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Abstract—The roll-out of distributed energy resources (DERs)
challenges the current operating practice of distribution utilities
due to increased volatility and uncertainty of nodal power
injections. Furthermore, many DERs are independently-owned
and, therefore, will likely be operated without cooperation with a
local utility. This combination of uncertainty and self-interest can
motivate DERs to act strategically in future distribution (retail)
markets to maximize their payoff. Without assuming a particular
distribution market design, this paper investigates engineering
mechanisms for strategic behavior by independently-owned DERs
in the context of radial and voltage-constrained distribution
systems. We derive conditions that identify an exercise of market
power by an independently-owned DER and propose a market
power metric that accounts for AC power flow physics and
uncertainty of nodal power injections. The case study illustrates
a range of effects of market power on distribution system
operations.

Index Terms—Chance constraints, Distributed energy re-
sources, Distribution system, Market power, Radial Network

I. INTRODUCTION

The penetration of small-scale distributed energy resources
(DER) is generally regarded as a positive development to
modernize the current electric power grid. However, this
development is not without its challenges that put distribu-
tion utilities under pressure to deal with the stochasticity
and limited controllability of DERs, leading to difficulties
with voltage control, minimizing power losses, and managing
various distribution system assets [1], [2], [3]. In the current
practice of distribution utilities, these difficulties are overcome
by imposing control policies on the output of DERs. These
control policies use local measurements, available at the point
of DER interconnection, and react to dynamically changing
operating conditions in the distribution network without the
intervention of utilities. Such policies are useful to pursue a
variety of utility-centric objectives, e.g. maintain a desired
power factor value, control voltage magnitudes within an
acceptable range, reduce power losses, prevent reverse power
flows, etc [2], [3], [4], [5]. However, as distribution systems
become more transactive, i.e. DERs and electricity consumers
gain the ability to transact electricity bypassing the utility,
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independently-owned DERs are likely to forgo these restric-
tive control policies and will control their power output to
maximize their payoff.

This paper studies how technical peculiarities of distribution
systems can be exploited by strategically acting DERs to
increase its payoff by exercising market power. The notion
of market power refers to the ability of a firm to profitably
alternate market outcomes for a good or service above its
marginal cost. In practice, however, the majority of distribution
systems are operated by a monopoly (local utility), i.e. there
is no competitive electricity supply or distribution market per
se. As a result, this paper focuses on technical means that
can be exploited by strategically acting DERs in distribution
systems of the future, regardless of the market design choices
that will be made by federal and local policymakers at a later
date. In other words, this paper defines market power in a
conditional manner, where the payoff is directly proportional
to the amount of good or services provided by a firm. This
assumption is consistent with the current rate design practice
of US distribution systems, where DERs are remunerated
based on coarse-grained tariffs in a proportion to their in-feed.

Previous efforts to understand market power in the context
of electricity supply have been exclusively concentrated on
wholesale (transmission) electricity markets. The effects of
market power on wholesale competition among generation
companies are well-documented, e.g. [6], [7], and extend
to traditional generation companies [8] and large-scale ag-
gregators of DERs [9]. While the studies in [6], [7], [8],
[9] holistically explore means that can be used by strategic
actors to favorably affect prices and quantities cleared in the
wholesale market, they invoke transmission-specific assump-
tions (e.g. only active power supply, demand, and power flows
are considered) that do not necessarily hold for distribution
systems, which are notoriously reactive power and voltage
constrained. Furthermore, [10] and [11] describe metrics to
numerically characterize market power of a strategic actor.
The market power metric proposed in [11] notably departs
from the previous efforts due to two factors. First, unlike ex-
post market power metrics surveyed in [10], it is a functional
metric that can be internalized with optimal power flow and
unit commitment models. Second, it is extended to deal
with AC power flow constraints using semidefinite AC power
flow relaxations. Nevertheless, the functional metric in [11]978-1-7281-0407-2/19/$31.00 c©2019 IEEE



is limited to manipulations with active power outputs of a
strategic actor.

While the body of literature pertaining to transmission
market power is extensive, the analogous body for distribution
systems is sparse. To the best of the authors knowledge, the
economic and technical effects of exercising market power
facilitated by the use of DERs has not been investigated.
Such considerations are especially important in the formation
of a distribution (retail) electricity market, which is under
discussion in many US state jurisdictions. Due to lack of
a consensus distribution market design, this paper studies
the technical mechanisms of exercising of market power in
distribution systems, leaving economic aspects outside of the
scope of this paper. In addition to lacking proper market
designs, the emphasis on technical mechanisms in this paper
is motivated by the need to account for unique technical
features of distribution systems that makes the use of the
transmission market power metrics described in [10], [11]
somewhat impractical.

The uniqueness of distribution systems arises from multiple
features. First, unlike meshed transmission systems with strict
power flow limits, distribution systems are mostly radial and
their operation is typically voltage-constrained rather than
limited by power flow ratings. Second, unlike conventional
generation resources, DERs have a greater ability to control
both active/reactive power outputs and terminal voltage due to
the inverter-based interface to the system. Using oversized, yet
affordable inverters, DERs can enhance their ability to exercise
market power by cutting off downstream electricity consumers
from upstream providers (e.g. utility or other DERs).

This paper focuses on the special means to exercise market
power by independently-owned DERs in a radial distribution
system with voltage constraints and analyzes its sensitivity
to different distribution system operating parameters and the
effects of uncertainty. Motivated by [11], we propose a new
functional metric to characterize the ability of strategically
acting DERs to levy advanced inverter-based controls for
exercising market power.

II. MARKET POWER IN A RADIAL NETWORK

A. Modeling Preliminaries

1) Notations: We consider a radial distribution system, as
schematically shown in Figure 1, with the set of nodes (buses)
N and the set of edges (lines) E , where the root node is
indexed as 1 and N+ := N \ {1} is the set of all non-
root nodes. The root node is modeled as an infinite bus and
is referred to as the substation. Each non-root node has only
one ancestor node, denoted as Ai, and one set of children
nodes, denoted as Ci. Also, each non-root node has an active
and reactive power demand (dPi and dQi , i ∈ N ), and its
voltage magnitude (vi ∈ [vmin

i , vmax
i ], ∀i ∈ N ) for some upper

and lower voltage constraints, vmin
i and vmax

i . For the sake of
simplicity, we introduce ui = v2i . Should a node also have a
controllable DER, the active and reactive power generation is
modeled as gPi and gQi and the power output limits are given
as gPi ∈ [0, gP,max

i ] and gQi ∈ [−gQ,max
i , gQ,max

i ].

The active and reactive power flows along the lines are
denoted by fPi and fQi , i ∈ E , respectively, where i is the
index of the downstream node of the line, i.e. the receiving
end of line i. Conversely, the upstream node of i will be the
sending node. Each line has resistance ri, reactance xi, and
apparent power flow limit Smax

i , i ∈ E . For convenience of
notations, vectors R = {ri, ∀i ∈ E} and X = {xi, ∀i ∈ E}
are the vectors of line resistances and reactances.

The uncertainty of nodal power injections at node i is mod-
eled using the normally distributed error εPi ∼ N(0, σi) and
aggregated in random vector εP = εPi , ∀i ∈ N+. The system-
wide uncertainty is defined as ε̃P =

∑
i∈N+ εPi . Notations ε̃Q

and εQ are derived by analogy, see [12]. The bold characters
fP
i ,f

Q
i , g

P
i , g

Q
i ,ui denote random variables associated with

their deterministic namesakes fPi , f
Q
i , g

P
i , g

Q
i , ui, respectively,

under the influence of ε̃P and ε̃Q .
2) Distribution power flow: To represent AC power flows in

the distribution system, we adopt the LinDistFlow power flow
approximation [13] that allows for modeling active/reactive
power flows and voltage magnitudes in a computationally
tractable manner at the expense of neglecting power losses:∑

j∈Ci

fPj = fPi − dPi + gPi , ∀i ∈ N+ (1)∑
j∈Ci

fQj = fQi − dQi + gQi , ∀i ∈ N+ (2)

ui = uAi
− 2(rif

P
i + xif

Q
i ), ∀i ∈ N+. (3)

v2,min
i ≤ ui ≤ v2,max

i , ∀i ∈ N , (4)

where (1)-(2) compute active and reactive flows in each line,
(3) computes nodal voltage magnitudes and (4) enforces the
nodal voltage limits. In the following, the power flow limits are
not enforced as typically distribution systems have sufficient
line flow capacity.

Each DER is constrained as follows:

0 ≤ gPi ≤ gP,max
i , ∀i ∈ G (5)

−gQ,max
i ≤ gQi ≤ gQ,max

i , ∀i ∈ G (6)(
gPi
)2

+
(
gQi
)2 ≤ (Sinv

i )2, ∀i ∈ E , (7)

Bus i

Ai

Ci

fP
i , fQ

i

dPi � gPi
dQi � gQi

Vi

upstream downstream

ri, xi

Fig. 1. Main notations in a radial distribution system.



where (5)-(6) are power capacity limits on the DER and (7)
represents the apparent power flow limit (Sinv

i ) on the inverter
that connects the DER to the system. Note that (5)-(7) make
it possible to represent various DER technologies.
B. Proposed Market Power Metric

The radial topology, as in Figure 1, enables the DER located
at node i to exercise market power over the downstream
consumers by blocking the power supply from the utility to
downstream nodes.

Consider (3) and note that, similarly to utility-centric control
policies [2], [3], [4], [5], DER at node i can manipulate its
power output to adjust ui at its terminals. In contrast to [2],
[3], [4], [5], in this case the DER would aim to block the
power supply from node Ai. As follows from (3), under the
assumption of neglecting the effect of voltage angle differences
(typically small in distribution systems) between nodes i and
Ai, the power supply can be blocked if ui−uAi

= −2(rif
P
i +

xif
Q
i ) = 0. In turn, this expression can be broken down in

two independent market power conditions:

ui(g
P
i , g

Q
i ) = uAi

, ∀i ∈ N (8)

fPi = −xi
ri
fQi , ∀i ∈ E , (9)

where ui(·) denotes the terminal voltage of the DER at node
i as a function of its power outputs gPi and gQi . When either
of these constraints is satisfied, the player at node i cuts off
all children node from the power flowing into the substation.
Player i then becomes the sole provider of electricity to all
nodes downstream of it, and is free to charge the downstream
nodes a price higher than i’s marginal cost of producing
electricity given their situational monopoly. While (8) explains
the market power exercising mechanism, (9) offers insights
on possible power flow conditions that are caused by this
behavior. First, (9) has a trivial solution when fPi = fQi = 0,
i.e. there is no power flow in line i. Second, if fPi 6= 0
and fQi 6= 0, the reactive and active power flows must be
in the opposite direction for exercising market power due to
the minus sign in (9). The opposite direction of reactive and
active power currently occurs in some distribution systems and
is anticipated to become more common as more DERs are
integrated, [1].

Given the current state of inverter technolologies [5], the
only limiting factor of the DER at node i to set its terminal
voltage ui(gPi , g

Q
i ) to a desired level , e.g. as in (8), is the

maximum inverter capacity (Sinv
i ) as given by (7). Therefore,

it is natural to exploit Sinv
i as a quantifiable measure of market

power of the DER at node i and motivates the following
optimization for each node i:{

min Sinv
i (10)

Eq. (1)− (7) : [Optimal power flow constraints] (11)

Eq. (8) or (9): [Market power condition]
}
, ∀i ∈ N+. (12)

Considering strictly positive values of Sinv
i for a physically

realistic model, the objective is concave, and due to the

quadratic constraint in equation (7), the problem presented in
(10) - (12) is a quadratically constrained quadratic program
(QCQP).

The optimized value of Sinv
i can be interpreted as the

minimum inverter capacity that the DER at node i needs
for exercising market power at that node. Similarly to [11],
the optimization in (10)-(12) internalizes optimal power flow
constraints and, therefore, proposed metric Sinv

i also has a
functional interpretation, i.e. as a function of distribution
system conditions.
C. Market Power and Voltage Limits

In addition to the power output of the DER and the
maximum capacity of its inverter, the optimization in (10)-(12)
includes voltage limits in (4) enforced by the utility. From the
utility perspective, these constraints are “hard” and, therefore,
they can be used as a reference for analyzing the effect of
exercising market power by the DERs. This interplay can be
inferred from (8).

Consider ∆ui = uAi
− ui. As per (4), one can assert that

(vmin
Ai

)2 ≤ ui ≤ (vmax
Ai

)2 and (vmin
i )2 ≤ ui ≤ (vmax

i )2. Since
the nominal voltages at neighboring distribution nodes are
approximately the same, i.e. u0 := u0i ≈ u0Ai

, the nominal
operating voltage about which the grid typically operates, it
is convenient to represent the voltage limits at nodes i and
Ai relative u0. This leads to (1 − κ)u0 ≤ uAi ≤ (1 + κ)u0

and (1 − κ)u0 ≤ ui ≤ (1 + κ)u0, where κ ∈ [0, 1] is a
constant that defines the acceptable range given by the limits
in (4). Normally parameter κ varies from 0.05 to 0.20 for
different systems, [3]. Given these notations, the upper and
lower bounds on ∆ui ∈ [ui, ui] are:
ui =max[uAi ]−min[ui]=(1 + κ)u0−(1−κ)u0 =2κ (13)

ui =min[uAi ]−max[ui]=(1− κ)u0−(1+κ)u0 = −2κ. (14)
Notably, the market condition in (8) corresponds to the case

with ∆ui = 0, i.e. the center of the range for ∆ui ∈ [−2κ, 2κ]
computed in (13)-(14). Since bounds ui and ui depend on
κ, it emphasizes that the strictness of voltage limits relative
to their nominal value affect the ability to act strategically.
Tighter voltage limits will make it easier for strategic DERs
to exercise market power.
D. Market Power under Uncertainty

Thus far nodal power injections have been treated deter-
ministically, i.e. as known to the utility with perfect accuracy.
In practice, this assumption does not hold and, therefore, the
proposed market power metric and the optimization in (10)-
(11) are extended using the chance-constrained framework that
captures the effect of uncertain nodal injections on power
flows, [12], [14].

Leveraging the chance-constrained optimal power flow
model for distribution systems from [12], the chance-
constrained equivalent of (10)-(11) is given as:{

min Sinv
i (15)∑

i∈G
αi = 1 (16)

Eq. (1)− (2) (17)



ui = uAi

− 2aT∗i

(
R ◦A(εP − αε̃P ) +X ◦A(εQ − αε̃Q)

)
,

∀i ∈ N+ (18)

fP
i = fPi + ai∗(ε

P − αε̃P ), ∀i ∈ E (19)

fQ
i = fQi + ai∗(ε

Q − αε̃Q), ∀i ∈ E (20)

gPi = gPi + αiε
P , ∀i ∈ G (21)

gQi = gQi + αiε
Q, ∀i ∈ G (22)

P(gP,min
i ≤ gPi ≤ gP,max

i ) ≥ (1− 2ηg), ∀i ∈ G (23)

P(gQ,min
i ≤ gQi ≤ gQ,max

i ) ≥ (1− 2ηg), ∀i ∈ G (24)

P((vmin
i )2 ≤ ui ≤ (vmax

i )2) ≥ (1− 2ηv), ∀i ∈ N , (25)

u2
i = u2

Ai
or fP

i = −xi
ri
fQ
i

}
, ∀i ∈ N+. (26)

where (◦) denotes the Schur-product. Eq. (16) ensures that
controllable DERs have sufficient active power margins to
compensate for the uncertainty imbalance. The voltage mag-
nitudes and power flows affected by uncertainty are computed
in (18)-(20), while the output of controllable DERs under
uncertainty is modelled in (21) and (22).

Decision variable αi is optimized to set a participation
factor of the controllable DER at node i in active power
regulation and α = {αi, ∀i ∈ N+} denotes the vector of
participation factors. Lastly, the matrix, A, has dimensions
l× b where l := |E| is the number of edges, b := |N+| is the
number of nodes, and is formed leveraging power transmission
distribution factors as in [15] to map the change of load
at every node to the change of edge power flow. Since the
network is radial each edge has to carry the complete net load
of all its downstream nodes, and as such A is formed as

aij ,


1, if line i is part of

the path from
root bus to bus j

0, else

∀i ∈ E , ∀j ∈ N+.

Thus ai∗ : 1× |B| corresponds to the i-th row of A.
Constraints (23)-(25) are chance-constrained equivalents of

(4)-(6), where parameters ηg and ηv define the tolerance
to constraint violations and the factor of 2 is due to two-
sided chance constraints. Constraint (26) defines the chance-
constrained equivalent of the market power condition in (12).

The chance-constraints of (23)-(25) are a special case in
that the random variables, ε, that are present via equations
(18), (21) - (22) are all linear, and furthermore assumed to
be normally distributed with zero-mean and known variance.
We further assume here that each of the uncertainties are
statistically independent of each other, which is reasonable
so long as the uncertainty in the node of one agent does
not affect the level of uncertainty present for another agent.
With these assumptions then, such chance-constraints may be
recast as equivalent deterministic Second-Order Conic (SOC)
Constraints. To show this, consider a normally distributed
random variable ε ∼ N(µ, σ2) such that the inequality P(ε ≤
εmax) ≥ η if and only if εmax ≥ µ+ Φ−1(1− η)σ, where Φ is

the cdf of a standard normally distributed random variable. The
chance constraints present in (18), (21) - (22) may be recast in
a similar manner. For a complete proof and detailed derivation
of these results, see [16], [12], [17]. Unfortunately, however,
what we gain in tractability with this reformulation, we lose in
simplicity, as the QCQP problem from the purely deterministic
model in (10) - (12) is now a SOC Program (SOCP) due to
the deterministic reform shown above. Fortunately SOCPs are
handled easily by most commercially available solvers as well
such as Gurobi.

Relative to the deterministic formulation in (10)-(12), the
optimal solution of (15)-(26) is such that allows for the DER
at node i to exercise market power in the presence of uncertain
nodal injections and, therefore, the value of Sinv

i can be inter-
preted probabilistically. This probabilistic interpretation makes
it possible to assess the impact of the underlying uncertainty
assumptions (e.g. uncertainty distribution) and externalities
(e.g. ηg and ηv).

III. NUMERICAL EXAMPLES

The case study is carried out on the 33-node IEEE Distribu-
tion Test System, as illustrated in Figure 2, with modifications
reported in [4]. All simulations are conducted using JuMP [18]
and JuMPChance [19] packages for Julia v0.6.1.
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Fig. 2. An illustration of the 33-node IEEE Distribution Test System
with the data described in [4], where the root node is in green.

A. Deterministic Case
The deterministic case assumes that all nodal power in-

jections are known with perfect accuracy and computes the
minimum inverter capacity at each node that will make it
possible for the DER at that node to exercise market power.
Figure 3 compares the results obtained with the market power
condition given in (8)-(9) enforced individually. As expected,
both market power conditions return identical results. There-
fore, in the following only the market power condition in (8)
is enforced since it represents a more physically accurate case
when a strategic actor makes its decision based on locally
available voltage information.

The results displayed in Figure 3 demonstrate that the
minimum inverter capacity needed for a strategic actor to



Fig. 3. The minimum inverter capacity needed at each node (S inv
i )

that makes it possible for a local DER to exercise a market power
with the market power conditions enforced as in (8)-(9).

exercise market power depends on its location in the distri-
bution system. In general, the inverter capacity monotonically
decreases for more downstream nodes, i.e. the nodes with a
greater electrical distance from the root node of the distribution
network. Thus, strategic actors at downstream nodes would
require a smaller capacity inverter. On the other hand, these
actors will have less downstream load to deal with, thus under-
mining their supply potential. This observation represents an
interesting economic trade-off between the minimum inverter
capacity (thus, its capital cost) and the amount of downstream
load that it can potentially supply (thus, its potential payoff).
B. Chance-Constrained Case

The chance-constrained case aims to explore the impact of
uncertainty of nodal injections on the ability of strategically
acting DERs to exercise market power. In the following
simulations, parameters ηv and ηg are set to 0.005.

To evaluate the impact of uncertain nodal injections on the
minimum inverter capacity needed to exercise market power
at a given node of the distribution system, the simulations are
performed for different values of parameter σ that represents
the variance of uncertain nodal injections. The results pre-
sented in Figure 4 reveal that there is no significant change
to the minimum inveter capacity needed under small values
of variance. On the other hand, under larger values of the
variance, the minimum capacity inverter needed to exercise
market power increases. Similarly, it can be seen that the
impact of uncertainty depends on the location of the inverter
in the distribution system, where downstream nodes are more
sensitive to changes in the variance.

Fig. 4. The minimum inverter capacity needed for different values of
variance (σ), whose values are given as percentages to the nominal
(deterministic) nodal power injections.

From the practical viewpoint, these results suggest that
rolling out DERs with a relatively high value of variance (e.g.
photovoltaic resources) will create unfavorable conditions for
exercising market power by strategic actors as it would require
inverters with a significantly larger capacity.
C. Impact on the Voltage Profile

As discussed above, the ability to exercise market power is
closely related to nodal voltages and, therefore, the simulations
reported in Figure 4 are extended for different values of
parameter κ in (4), where the upper and lower voltage limits
are set to (1 + κ)u0i and (1 − κ)u0i , as in Section II-C. To
do so, we introduce a slack variable to the voltage magnitude
constraint. This is necessary because the control of the DER is
not up to a system operator and is controlled by an individual,
who may choose to operate their resource in this manner. As
such, while exercising such strategic behavior may lead to
violations of the given acceptable range, this falls under the
purview of the system operator, who may not be able to control
how the individual who owns the DER chooses to operate it.
In this respect, the following results represent how the network
would respond to such behavior of an individual DER if the
network were to be able to stand such wide voltage swings.
As such, these results essentially give insight into how much
of a control action a system operator would have to take to
negate such behavior in order to prevent such a system-wide
collapse. In practice, such wide limits are rare, and as such
control action would likely be needed considerably sooner.

Parameter κ weakly affects the minimum inverter capacity
needed to exercise market power, given rather wide base case
voltage limits, but dramatically changes the voltage profile
across the entire distribution system. Figure 5 displays the
voltage profiles across the distribution system for multiple
cases, where strategically acting DERs are individually placed
at nodes 2, 3, 6 and 33. The first three nodes are selected
to simulate individually exercising market power at branching
nodes of the distribution system, while last node is selected
because it is the most electrically remote node in the system.

Analyzing the voltage profiles displayed in Figure 5 is
important from the perspective of the distribution utility,
because complying with voltage limits falls within its re-
sponsibility and, therefore, it must ensure sufficient voltage
control capacity in the system. First, exercising market power
never leads to violations of upper voltage limit, i.e. it only
causes increased voltage sags across distribution lines. On the
other hand, as the value of parameter κ decreases, i.e. the
voltage limits become tighter, the number of violations of the
lower voltage limits increases. However, the magnitude and
frequency of such violations are not strictly proportional to the
percentage increase in κ. Note that violations are also observed
at the nodes that do not host strategically acting DERs due to
the greater voltage sag across distribution lines. As such

These violations are also sensitive to the location of the
strategically acting DER in the distribution system. For exam-
ple, as seen in Figure 5a, if the DER is placed at node 2 , it
causes voltage limit violations across almost the entire system
at the tightest limits. Other cases with strategic DERs at more



downstream nodes, relative to node 2, lead to fewer violations
Figure 5. IV. CONCLUSION

This paper presented an approach to measure market power
of an independently-owned DER located in a radial distri-
bution system. The proposed metric relates the ability of a
strategically acting DER to exercise market power and the ca-
pacity of the inverter that connects the DER to the distribution
system. The case study demonstrates that the ability to exercise
market power depends on a nodal location of the DER and
various externalities (e.g. uncertainty parameters and voltage
limits). In future work it will be interesting to consider cases

Fig. 5. The voltage profile with strategically acting DERs at given
nodes. The black lines represent the base case, blue for κ = 0.05,
green for κ = 0.10, and magenta for κ = 0.15. The dashed horizontal
lines correspond to the minimum voltage limit for the given κ.

of multiple DERs, with both independently-owned strategic
acting DERs, and with system-controlled DERs. Both of these
cases will further study the effects of multiple distribution end
injections of power into the system. Further, the presence of
additional DERs, particularly units in nodes electrically close
to the strategically acting agent, allows one to consider control
and mitigation schemes to combat such behavior. It would also
be interesting to consider multiple strategically acting DERs
that may be non-cooperative agents whose injections could
could affect the ability of the other to act this way.
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