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Abstract

Large-scale distributed training of neural networks is often limited by network band-
width, wherein the communication time overwhelms the local computation time.
Motivated by the success of sketching methods in sub-linear/streaming algorithms,
we introduce SKETCHED-SGD4, an algorithm for carrying out distributed SGD by
communicating sketches instead of full gradients. We show that SKETCHED-SGD
has favorable convergence rates on several classes of functions. When considering
all communication – both of gradients and of updated model weights – SKETCHED-
SGD reduces the amount of communication required compared to other gradient
compression methods from O(d) or O(W ) to O(log d), where d is the number
of model parameters and W is the number of workers participating in training.
We run experiments on a transformer model, an LSTM, and a residual network,
demonstrating up to a 40x reduction in total communication cost with no loss in
final model performance. We also show experimentally that SKETCHED-SGD
scales to at least 256 workers without increasing communication cost or degrading
model performance.

1 Introduction

Modern machine learning training workloads are commonly distributed across many machines using
data-parallel synchronous stochastic gradient descent. At each iteration, W worker nodes split a
mini-batch of sizeB; each worker computes the gradient of the loss on its portion of the data, and then
a parameter server sums each worker’s gradient to yield the full mini-batch gradient. After using this
gradient to update the model parameters, the parameter server must send back the updated weights to
each worker. We emphasize that our method can naturally be extended to other topologies as well
(e.g. ring, complete, etc.) – in particular we would then communicate sketches over a minimum
spanning tree of the communication graph. However, for ease of exposition, in this work we focus
exclusively on the star topology. For a fixed batch size B, the amount of data each worker processes
– and therefore the amount of computation required – is inversely proportional to W . On the other
hand, the amount of communication required per worker is independent of W . Even with optimal
interleaving of the communication and computation, the total training time is at least the maximum
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of the per-worker communication time and per-worker computation time. Increasing the number of
workers W therefore yields an increasingly marginal reduction in the training time, despite increasing
the overall training cost (number of machines times training time) linearly in W .

Several approaches address this issue by using a large batch size to increase the per-worker computa-
tion time [You et al., 2017, Goyal et al., 2017]. However, theoretical and empirical evidence both
suggest that there is a maximum mini-batch size beyond which the number of iterations required
to converge stops decreasing, and generalization error begins to increase [Ma et al., 2017, Li et al.,
2014, Golmant et al., 2018, Shallue et al., 2018, Keskar et al., 2016, Hoffer et al., 2017]. In this
paper, we aim instead to decrease the communication cost per worker. We use a technique from
streaming algorithms called sketching, which allows us to recover favorable convergence guarantees
of vanilla SGD. In short, our algorithm has workers send gradient sketches of size O(log d) instead
of the gradients themselves. Although other methods for reducing the communication cost exist, to
our knowledge ours is the only one that gives a per-worker communication cost that is sub-linear in d
and constant in W . In practice, we show that our method achieves high compression for large d with
no loss in model accuracy, and that it scales as expected to large W .

2 Related Work

Most existing methods for reducing communication cost in synchronous data-parallel distributed
SGD either quantize or sparsify gradients. A number of quantization methods have been proposed.
These methods either achieve only a constant reduction in the communication cost per iteration
[Wen et al., 2017, Bernstein et al., 2018], or achieve an asymptotic reduction in communication cost
per iteration at the expense of an equal (or greater) asymptotic increase in the number of iterations
required [Alistarh et al., 2017]. Even in the latter case, the total communication required for all of
training sees no asymptotic improvement.

Other methods sparsify the gradients instead of quantizing each gradient element [Stich et al., 2018,
Alistarh et al., 2018, Lin et al., 2017]. A popular heuristic is to send the top-k coordinates of the
local worker gradients and then average them to obtain an approximate mini-batch gradient. These
methods can achieve good performance in practice, but they suffer from a few drawbacks. They
currently have no convergence guarantees, since the estimated mini-batch gradient can be very far
from the true mini-batch gradient (unless explicitly assumed, as in e.g. Alistarh et al. [2018]), which
precludes appealing to any known convergence result. Another drawback is that, although these
methods achieve high compression rates when the workers transmit gradients to the parameter server,
the return communication of the updated model parameters grows as O(W ): the local top-k of each
worker may be disjoint, so there can be as many as kW parameters updated each iteration. This
O(W ) communication cost is not just a technicality, since reducing the back-communication to O(k)
would require sparsifying the sum of the local top-k, which could hinder convergence. Because of
this scaling, local top-k methods suffer from poor compression in settings with large W .

From another standpoint, all gradient compression techniques yield either biased or unbiased gradient
estimates. A number of quantization methods are crafted specifically to yield unbiased estimates,
such that the theoretical guarantees of SGD continue to apply [Alistarh et al., 2017, Wen et al., 2017].
However, even without these guarantees, a number of methods using biased gradient estimates were
also found to work well in practice [Bernstein et al., 2018, Seide et al., 2014, Strom, 2015]. Recently,
Stich et al. [2018], Karimireddy et al. [2019] gave convergence guarantees for this kind of biased
compression algorithm, showing that accumulating compression error locally in the workers can
overcome the bias in the weight updates as long as the compression algorithm obeys certain properties.
Our method falls into this category, and we prove that compressing gradients with sketches obeys
these properties and therefore enjoys the convergence guarantees in Stich et al. [2018]. In effect, we
introduce a method that extends the theoretical results of Stich et al. [2018] from a single machine
to the distributed setting. Concurrently with this work, Koloskova et al. [2019] also introduce a
distributed learning algorithm with favorable convergence guarantees, in which workers communicate
compressed gradients over an arbitrary network topology.

Prior work has proposed applying sketching to address the communication bottleneck in distributed
and Federated Learning [Konečnỳ et al., 2016, Jiang et al., 2018]. However, these methods either do
not have provable guarantees, or they apply sketches only to portions of the data, failing to alleviate
the Ω(Wd) communication overhead. In particular, Konečnỳ et al. [2016] propose “sketched updates"
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in Federated Learning for structured problems, and Jiang et al. [2018] introduce a range of hashing
and quantization techniques to improve the constant in O (Wd).

Another line of work that we draw from applies sketching techniques to learning tasks where the
model itself cannot fit in memory [Aghazadeh et al., 2018, Tai et al., 2018]. In our setting, we can
afford to keep a dense version of the model in memory, and we only make use of the memory-saving
properties of sketches to reduce communication between nodes participating in distributed learning.

3 Preliminaries

SGD. Let w ∈ Rd be the parameters of the model to be trained and fi(w) be the loss incurred
by w at the ith data point (xi, yi) ∼ D. The objective is to minimize the generalization error
f(w) = E

(xi,yi)∼D
[fi(w)]. In large-scale machine learning, this objective is typically minimized

using mini-batch stochastic gradient descent: given a step size ηt, at each iteration, w is updated
as wt+1 = wt − ηtgt, where gt = ∇w

∑
i∈M fi(w) is the gradient of the loss computed on

a minibatch M. If M is randomly selected, then the gradient estimates gt are unbiased: i.e.
E
[
gt|{wi}t−1i=0

]
= ∇f(wt−1). As is standard, we further assume that the gt have bounded moment

and variance: E
[
‖gt‖22 |{wi}

t−1
i=0

]
≤ G2 and E

[
‖gt −∇f(wt)‖22 |{wi}

t−1
i=0

]
≤ σ2 for constants G

and σ. We adopt the usual definitions for smooth and strongly convex functions:

Definition 1 (Smooth strongly convex function). f : Rd → R is a L-smooth and µ-strongly convex
if the following hold ∀ w1,w2 ∈ Rd,

1. ‖∇f(w2)−∇f(w2)‖ ≤ L ‖w2 − w1‖ (Smoothness)

2. f(w2) ≥ f(w1) + 〈∇f(w1),w2 − w1〉+ µ
2 ‖w2 − w1‖2 (Strong convexity)

For smooth strongly convex functions, SGD converges at a rate of O
(
G2L
µT

)
[Rakhlin et al., 2012].

Count Sketch. Our primary interest is in finding large coordinates (or “heavy hitters”) of a gradient
vector g ∈ Rd. Heavy hitter sketches originated in the streaming model, where the vector g is defined
by a sequence of updates {(ij , wj)}nj=1, such that the j-th update modifies the ij-th coordinate of g
as gij += wj [Charikar et al., 2002, Cormode and Muthukrishnan, 2005, Braverman et al., 2017]. In
the streaming model, sketches must use memory sublinear in both d and n.

In this work we compress a gradient vector g into a sketch S(g) of size O( 1
ε log d) using a Count

Sketch [Charikar et al., 2002]. A Count Sketch S(g) approximates every coordinate of g with an `2
guarantee: it is always possible to recover ĝi from S(g) such that g2

i − ε‖g‖22 ≤ ĝ2
i ≤ g2

i + ε‖g‖22. In
addition, S(g) can approximate the `2 norm of the entire gradient. These two properties let a sketch
find every `2 heavy hitter, i.e. every coordinate i such that g2

i > ε‖g‖22. With a small enough ε, the
set of heavy hitters can be used as approximation of top-k largest coordinates of gradient vector g.

Due to its linearity, the Count Sketch is widely adopted in distributed systems. Consider the case
of a parameter server and two workers hosting vectors g1 and g2. To reduce communication, both
workers can send the parameter server sketches S(g1) and S(g2) instead of the vectors themselves.
The parameter server can then merge these sketches as S(g) = S(g1 + g2) = S(g1) + S(g2). This
lets the parameter server find the approximate top-k largest coordinates in a vector distributed among
many workers. We defer a more detailed discussion of the Count Sketch to Appendix C.

4 Sketched SGD

In SKETCHED-SGD, each worker transmits a sketch of its gradient instead of the gradient itself, as
described above. The parameter server sums the workers’ sketches, and then recovers the largest
gradient elements by magnitude from the summed sketch. To improve the compression properties of
sketching, we then perform a second round of communication, in which the parameter server requests
the exact values of the top-k, and uses the sum of those in the weight update. This algorithm for
recovering top-k elements from a sketch is summarized in Algorithm 1.

Every iteration, only k values of each worker’s gradient are included in the final weight update.
Instead of discarding the remaining d− k gradient elements, it is important both theoretically and
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empirically to accumulate these elements in local error accumulation vectors, which are then added to
the next iteration’s gradient [Karimireddy et al., 2019, Stich et al., 2018]. This process is summarized
in Algorithm 2.

Algorithm 1 HEAVYMIX

Input: S - sketch of gradient g; k - parameter
1: Query ˆ̀2

2 = (1± 0.5)‖g‖22 from sketch S
2: ∀i query ĝ2

i = g2
i ± 1

2k
‖g‖22 from sketch S

3: H ←
{
i|ĝi ≥ ˆ̀2

2/k
}

and NH ←
{
i| ĝi < ˆ̀2

2/k
}

4: Topk = H ∪ randl(NH), where l = k − |H|
5: second round of communication to get exact values of Topk

Output: g̃: ∀i ∈ Topk : g̃i = gi and ∀i /∈ Topk : g̃i = 0

Algorithm 2 SKETCHED-SGD

Input: k, ξ, T,W
1: ηt ← 1

t+ξ
, qt ← (ξ + t)2, QT =

∑T
t=1 qt, a0 = 0

2: for t = 1, 2, · · ·T do
3: Compute stochastic gradient git Workeri
4: Error correction: ḡit = ηtg

i
t + ait−1 Workeri

5: Compute sketches Sit of ḡit and send to Parameter Server Workeri
6: Aggregate sketches St = 1

W

∑W
i=1 Sit Parameter Server

7: g̃t = HEAVYMIX(St, k) Parameter Server
8: Update wt+1 = wt − g̃t and send g̃t (which is k-sparse) to Workers Parameter Server
9: Error accumulation: ait = ḡit − g̃t Workeri

10: end for
Output: ŵT = 1

QT

∑T
t=1 qtwt

We now state convergence results for SKETCHED-SGD. Proofs are deferred to Appendix A.
Theorem 1 (strongly convex, smooth). Let f : Rd → R be a L-smooth µ-strongly convex function,
and let the data be shared among W workers. Given 0 < k ≤ d, 0 < α, andδ < 1, Algorithm 2
SKETCHED-SGD run with sketch size = O (k log(dT/δ), step size ηt = 1

t+ξ , with ξ > 2 + d(1+β)
k(1+ρ) ,

with β > 4 and ρ = 4β
(β−4)(β+1)2 after T steps outputs ŵT such that the following holds,

1. With probability at least 1− δ, E [f(ŵT )]− f(w∗) ≤ O
(
σ2

µT + d2G2L
k2µ2T 2 + d3G3

k3µT 3

)
2. The total communication per update is Θ(k log(dT/δ)W ) bits.

Remarks

1. The convergence rate for vanilla SGD is O(1/T ). Therefore, our error is larger the SGD error
when T = o((d/k)2), and approaches the SGD error for T = Ω((d/k)2).

2. Although not stated in this theorem, Stich et al. [2018] show that using the top-k coordinates of the
true mini-batch gradient as the SGD update step yields a convergence rate equivalent to that of
SKETCHED-SGD. We therefore use this “true top-k” method as a baseline for our results.

3. Note that the leading term in the error is O(σ2/T ) (as opposed to O(G2/T ) in [Stich et al., 2018]);
this implies that in setting where the largest minibatch size allowed is too large to fit in one machine,
and going distributed allows us to use larger mini-batches, the variance reduces by a factor W .
This reduces the number of iterations required (asymptotically) linearly with W .

4. As is standard, the above high probability bound can be converted to an expectation (over random-
ness in sketching) bound; this is stated as Theorem 6 in the Appendix A.

5. The result of [Karimireddy et al., 2019] allows us to extend our theorems to smooth nonconvex
and non-smooth convex functions; these are presented as Theorems 4 and 5 in the Appendix B..

Proof Sketch. The proof consists of two parts. First, we show that SKETCHED-SGD satisfies the
criteria in Stich et al. [2018], from which we obtain a convergence result when running SKETCHED-
SGD on a single machine. We then use properties of the Count Sketch to extend this result to the
distributed setting.
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For the first part, the key idea is to show that our heavy hitter recovery routine HEAVYMIX satisfies a
contraction property, defined below.
Definition 2 (τ -contraction [Stich et al., 2018]). A τ -contraction operator is a possibly randomized
operator comp : Rd → Rd that satisfies: ∀x ∈ Rd, E

[
‖x− comp(x)‖2

]
≤ (1− τ) ‖x‖2

Given a contraction operator with τ = k/d, and assuming that the stochastic gradients g are unbiased
and bounded as E

[
‖g‖2

]
≤ G2, choosing the step-size appropriately, Stich et al. [2018] give a

convergence rate of O
(
G2

µT + d2G2L
k2µ2T 2 + d3G3

k3µT 3

)
for sparsified SGD with error accumulation. As

stated in Lemma 1, HEAVYMIX satisfies this contraction property, and therefore inherits this
(single-machine) convergence result:
Lemma 1. HEAVYMIX, with sketch size Θ(k log(d/δ)) is a k/d-contraction with probability≥ 1−δ.

This completes the first part of the proof. To extend SKETCHED-SGD to the distributed setting,
we exploit the fact that Count Sketches are linear, and can approximate `2 norms. The full proof is
deferred to Appendix A.

5 Empirical Results

5.1 Training Algorithm

In practice, we modify SKETCHED-SGD in the following ways
• We employ momentum when training. Following Lin et al. [2017], we use momentum correc-

tion and momentum factor masking. Momentum factor masking mitigates the effects of stale
momentum, and momentum correction is a way to do error feedback on SGD with momentum
[Karimireddy et al., 2019].

• We use the Count Sketch to identify heavy coordinates, however we perform an additional round
of communication to collect the exact values of those coordinates. In addition, to identify the top
k heavy coordinates, we query the Count Sketch, and then each of the workers, for the top Pk
elements instead; this is a common technique used with sketching to improve stability. The total
resulting communication cost is Pk + |S|+ k per worker, where |S| is the size of the sketch, and
the last k corresponds to the the updated model parameters the parameter server must send back to
the workers.

• We transmit gradients of the bias terms uncompressed. The number of bias terms in our models is
< 1% of the total number of parameters.

Our emperical training procedure is summarized in Algorithm 3.

Algorithm 3 EMPIRICAL TRAINING

Input: k, ηt,m, T
1: ∀i : ui, vi ← 0
2: Initialize wi0 from the same random seed on each Worker.
3: for t = 1, 2, . . . T do
4: Compute stochastic gradient git Workeri
5: Momentum: ui ← mui + git Workeri
6: Error accumulation: vi ← vi + ui Workeri
7: Compute sketch Sit of vi and send to Parameter Server Workeri
8: Aggregate sketches St = 1

W

∑W
i=1 Sit Parameter Server

9: Recover the top-Pk coordinates from St: g̃t = topPk(St) Parameter Server
10: Query all workers for exact values of nonzero elements in g̃t; store the sum in g̃t Parameter Server
11: Send the k-sparse g̃t to Workers Parameter Server
12: update wi

t+1 = wi
t − ηtg̃t on each worker Workeri

13: ui, vi ← 0, for all i s.t. g̃it 6= 0 Workeri
14: end for

5.2 Sketching Implementation

We implement a parallelized Count Sketch with PyTorch [Paszke et al., 2017]. The Count Sketch
data structure supports a query method, which returns a provable ±ε‖g‖2 approximation to each
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Figure 1: Learning curves for a transformer model trained on the WMT 2014 English to German
translation task. All models included here achieve comparable BLEU scores after 60,000 iterations
(see Table 1). Each run used 4 workers.

coordinate value. However, to the best of our knowledge, there is no efficient way to find heavy
coordinates in the presence of negative inputs. Fortunately, in our application, it is computationally
efficient on the GPU to simply query the sketch for every gradient coordinate, and then choose the
largest elements.

5.3 Large d

First, we show that SKETCHED-SGD achieves high compression with no loss in accuracy. Because
the sketch size grows as O(log d), we expect to see the greatest compression rates for large d.
Accordingly, we test on a transformer model with 90M parameters, and on a stacked LSTM model
with 73M parameters. We train both models on the WMT 2014 English to German translation task,
and we use code from the OpenNMT project [Klein et al., 2017]. In all cases, the compression factor
for SKETCHED-SGD is computed as 2d/(|S| + Pk + k), where 2d is the cost to send a (dense)
gradient and receive a new (dense) parameter vector, |S| is the sketch size, Pk is the number of
elements sent in the second round of communication, and the last k represents the number of modified
parameter values that must be sent back to each worker.

SKETCHED-SGD achieves the same theoretical convergence rate as top-k SGD, in which the
weight update consists of the top-k elements of the full mini-batch gradient. We therefore perform
experiments with SKETCHED-SGD using a value of k that yields good performance for top-k SGD.
Figure 2 shows top-k results over a range of values of k. Curiously, performance starts to degrade for
large k. Although performance on the training data should in principle strictly improve for larger k,
sparsifying gradients regularizes the model, so k < d may yield optimal performance on the test set.
In addition, we expect performance to degrade on both the training and test sets for large k due to
momentum factor masking. To mitigate stale momentum updates, momentum factor masking zeros
the velocity vector at the k coordinates that were updated in each iteration. In the limit k = d, this
completely negates the momentum, hindering convergence. For all SKETCHED-SGD experiments
on these two models, we use k = 100, 000, for which top-k SGD yields a BLEU score of 26.65
for the transformer and 22.2 for the LSTM. For reference, uncompressed distributed SGD with the
same hyperparameters achieves a BLEU of 26.29 for the transformer and 20.87 for the LSTM. Using
SKETCHED-SGD, we can obtain, with no loss in BLEU, a 40x reduction in the total communication
cost during training, including the cost to disseminate updated model parameters. See Table 1 for a
summary of BLEU results. Compression numbers include both the communication required to send
gradients as well as the cost to send back the new model parameters. We do not include the cost to
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(a) WMT14 Translation Task (b) CIFAR-10 Classification Task

Figure 2: True top-k results for a range of k. Left: two models (transformer and LSTM) on the WMT
2014 English to German translation task. Right: a residual network on the CIFAR-10 classification
task. For the larger models (left), true top-k slightly outperforms the baseline for a range of k. We
suspect this is because k-sparsifying gradients serves to regularize the model.

BLEU (transformer) BLEU (LSTM)
Uncompressed Distributed SGD 26.29 20.87

Top-100, 000 SGD 26.65 22.2
SKETCHED-SGD, 20x compression 26.875 –
SKETCHED-SGD, 40x compression 26.796 20.95 7

Table 1: BLEU scores on the test data achieved for uncompressed distributed SGD, top-k SGD, and
SKETCHED-SGD with 20x and 40x compression. Compression rates represent the total reduction
in communication, including the cost to transmit the updated model parameters. Larger BLEU
score is better. For both models, top-k SGD with k = 100, 000 achieves a higher BLEU score than
uncompressed distributed SGD. This difference may be within the error bars, but if not, it may be
that stepping in only the direction of the top-k is serving as a regularizer on the optimizer. Our
main experiments are on the transformer model, for which we run additional experiments using 20x
compression that we did not complete for the LSTM model.

request the Pk coordinates, nor to specify which k model parameters have been updated, since these
quantities can be efficiently coded, and contribute little to the overall communication.

Given that our algorithm involves a second round of communication in which Pk gradient elements
are transmitted, we investigate the tradeoff between a large sketch size and a large value of P .
Approaching a sketch size of zero corresponds to using a weight update that is the top-k of a
randomly chosen set of Pk gradient coordinates. Experiments with extremely small sketch size |S|
or extremely small values of P tended to diverge or achieve very low BLEU score. For values of
|S|/Pk closer to 1, we plot learning curves in Figure 1. As expected, uncompressed SGD trains
fastest, followed by top-k SGD, then 20x compression SKETCHED-SGD, then 40x compression
SKETCHED-SGD. For the two 20x compression runs, the ratio of the sketch size to the number
of exact gradient values computed has little effect on convergence speed. However, the higher
compression runs prefer a relatively larger value of P .

5.4 Large W

To re-iterate, the per-worker communication cost for SKETCHED-SGD is not only sub-linear in d,
but also independent of W . To demonstrate the power of this experimentally, we train a residual

5Sketch size: 5 rows by 1M columns; P = 36.
6Sketch size: 15 rows by 180,000 columns; P = 16.
7Sketch size: 5 rows by 180,000 columns, P = 26
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Figure 3: Tradeoff between compression and model accuracy for a residual network trained on
CIFAR-10. We show results for k = 50, 000 as well as k = 100, 000, and color code each trained
model based on the ratio of sketch size to the cost of the second round of communication. The (nearly
overlapping) solid orange and dashed blue lines show the accuracy achieved by top−k SGD for the
two values of k, and the black line shows the accuracy achieved by uncompressed distributed SGD.
All models in this plot were trained with 4 workers.

network on the CIFAR-10 dataset with SKETCHED-SGD, using up to 256 workers [Krizhevsky and
Hinton, 2009]. We compare to local top-k, a method where each worker computes and transmits
only the top-k elements of its gradient. The version of local top-k SGD we compare to is similar
to Deep Gradient Compression, except we do not clip gradients, and we warm up the learning rate
instead of the sparsity [Lin et al., 2017]. Results are shown in Figure 4. Neither algorithm sees an
appreciable drop in accuracy with more workers, up to W = 256. However, while the communication
cost of SKETCHED-SGD is constant in W , the communication cost for local top-k scales with W
until reaching Θ(d). This scaling occurs because the local top-k of each worker might be disjoint,
leading to as many as kW parameters being updated. In practice, we do in fact observe nearly linear
scaling of the number of parameters updated each iteration, until saturating at d (dashed orange line
in Figure 4). For W = 256, the communication of the updated model parameters back to each worker
is nearly dense (d ≈ 6.5× 106), reducing the overall compression of local top-k to at best ∼ 2×.

For a fixed small number of workers (W = 4), we also investigate the tradeoff between compression
rate and final test accuracy. Figure 3 shows this tradeoff for two values of k and a wide range of
sketch sizes and values of P . As expected, increasing the compression rate leads to decreasing test
accuracy. In addition, as evidenced by the color coding, using a very large sketch size compared to
Pk tends to yield poor results. Although high compression rates decrease accuracy, in our experience,
it is possible to make up for this accuracy drop by training longer. For example, choosing one of the
points in Figure 3, training with 17x compression for the usual number of iterations gives 92.5% test
accuracy. Training with 50% more iterations (reducing to 11x overall compression) restores accuracy
to 94%. In Figure 3, every model is trained for the same number of iterations.

6 Discussion

In this work we introduce SKETCHED-SGD, an algorithm for reducing the communication cost in
distributed SGD using sketching. We provide theoretical and experimental evidence that our method
can help alleviate the difficulties of scaling SGD to many workers. While uncompressed distributed
SGD requires communication of size 2d, and other gradient compressions improve this to O(d)
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Figure 4: Comparison between SKETCHED-SGD and local top-k SGD on CIFAR10. Neither
algorithm sees an appreciable drop in performance for up to 256 workers, but the amount of com-
munication required for local top-k grows quickly to ≈ d = 6.5 × 106 as the number of workers
increases. As a result, the best overall compression that local top-k can achieve for many workers is
2x.

or O(W ), SKETCHED-SGD further reduces the necessary communication to O(log d). Besides
reducing communication, our method provably converges at the same rate as SGD, and in practice
we are able to reduce the total communication needed by up to 40x without experiencing a loss in
model quality.

A number of other techniques for efficient training could be combined with SKETCHED-SGD, includ-
ing gradient quantization and asynchronous updates. We expect that the advantages asynchronous
updates bring to regular SGD will carry over to SKETCHED-SGD. And given that elements of gradi-
ent sketches are sums of gradient elements, we expect that quantizing sketches will lead to similar
tradeoffs as quantizing the gradients themselves. Preliminary experiments show that quantizing
sketches to 16 bits when training our ResNets on CIFAR-10 leads to no drop in accuracy, but we leave
a full evaluation of combining quantization, as well as asynchronous updates, with SKETCHED-SGD
to future work.

Machine learning models are constantly growing in size (e.g. OpenAI’s GPT-2, a transformer with
1.5 billion parameters [Radford et al., 2019]), and training is being carried out on a larger and larger
number of compute nodes. As communication increasingly becomes a bottleneck for large-scale
training, we argue that a method that requires only O(log d) communication has the potential to
enable a wide range of machine learning workloads that are currently infeasible, from highly parallel
training in the cloud, to Federated Learning at the edge [McMahan et al., 2016].
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