doppa, and Partha Pratim Pande. 2019. MOOS: A Multi-Objective Design
Space Exploration and Optimization Framework for NoC enabled Manycore Sys-
tems. ACM Transactions on Embedded Computing Systems (TECS) (2019).

[19] Nikil Dutt, Axel Jantsch, and Santanu Sarma. 2016. Toward smart embedded
systems: A self-aware system-on-chip (soc) perspective. ACM Transactions on
Embedded Computing Systems (TECS) 15, 2 (2016), 22.

[20] A.Farmahini-Farahani,]. H. Ahn, K. Morrow, and N. 5. Kim. 2015. NDA: Near-
DRAM acceleration architecture leveraging commodity DRAM devices and stan-
dard memory modules. In 2015 IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA). 283-295. https://doi.org/10.1109/HPCA.
2015.7056040

[21] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75-174.

[22] Miao Hu, Hai Li, Qing Wu, and Garrett 5. Rose. 2012. Hardware Realization
of BSB Recall Function Using Memristor Crossbar Arrays. In Proceedings of the
49th Annual Design Automation Conference (DAC '12). ACM, New York, NY, USA,
498-503. https://doiorg/10.1145/2228360.2228448

[23] M.Hu,]. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, 5. Lam, N. Ge,]. J.
Yang, and R. S. Williams. 2016. Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector multiplication. In 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6. https://doLorg/
10.1145/2897937.2898010

[24] Axel Jantsch, Nikil Dutt, and Amir M Rahmani. 2017. Self-awareness in systems
on chipAATA survey. IEEE Design & Test 34, 6 (2017), 8-26.

[8

[@

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/3240765.3240805
https://doi.org/10.1109/ASPDAC.2018.8297302
https://doi.org/10.1109/ASPDAC.2018.8297302
https://doi.org/10.1145/3316781.3317936
https://doi.org/10.1145/3316781.3317936
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.13
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
https://doi.org/10.1109/HPCA.2015.7056040
https://doi.org/10.1109/HPCA.2015.7056040
https://doi.org/10.1145/2228360.2228448
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1145/2897937.2898010

[25)

[26]

[27)

[28]

[29

—_

[30]

[31)

[32]

[33)

[34]

[35]

[36]

[37]

[38]

[39)

[40]

[41)

[42]

[43)

[44]

Biresh Kumar Joardar, Janardhan Rao Doppa, Partha Pratim Pande, Diana Mar-
culescu, and Radu Marculescu. 2018. Hybrid on-chip communication architec-
tures for heterogeneous manycore systems. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD). ACM, 62.

Biresh Kumar Joardar, Ryan Gary Kim, Janardhan Rao Doppa, and Partha Pratim
Pande. 2019. Design and Optimization of Heterogeneous Manycore Systems
Enabled by Emerging Interconnect Technologies: Promises and Challenges. In
Proceedings of IEEE/ACM International Conference on Design, Automation & Test
in Europe Conference & Exhibition, (DATE). 138-143.

Biresh Kumar Joardar, Ryan Gary Kim, Janardhan Rao Doppa, Partha Pra-
tim Pande, Diana Marculescu, and Radu Marculescu. 2018. Learning-based
Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems.
IEEE Trans. Comput. 68, 6 (2018), 852-866.

Biresh Kumar Joardar, Bing Li, Janardhan Rao Doppa, Hai Li, Partha Pratim Pande,
and Krishnendu Chakrabarty. 2019. REGENT: A Heterogeneous ReRAM/GPU-
based Architecture Enabled by NoC for Training CNNs. In Design, Automation &
Test in Europe Conference & Exhibition, DATE. 522-527.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
scale Computer. In Proceedings of the 42Nd Annual International Symposium on
Computer Architecture (ISCA °15). ACM, New York, NY, USA, 158-169. https:
//doi.org/10.1145/2749469.2750392

Ryan Gary Kim, Wonje Choi, Zhuo Chen, Janardhan Rao Doppa, Partha Pratim
Pande, Diana Marculescu, and Radu Marculescu. 2017. Imitation Learning for
Dynamic VFI Control in Large-Scale Manycore Systems. IEEE Transactions on
VLSI Systems (TVLSI) 25, 9 (2017), 2458-2471.

Ryan Gary Kim, Janardhan Rao Doppa, and Partha Pratim Pande. 2018. Machine
learning for design space exploration and optimization of manycore systems. In
Proceedings of the International Conference on Computer-Aided Design (ICCAD).
IEEE, 48.

Ryan Gary Kim, Janardhan Rao Doppa, Partha Pratim Pande, Diana Marculescu,
and Radu Marculescu. 2018. Machine Learning and Manycore Systems Design:
A Serendipitous Symbiosis. IEEE Computer 51, 7 (2018), 66-77.

5. Kim, M. Ishii, 5. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G. W. Burr,
N. Sosa, A. Ray,]. . Han, C. Miller, K. Hosokawa, and C. Lam. 2015. NVM
neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic
array with on-chip neuron circuits for continuous in-situ learning. In 2015 IEEE
International Electron Devices Meeting (IEDM). 17.1.1-17.1.4. https://doi.org/10.
1109/IEDM.2015.7409716

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural net-
works. arXiv e-prints, Article arXiv:1404.5997 (Apr 2014), arXiv:1404.5997 pages.
arXiv:cs.NE/1404.5997

Vipin Kumar. 2002. Introduction to parallel computing. Addison-Wesley Longman
Publishing Co., Inc.

Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Kr-
ishnendu Chakrabarty. 2018. Performance and Thermal Tradeoffs for Energy-
Efficient Monolithic 3D Network-on-Chip. ACM Trans. Design Autom. Electr. Syst.
(TODAES) 23, 5 (2018), 60:1-60:25.

Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Kr-
ishnendu Chakrabarty. 2019. Impact of Electrostatic Coupling on Monolithic
3D-enabled Network on Chip. ACM Trans. Design Autom. Electr. Syst. (TODAES)
(2019).

Mu Li, David G. Andersen, Alexander Smola, and Kai Yu. 2014. Communication
Efficient Distributed Machine Learning with the Parameter Server. In Proceedings
of the 27th International Conference on Neural Information Processing Systems -
Volume 1 (NIP5°14). MIT Press, Cambridge, MA, USA, 19-27. http://dLacm.org/
citation.cfm?id=2968826.2968829

X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Yu Wang, Hao Jiang, M. Barnell, Qing
Whu, and Jianhua Yang. 2015. RENO: A high-efficient reconfigurable neuromorphic
computing accelerator design. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). 1-6. https://doi.org/10.1145/2744769.2744900

Martin Lukasiewycz, Michael Glafi, Christian Haubelt, and Jurgen Teich. 2007.
Sat-Decoding in Evolutionary Algorithms for Discrete constrained Optimization
problems. In 2007 IEEE Congress on Evolutionary Computation. IEEE, 935-942.
Tao Luo, Shaoli Liu, Ling Li, Yuging Wang, Shijin Zhang, Tianshi Chen, Zhiwei
Xu, Olivier Temam, and Yunji Chen. 2017. DaDianNao: A Neural Network
Supercomputer. IEEE Trans. Comput. 66, 1 (Jan. 2017), 73-88. https://doi.org/10.
1109/TC.2016.2574353

Sumit Mandal, Ganapati Bhatt, Chetan Arvid Patel, Janardhan Rao Doppa,
Partha Pratim Pande, and Umit Ogras. 2019. Dynamic Resource Management of
Heterogeneous Mobile Platforms via Imitation Learning. IEEE Transactions on
VLSI Systems (TVLSI) (2019).

D. Pandiyan and C. Wu. 2014. Quantifyring the energy cost of data movement for
emerging smart phone workloads on mobile platforms. In 2014 IEEE International
Symposium on Workload Characterization (IISWC). 171-180. https://doi.org/10.
1109/IISWC.2014.6983056

Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame. 2017. Optimization
Strategies in Design Space Exploration. In Handbook of Hardware/Software

RIGHTS LI N K

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Codesign. 189-216.

Jiirgo 5 Preden, Kalle Tammemie, Axel Jantsch, Mairo Leier, Andri Riid, and
Emine Calis. 2015. The benefits of self-awareness and attention in fog and mist
computing. Computer 48, 7 (2015), 37-45.

Rolf Rabenseifner, Georg Hager, and Gabriele Jost. 2009. Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes. In 2009 17th Euromicro
international conference on parallel, distributed and network-based processing. IEEE,
427-436.

Shankar Ganesh Ramasubramanian, Rangharajan Venkatesan, Mrigank Sharad,
Kaushik Roy, and Anand Raghunathan. 2014. SPINDLE: SPINtronic Deep Learn-
ing Engine for Large-scale Neuromorphic Computing. In Proceedings of the 2014
International Symposium on Low Power Electronics and Design (ISLPED '14). ACM,
New York, NY, USA, 15-20. https://doiorg/10.1145/2627369.2627625

Stefan Schaal. 1999. Is Imitation Learning The Route To Humanoid Robots?
Trends in cognitive sciences 3, 6 (1999), 233-242.

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-situ Analog
Arithmetic in Crossbars. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA '16). IEEE Press, Piscataway, NJ, USA, 14-26.
https://doi.org/10.1109/ISCA.2016.12

Jayson Sia, Edmond Jonckheere, and Paul Bogdan. 2019. Ollivier-Ricci Curvature-
Based Method to Community Detection in Complex Networks. Scientific reports
9,1 (2019), 9800.

L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen. 2019. HyPar: Towards Hybrid
Parallelism for Deep Learning Accelerator Array. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 56—68. https:
//doi.org/10.1109/HPCA.2019.00027

L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 541-552. https://doi.org/10.1109/
HPCA.2017.55

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen. 2018. GraphR: Accelerating
Graph Processing Using ReRAM. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 531-543. https://doi.org/10.1109/
HPCA.2018.00052

Yao Xiao, Shahin Nazarian, and Paul Bogdan. 2018. Prometheus: Processing-in-
memory heterogeneous architecture design from a multi-layer network theoretic
strategy. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1387-1392.

Yao Xiao, Shahin Nazarian, and Paul Bogdan. 2019. Self-Optimizing and Self-
Programming Computing Systems: A Combined Compiler, Complex Networks,
and Machine Learning Approach. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 27, 6 (2019), 1416-1427.

Yao Xiao, Yuankun Xue, Shahin Nazarian, and Paul Bogdan. 2017. A load bal-
ancing inspired optimization framework for exascale multicore systems: A com-
plex networks approach. In Proceedings of the 36th International Conference on
Computer-Aided Design. IEEE Press, 217-224.

Yuankun Xue and Paul Bogdan. 2015. User cooperation network coding ap-
proach for NoC performance improvement. In Proceedings of the 9th International
Symposium on Networks-on-Chip. ACM, 17.

Yuankun Xue and Paul Bogdan. 2016. Improving NoC performance under spatio-
temporal variability by runtime reconfiguration: a general mathematical frame-
work. In 2016 tenth IEEE/ACM international symposium on networks-on-chip
(NOCS). IEEE, 1-8.

Yuankun Xue and Paul Bogdan. 2016. Scalable and realistic benchmark syn-
thesis for efficient NoC performance evaluation: A complex network analysis
approach. In 2016 international conference on hardware/software codesign and
system synthesis (CODES+ISSS). IEEE, 1-10.

Yuankun Xue and Paul Bogdan. 2017. Reliable multi-fractal characterization of
weighted complex networks: algorithms and implications. Scientific reports 7, 1
(2017), 7487.

Yuankun Xue and Paul Bogdan. 2019. Reconstructing missing complex networks
against adversarial interventions. Nature communications 10, 1 (2019), 1738.
Yuankun Xue, Ji Li, Shahin Nazarian, and Paul Bogdan. 2017. Fundamental chal-
lenges toward making the iot a reachable reality: A model-centric investigation.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 22, 3
(2017), 53.

Bonan Yan, Qing Yang, Wei-hao Chen, Kung-tang Chang, Jian-wei Su, Chien-
hua Hsu, Sih-han Li, Precision-configurable In Situ, Nonlinear Activation, and
Tsing Hua. 2019. RRAM-based Spiking Nonvolatile Computing-In-Memory
Processing Engine with Precision-Configurable In Situ Nonlinear Activation.
IEEE Symposium on VLSI Technology (2019), T86-T87.

H. Yu, Y. Wang, 5. Chen, W.Fei, C. Weng,]. Zhao, and Z. Wei. 2014. Energy efficient
in-memory machine learning for data intensive image-processing by non-volatile
domain-wall memory. In 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC). 191-196. https://doi.org/10.1109/ASPDAC.2014.6742888

https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1109/IEDM.2015.7409716
https://doi.org/10.1109/IEDM.2015.7409716
http://arxiv.org/abs/cs.NE/1404.5997
http://dl.acm.org/citation.cfm?id=2968826.2968829
http://dl.acm.org/citation.cfm?id=2968826.2968829
https://doi.org/10.1145/2744769.2744900
https://doi.org/10.1109/TC.2016.2574353
https://doi.org/10.1109/TC.2016.2574353
https://doi.org/10.1109/IISWC.2014.6983056
https://doi.org/10.1109/IISWC.2014.6983056
https://doi.org/10.1145/2627369.2627625
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2019.00027
https://doi.org/10.1109/HPCA.2019.00027
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/HPCA.2018.00052
https://doi.org/10.1109/HPCA.2018.00052
https://doi.org/10.1109/ASPDAC.2014.6742888

	Abstract
	1 Introduction
	2 Edge, Fog, and Exascale Computing Challenges
	3 MoC and Algorithms for AIECS
	3.1 Threads and Processes
	3.2 Optimal Parallelization Discovery

	4 Memory-Centric Architectures
	4.1 In-Memory-Processing Engines
	4.2 Optimal Data Placement
	4.3 Parallel Dataflow for Scalable Accelerators
	4.4 Hybrid Parallelism for Accelerator Arrays

	5 Design Space Exploration and Optimization
	5.1 Guided Design Space Exploration

	6 Dynamic Resource Management
	7 Conclusions and Future Work
	Acknowledgments
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

