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Abstract— Event-based cameras are a novel asynchronous
sensing modality that provide exciting benefits, such as the
ability to track fast moving objects with no motion blur and
low latency, high dynamic range, and low power consumption.
Given the low latency of the cameras, as well as their ability
to work in challenging lighting conditions, these cameras are
a natural fit for reactive problems such as fast local structure
estimation. In this work, we propose a fast method to perform
structure estimation for vehicles traveling in a roughly 2D
environment (e.g. in an environment with a ground plane).
Our method transfers the method of plane and parallax to
events, which, given the homography to a ground plane and
the pose of the camera, generates a warping of the events
which removes the optical flow for events on the ground plane,
while inducing flow for events above the ground plane. We then
estimate dense flow in this warped space using a self-supervised
neural network, which provides the height of all points in the
scene. We evaluate our method on the Multi Vehicle Stereo
Event Camera dataset, and show its ability to rapidly estimate
the scene structure both at high speeds and in low lighting
conditions.

I. INTRODUCTION

Event cameras provide exciting new benefits over tradi-
tional cameras allowing for low latency obstacle tracking and
motion blur compensation. Autonomous vehicles can benefit
greatly from event cameras simply from the lower latency,
lower bandwidth, and higher dynamic range that is native to
the sensor itself. However, these benefits come with a variety
of challenges, mostly stemming from the lack of decades of
dedicated research for tasks like optical flow, structure from
motion, and other tasks that have been heavily studied for
traditional cameras. Algorithms that have been created for
traditional cameras rely upon globally synchronous informa-
tion and can’t simply be ported to a sparse asynchronous
stream.

Recent advances in structure estimation from monocular
images and event based cameras [20], [19], [23] provide
methods for constructing local depth maps that can be used
for obstacle detection and other tasks that only require local
structure. In autonomous vehicles, obstacle detection is a low
level requirement to ensure vehicle and environment safety at
all points in time, regardless of whether or not higher level
software or hardware subsystems fail. Relying upon a full
SLAM package to produce local obstacle maps is impractical
due to the overall delay in retrieving a fully optimized pose
and map; by the time the information is received it may
already be irrelevant. On the other hand, LiDAR systems
have a relatively low update frequency leading to long delays
obstacle information updates. Similarly stereo cameras have
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a practical upper limit to the frame rate due to the need to
process pairs of frames individually.

In this paper, we propose a novel structure estimation
method for event cameras that is suitable for on autonomous
driving in real world scenarios. We utilize recent advances in
unsupervised learning methods for event cameras to train a
convolutional neural network to learn height and depth from
a loss that utilizes Plane and Parallax (P+P) [15] principles,
which reduces the complexity of the dense optical flow by
removing rotation while simultaneously providing a direct
metric representation of the magnitude of the computed flow.
Our network takes as input raw events, and predicts the ratio
between the height of each point above the ground plane,
and the depth in the camera frame. We show that this ratio
can be used to compute the optical flow between a pair of
images warped using P+P, and apply a semi-supervised loss
to minimize the photometric error between the images.

In order to accurately predict metric depth directly from
a scene, a network must learn to make a large number
of assumptions about objects in the scene such as cars,
pedestrians, and buildings. As such, these networks have a
hard time generalizing to other contexts. Predicting relative
factors up to a scale that represent the structure of the scene,
but need to be scaled or otherwise decoded, allows networks
to generalize better. Our method leverages this by predicting
the ratio of height and depth. Alone, this provides a relative
measurement, but when coupled with a camera to ground
calibration, it allows for the system to recapture the full
metric information of the scene, in a similar manner to
the monocular implementation that accompanies Geiger et
al. [3].

Our method runs at 75Hz on a modern high grade GPU,
and can estimate scene height and depth in low-light and
high speed driving scenarios, making it suitable for night
time autonomous driving. We evaluate our method on the
Multi Vehicle Stereo Event Camera (MVSEC) dataset [22],
and demonstrate our network’s ability to accurately predict
the heights and depths of objects in the scene. We further
show an application of these predictions towards accurately
segmenting free space on the ground plane. In our exper-
iments, we demonstrate superiority over image input and
depth prediction baselines.

The technical contributions of the paper are as follows:
• A novel loss that leverages P+P to isolate static scene

components from the motion of the event camera.
• A novel pipeline that trains a neural network to learn

the ratio between the height of a point from the ground
plane and its depth in the camera frame, using a self-
supervised loss, where camera pose and the ground
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Fig. 1: Our network, which uses the architecture from EV-FlowNet [21], takes as input a raw event volume, and predicts
the scene structure in the ratio height (h) over depth (ρ). Given the ground plane calibration, we can recover depth and
height independently. During training (blue box), odometry and the predicted scene structure is used in a two stage warping
process to warp I1 into Iw1 . First, a homography, c(τ2)Hc(τ1), warps and aligns the ground plane between the images. Second,
the scene structure is used to compute the residual flow to warp any portions of the scene not on the ground plane. Iw1 is
compared to I2 in Lphoto. At test time, only the calibration from the camera to the ground plane, gTc, is used at test time
to compute ρ and h. (Figure best viewed in color)

normal is used at training time, but where only the
ground normal is needed at test time.

• Evaluation on challenging high-speed and low-light
night time MVSEC dataset scenes, including qualitative
results for freespace estimation.

II. RELATED WORK

A. Event Based Cameras

A number of recent works have used deep learning for
event cameras. Moeys et al. [11] and Maqueda et al. [9]
proposed supervised methods to predict the position of a
robot in front of the camera and the steering angle of a
vehicle, respectively, while Zhu et al. [21] and Ye et al. [19]
propose self and unsupervised methods to predict optical
flow and egomotion and depth.

While there have not been many works directly focused
on general obstacle detection, there have been a number
of works that perform camera pose [7], [14] and depth
estimation [13], [24], [12] with event cameras, which could
be joined to perform obstacle detection.

Several works also detect independently moving objects
from the events stream. Vasco et al. [17] track features in the
image and filter those that do not fit the motion predicted by
the known camera poses. Mitrokhin et al. [10] extend this
by using a 4 parameter camera motion model to model and
estimate the rigid motion of the camera, and similarly detect
independently moving objects as events that do not fit the
model.

However, these methods require extensive engineering to
fuse methods together and separately define obstacles from
the measurements, whereas our method directly outputs the
height of each obstacle, which can easily be thresholded by
a single hyperparameter.

B. Plane and Parallax

Plane and Parallax (P+P) has been leveraged for re-
construction of structure from multiple images as well as
structureless obstacle detection. Sawhey et al. [15] derives
a parameterization of the residual flow based on metric
information in each plane, depth relative to the camera and
height relative to the ground plane. Irani et al. [5] proposes
a method that leverages P+P to retrieve the structure of the
scene from multiple uncalibrated images. Wulff et al. [18]
propose a method that utilizes P+P to refine the optical flow
esimations of the rigid portion of the scenes.

Simond et al. [16] propose a method to perform obstacle
detection without reconstruction of the scene structure, but
needs a calibration of the camera against the ground to
retrieve metric obstacle information. Mallot et al. [8] describe
a scheme to detect obstacles using optical flow and leverage
inverse perspective mapping for regularizing the optical flow
calculations and relating the flow to obstacle height.

These methods are targeted towards traditional cameras,
which we extend in this work for event cameras.



III. METHOD

Our obstacle detection pipeline consists of a fully con-
volutional neural network that takes in a discretized event
volume, as described in Sec. III-A, and predicts the structure
component, consisting of the ratio between the height of each
pixel above the plane over the depth from the camera. Our
training method is inspired by the work by Zhu et al. [21],
where supervision is applied through the photoconsistency
assumption, applied to the grayscale image output from some
event cameras such as the DAVIS [1]. At training time, we
gather two grayscale images and all of the events in between
them in time, and use P+P to register the previous image to
the next. We explain this process in detail in Sec. III-B. Our
network then predicts the structure component for each pixel,
which we combine with the known camera poses between the
two images to estimate the residual flow for each pixel. This
residual flow is then used to warp the previous image to the
next. We apply a photometric loss to the image pair, which
we explain in Sec. III-C. Our method is also summarized in
Alg. 1.

Note that, while we assume that the camera pose is known
in this work at training time, it can be jointly predicted
with the structure component in a similar manner to Zhou et
al. [20]. However, the goal of this work is accurate height and
depth prediction, so we use known camera pose to further
refine the predictions.

A. Input Representation

Several prior works in using events for learning have
summarized the events in an image [11], [21], [9], [19].
While this was shown to allow a network to learn accurate
optical flow on raw events, this representation inherently
loses much of the high temporal resolution of the events
by throwing away most of the timestamps. To resolve this
issue, we instead represent the events as a 3D spatiotemporal
volume, as proposed by Zhu et al. [23]. First, we discretize
the time dimension into B bins. However, simply rounding
the events and inserting them into the volume would lose a
significant amount of information, and so we instead insert
events using trilinear interpolation, similar to the bilinear
image warping used in Jaderberg et al. [6]:

t∗i =(B − 1)(ti − t0)/(tN − t1) (1)

V (x, y, t) =
∑
i

pikb(x− xi)kb(y − yi)kb(t− t∗i ) (2)

kb(a) =max(0, 1− |a|) (3)

where kb(a) corresponds to the sampling kernel defined in
[6].

In other words, each event contributes to the eight voxels
around it in x-y-t space, with contribution to each voxel
proportional to one minus the distance from the event to
that voxel in each dimension.

For events without any neighbors (e.g. on the boundary of
an object), this interpolation allows for the exact timestamp
to be recovered, and overall, this representation encodes the
full spatiotemporal distribution of the events.

Algorithm 1 Event-based Height from Planar Parallax
Training
Input: events, {xi, yi, ti, pi}i=1,...,N , images, I1, I2,
camera pose, c2Tc1 , ground plane, cTg .

1: Generate event volume (2).
2: Register I1 to I2 using P+P, generating Iw1 (11).
3: Pass the event volume through the network to estimate the

structure component, A(~x).
4: Estimate the residual flow, u(~x), (12), and use it to warp Iw1

to Î2.
5: Apply the loss, Ltotal, (18) and backpropagate.

Testing
Input: events, ground plane.

1: Generate event volume (2) and predict the structure component,
A(~x) with the network.

2: Estimate the height, h(~x) (15) and depth, ρ(~x) (14) of each
point.

B. Self-Supervision from Plane and Parallax

For supervision, we apply a plane and parallax (P+P)
warping to the grayscale frames accompanying the events,
and use the output of the network to estimate the residual
optical flow after this warping.

Plane and parallax (P+P) methods warp images (or indi-
vidual points) through a common reference plane to create
parallax between images. The warping will exactly register
points that lie on the plane, while points above or below will
have some residual flow, which can be parameterized by a
rigid structure parameter and camera motion.

The P+P warping can be represented as the homography,
c(τ2)Hc(τ1), which transforms the ground plane in the c(τ1)
frame to the c(τ2) frame.

At training time, we apply a P+P warping on the im-
age immediately before the event volume, Iτ1 , to the one
immediately after, Iτ2 . To generate the homography, we
assume that the fixed transformation between the camera
and the ground frame, cTg , and the relative pose between
the camera frames, c(τ2)Tc(τ1), are known. T is composed of
the homogeneous form of the rotation, R, and translation, t:
T = [R, t; [0, 0, 0, 1]].

The relative pose between camera frames can be decom-
posed as two transformations from the camera to the ground
at the respective times:

c(τ2)Tc(τ1) =
cTg

gTc
c(τ2)Tc(τ1) (4)

c(τ2)Tg =
cTg (5)

c(τ1)Tg =(gTc
c(τ2)Tc(τ1))

−1 (6)

The homography, c(τ2)Hc(τ1), that passes through the
ground plane, can then be generated as the composition of
two homographies to the ground plane, c(τ1)Hg and c(τ2)Hg:

c(τ2)Hc(τ1) =
c(τ2)Hg

c(τ1)H−1g (7)

(8)

Each homography from a camera plane to the ground
plane, c(τi)Hg , is defined as:

c(τi)Hg =
c(τi)Rg +

[
0 0 c(τi)tg

]
(9)



So, c(τ2)Hc(τ1), can be completely constructed in terms of
the known poses:

c(τ2)Hc(τ1) =
(
c(τ2)Rg +

[
0 0 c(τ2)tg

])
(
c(τ1)Rg +

[
0 0 c(τ1)tg

])−1 (10)

Given the homography, every pixel in the previous image,
I1 can be warped according to the following equation to
generate the warped image Iw1 :

µp(τ2) =
c(τ2)Hc(τ1)p(τ1) (11)

C. Residual Flow Loss

After P+P, the only optical flow between the images Iw1
and I2 corresponds to flow induced by the height of the
point off the ground plane. We train our network to learn a
rigid structure parameter which can be used to recover the
flow, which is used to further warp Iw1 . Finally, we apply a
photometric loss on the warped images, as in Zhu et al. [21].

This residual flow, u(~x), can be written as:

u(~x) =
A(~x)b

A(~x)b− 1
(e− ~x) (12)

A(~x) =
h(~x)

ρ(~x)
, b =

c2tc1(3)
ctg(3)

(13)

where h(~x) and ρ(~x) are the height and depth of point
~x, respectively, e is the epipole in the image, c2tc1(3) is
the translation along the Z axis and ctg(3) is the height of
the camera c above the ground plane. We refer to Wulff
et al. [18] for the full derivation of this equation. Figure 2
provides context for the geometric relations between the key
components relating to the residual flow and why the residual
flow projects where it does.

As a result of the warping, the flow for each pixel can now
be fully parameterized by a single scalar, composed of a rigid
structure component, A(~x) and a time varying component,
b, which we assume is known.

Given an event volume from (2), we train our network
to learn the structure component, A(~x), from which we can
exactly recover the height, h(~x), and depth, ρ(~x), of each
point:

ρ(~x) =
gtc(3)

A(~x)− gRc(3, :)~x
(14)

h(~x) =A(~x)ρ(~x) (15)

Predicting A(~x) has advantages over directly predicting
the height, h(~x). While one can recover depth from height
for most points, this relationship fails for vectors parallel to
the ground. For any such vector, there are an infinite number
of possible depths at that height, and so a large area of the
image would be unstable during training. Predicting A(~x)
avoids this issue.

Using (12), we can use the network predictions to estimate
the optical flow at every pixel. This flow is used to further
warp Iw1 towards I2, generating Î2 to remove the residual
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Fig. 2: P+P methods rely upon using a homography to warp
from one image, I1 to another I2. This can be thought of as
projecting a point, X , onto the ground plane and then back
up to I2. Points that don’t lie on the ground plane create a
residual, u(X). The structure of X , ρ(X) and h(X), and
camera motion, c2tc1(3) and ctg(3), relate to the residual
flow by (12). (Figure best viewed in color)

flow. Our loss, then, is the photometric loss plus a local
smoothness loss:

Lphotometric =

√
(I2 − Î2)2 + ε2 (16)

Lsmoothness =
∑
~x

∑
~y∈N(~x)

√
(A(~x)−A(~y))2 + ε2 (17)

Ltotal =Lphotometric + λLphotometric (18)

In both losses, we use the robust Charbonnier loss [2].
N(~x) is the 4-connected neighborhood around ~x and λ is
a hyperparameter weight.

IV. RESULTS

A. Implementation Details

Our network was trained on the outdoor day2 sequence
from MVSEC, which contains roughly 20,000 images from
a DAVIS 346b stereo pair, of which we only use the left
camera’s events and images. The events and images are
cropped to 176×336 pixels to remove the hood of the car in
the images. The weighting parameter for the smoothness loss,
λ, in the loss is set to 0.2, and all networks were trained for
50 epochs for all experiments. The ground plane to camera
extrinsic calibration was computed by applying a RANSAC
plane fit to each ground truth depth image in outdoor day2
and taking the median plane. This calibration was then used
for all other experiments. Camera poses were gathered from
the ground truth odometry provided in each sequence.

B. Experiments

1) Depth and Height Evaluation: We compare our model,
which uses an event volume as input, against an implemen-
tation that uses images as input instead of events, which
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Fig. 3: Output of our method, Left to right: (a-d) The ground truth and predictions of height and depth at pixels with events
over the time window in which events were collected (e) The grayscale image overlayed with the ground truth (green) and
network (red) free space regions in the camera frame (f) The freespace image projected into the ground frame.

we label Image P+P. Additionally we compare against a
weakly supervised network which directly predicts depth
from events, which we label Event Depth. This model utilizes
the odometry feed and predicted depths to warp between
images for a photometric loss, through the standard motion
field equations [4]. This is similar to the warping used in
unsupervised methods such as SFMLearner [20], except here
the pose is taken from the ground truth, rather than directly
regressed. Qualitative results from these experiments can be
found in Fig. 3.

For testing, we evaluate on the Outdoor Day 1 and Outdoor
Night 1-3 sequences from MVSEC. Each network constructs

depth and height maps, which is compared directly against
the ground truth provided with the sequences. For the Event
Depth network, heights are estimated given the predicted
depths and provided ground plane as follows:

X(~x) =gRc(τ2)ρ(~x)K
−1
(
~x
1

)
+ gtc(τ2) (19)

h(~x) =X(~x)(3) (20)

The same architecture and parameters are used across all
three networks, with the only differences being the input
representation for Image P+P and the loss function for Event
Depth.



outdoor day1 Average Depth Error (m) Average Height Error (m)
Threshold ρ <10m ρ <20m ρ <100m -0.5m< h <5.0m 0.1m< h <5.0m 1.0m< h <5.0m

Event P+P 6.26 8.37 10.77 0.55 0.69 1.00
Image P+P 4.15 7.45 12.06 1.09 1.18 1.44

Event Depth 14.49 13.83 13.37 0.48 0.59 0.81

outdoor night1

Event P+P 2.93 4.30 6.36 0.41 0.42 0.50
Image P+P 4.57 7.33 10.61 1.00 1.15 1.44

Event Depth 15.62 15.88 15.27 0.48 0.53 0.62

outdoor night2

Event P+P 2.89 5.07 6.94 0.37 0.40 0.55
Image P+P 4.41 7.75 10.58 1.27 1.58 2.03

Event Depth 10.8 11.09 10.82 0.40 0.47 0.60

outdoor night3

Event P+P 3.24 5.61 7.64 0.41 0.47 0.70
Image P+P 4.45 8.01 10.97 1.41 1.84 2.35

Event Depth 13.17 12.39 11.50 0.42 0.51 0.66

TABLE I: Results of the baseline networks against our network on all testing scenes. For all evaluation, only pixels with
events during the relevant time window are evaluated. The thresholds for depth and height are applied to the ground truth
depth and height images to create a additional mask to evaluate within.

Fig. 4: Qualitative results from the motorcycle sequence. Left
to right: (a) Grayscale image (b) Predicted height over pixels
with events (c) Freespace mask (yellow is free).

(a) Event Depth (b) Event P+P (c) Ground Truth

Fig. 5: A comparison of the same scene using the Event
Depth and Event P+P methods. The Event Depth method
estimates all objects to be far away. This explains the trends
seen in Table I.

Quantitative results were computed as absolute error with
respect to the ground truth provided by MVSEC for both
height and depth. In our experiments, we found that, as the
sensors were mounted on the middle of the car, i.e. at least
2.5m from the front of the car, there were very few visible
points very close to the sensors, especially after cropping the
hood of the car. Therefore, we have set the lowest threshold
for depth at 10 m. These results can be found in Table I.

Our method, Event P+P, provides results close to or better
than the baselines in all cases in the direct comparison. In
addition, the network is able to generalize to the night time

sequences where there are significantly more noisy events,
as well as to a change in environment in outdoor day1,
which is inside an office park as compared to the suburban
roads observed in the training set. Overall, it seems that it is
easier for the network to generalize to a noisier night time
environment than it is to a visually different scene, due to
the higher errors in the latter case.

The depth network, perhaps surprisingly, performs sig-
nificantly worse than the P+P methods across the depth
metrics. One possible explanation is that, while the provided
lidar odometry is reasonably accurate, there is nonetheless
noise in the provided poses. As a result, we found that this
resulted in increased error in the Event Depth network’s
depth estimations, particularly for closer points. A qualitative
example of this can be found in Fig. 5. This can also be
seen in the quantitative results where depth error for Event
Depth decreases when points further away are included. This
suggests that using the proposed P+P loss is more robust to
error in the ground truth pose than a motion stereo loss.

One deficiency of our method seen in experiments is that
the network tends to oversmooth the sky regions into objects
at test time. This can be seen in the qualitative results where
the higher regions in the image appear purple. This is likely
because the sky points are perceived to be at near infinite
depth. As a result, the structure term, A := h(~x)/ρ(~x),
is close to 0. With very small values for A, it is difficult
to properly resolve the height and depth, due to noise in
the system. Hence, points near these regions in the image
are occasionally classified to have near 0 depth and height.
However, for applications such as freespace detection in a 2D
(e.g. automotive) setting, this is not a problem, as these points
are simply detected to lie on the ground plane, avoiding
detection of false positives. As the points are typically very
high up, out of the path of the vehicle, they would also not
be considered obstacles in the path of the vehicle. Future



work can consider fine tuning or modifying the smoothness
term to reduce this effect.

2) Freespace Estimation: As a downstream application of
this work, the height maps can be used to classify each pixel
as freespace or an obstacle, given the transform between the
camera and the ground plane. In other words, to classify
whether each pixel belongs to the ground plane or should be
considered an obstacle. To demonstrate this, we threshold the
heights such that any point with height <0.1 m is considered
freespace, while any point above this is an obstacle.

Qualitative results of this heuristic applied on both the
network outputs and ground truth depths can be seen in Fig-
ure 3. The results demonstrate examples where this method,
with a relatively simple heuristic, is able to successfully
segment obstacles such as other cars from the freespace.
Using such a simple heuristic can allow for a fast initial
detection of upcoming obstacles in the scene (provided a
sufficiently powerful GPU).

3) High Speed Tests: In order to demonstrate the ability of
our proposed pipeline on different vehicles and fast motions,
we tested our network on the motorcycle sequence from
MVSEC. This sequence contains a motorcycle driving at
night on surface streets and highway, with speeds up to 140
km/hr. Ground truth depths are not available, but nevertheless
we are able to provide qualitative results from the output
of the network in Fig. 4. Due to the lack of ground truth,
the camera to ground calibration was only roughly tuned
manually. In particular, these results show that it is possible
to accurately segment other vehicles from free space, by
thresholding points with height <0.1 m as freespace.

V. CONCLUSION

In this work, we have demonstrated a novel pipeline for
self-supervised prediction of heights and depths from events
from an event camera. We show that our method works
in a number of challenging driving scenes, including night
time scenarios, and improves upon baselines with image
inputs and direct depth predictions. We also show that our
method allows us to accurate estimate the free space on the
ground plane, and hope that this work can drive future work
in providing high speed safe reactive methods using event
cameras for autonomous vehicles.
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