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Abstract 

The purpose of the workshop on Digitally-Mediated Team Learning (DMTL) was to convene, invigorate, 
and task interdisciplinary science and engineering researchers, developers, and educators to coalesce 
the leading strategies for digital team learning with a focus on synchronous delivery of STEM problem-
solving and design activities especially within classroom settings. A primary deliverable from the 
workshop is identification of one-year, three-year, and five-year research objectives as roadmaps for 
highly-adaptable environments for computer-supported collaborative learning within STEM curricula. 
Collaborations during the workshop aimed to identify near-term and future research directions to 
facilitate adaptable digital environments for highly-effective, rewarding, and scalable team-based 
learning.  

An emphasis of the workshop included the personalization of collaborations among diverse learners by 
automating the identification and utilization of learners’ efficacies and knowledge gaps to create 
complementary collaborative teams that maximize avenues for peer teaching and learning. The 
workshop targeted the utilization and efficacy of next-generation learning architectures through a focus 
on instructional technologies that included technical objectives of: (a) identifying new research in 
learning analytics required to automate more optimal composition, formation, and adaptation of learner 
design teams; (b) detecting advances in physical and virtual learning environments that can promote 
more effective and scalable observation and assessment of learner teams in real-time; (c) distinguishing 
data mining techniques to leverage devices such as monitors, trackers, and automated observations to 
increase efficacy of team learning; and (d) extending collaborative learning technologies to broaden 
participation and achievement of diverse learner groups, including women and other underrepresented 
and underserved populations in STEM. 

Workshop attendees agreed that there are numerous untapped opportunities for online instructional 
environments to engage, orchestrate, and assess STEM design and problem-solving teams, especially 
within classroom settings. Proven methods, inexpensive technology, and digitally-receptive students 
combine for timely feasibility of such an effort given the widespread adoption of mixed-mode delivery 
and demands of enrollment scalability. Attendees unanimously recognized the value of a roadmap for 
DMTL created within a workshop setting and then refined through continued research. Indeed, 
attendees expressed interest in conducting multi-institutional surveys, as a one-year research objective, 
aimed at establishing consensus in best practices/standards for establishment of next-generation DMTL 
learning architectures. Follow-on 3-year research could then be focused on implementation and 5+-year 
research on refinement of these architectures (e.g., by enhancement via machine learning/AI for 
enhanced scalability and efficacy), as well as evaluation via longitudinal studies.  

Specifically, some key 1-year research objectives are use of surveys for unifying research evidence on 
efficacy of real-time classroom-based DMTL across delivery modalities, and assembling a glossary of 
inclusivity terminology, methods, and metrics relevant to DMTL. Key 3-year research objectives include 
creating reusable and adaptable DMTL activities with engaging learner interfaces supporting STEM-
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specific tools (e.g. models, programming, equations, simulations) and creating a clearinghouse 
showcasing high-impact DMTL practices available to the public. Finally, key 5+-year research objectives 
include applying and extending machine learning/AI technologies within DMTL to: (a) longitudinally 
suggest (or automatically construct) team learning activities personalized to the learners at-hand, (b) 
hybridize DMTL with Intelligent Tutoring Systems (ITS) whereby ITS agents have co-instructor roles, and 
(c) adapt an extended-reality environment to spontaneously insert virtual teammates at pivotal
moments, such as when students are retreading the same ground or have embarked on a wrong path.
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Chapter 1 

Introduction 
As a joint effort between the University of Central 
Florida (UCF), the Worcester Polytechnic Institute 
(WPI), and the Colorado School of Mines, the 
NSF-Sponsored Digitally-Mediated Team Learning 
(DMTL) Workshop took place at the University of 
Central Florida from March 31 through April 2, 
2019. The purpose of this workshop was to 
convene researchers, educators, and 
practitioners to advance transformative 
pedagogical approaches for technology-enhanced 
team learning within STEM disciplines for both 
secondary grades and college levels. During the 
workshop, interdisciplinary data science and 
STEM researchers, developers, and educators 
identified future research directions towards 
adaptable digital environments for effective and 
scalable team-based learning in classroom 
settings while advancing personalized learning 
and empowering equitable participation from 
diverse learners. 

The objective of this workshop was to determine 
one-year, three-year, and five-year plans for key 
research and practice considerations related to 
the integration of highly-adaptable digital 
learning environments in STEM teaching and 
learning, as presented within this White Paper. 
The White Paper provides a unifying roadmap for 
the future of the field, including the design, 
development, implementation, and evaluation of 
digitally-mediated team-based pedagogies, and is 
composed jointly by the organizers and 
participants of the workshop, as a comprehensive 
manuscript to capture and formalize the 
interactions which took place during the 
workshop. 

Vision of Change 

Team design, group problem solving, and project 
collaboration have always been prominent 
attributes of STEM education and within 
professional practice of STEM fields. These are 
manifested throughout STEM curricula as 
laboratory components, course projects, and 
even Senior Design courses which frequently rely 
upon team-based learning. Especially in the last 
two decades, and into the foreseeable future, 
team design skills are receiving increasing focus 
as the complexity of science and engineering 
skills taught in degree programs and deployed in 
practice. The rising tide of system design 
complexity necessitates future graduates in STEM 
fields to function effectively as specialists who 
also work well together within a diverse team 
during product development and research. Thus, 
the advancement of both mobile and forward-
looking educational technologies demonstrating 
the potential to support team-based instruction is 
increasingly vital and continues to be of broad 
impact across STEM fields. 

Specifically, this workshop pursued the following 
vision of change:  

Advance next-generation learning architectures 
by convening researchers, developers, and 
educators to participate in the following four 
synergistic workshop tracks for team-based 
instructional innovations: 

Track 1: Facilitating Team Learning in Real-time 
via Online Technologies 
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Track 2: Personalizing Collaborative Learning 
through Analytics 
Track 3: Supporting Digital Teams using Active 
Pedagogical Strategies 
Track 4: Empowering Equitable Participation 
through DMTL 

The use of a track-based organization of the 
DMTL Workshop maximized the likelihood of 
adequate time spent discussing and considering 
the needs at-hand by explicitly targeting all 
aspects of the team-learning process. Tracks 1 
and 3 focused on identifying specific 
technological applications and pedagogical 
strategies to support the delivery of high-quality 
team-based instruction, with an emphasis on 
real-time monitoring of student performance: 
Track 1 focused on developing new technological 
platforms, or leveraging existing platforms to 
achieve this goal, while Track 3 focused on 
embedding proven and emerging pedagogical 
strategies in team-based learning. Track 2 sought 
to optimize the initial team formation based on 
the learner profile (strengths and weaknesses) of 
each student, as established through data mining 
of assessments. Finally, Track 4 focused on 
developing strategies for equitable learning and 
inclusion of all students, especially those who 
may traditionally be underserved or 
underrepresented in STEM fields. The track-
based approach was expected to convene experts 
from already-established fields, such as 
Computer-Supported Collaborative Learning 
(CSCL), Team-Based Learning (TBL), and Learning 
Analytics (LA), who may rarely attend 
conferences outside of their specialization, with 
the goal of both broadening the views of the 
participants and producing synergy both within 
and between workshop tracks. 

Workshop Organization 

The two-and-a-half-day workshop addressed the 
design, development, implementation, and 
evaluation of DMTL in the K–20 educational 
landscape. The complete workshop flow and 
agenda is provided in Appendix B. The initial half-
day of the workshop consisted of technical 
overview and networking activities which began 
on a Sunday afternoon to allow a soft-arrival 
requirement for those traveling from remote 
locations in order to attend. These included an 
optional poster session for those wishing to 
present their Position Paper in a poster format. 
The poster session also provided an optional 
social mixer and reception initiated by the Dean 
of the UCF College of Engineering and Computer 
Science. On Monday, the workshop sessions 
commenced after a keynote address spanning all 
four tracks and outlook of the field to motivate 
the workshop. Parallel tracks continued 
throughout the day. Members of the Program 
Committee who served as the Track Chairs also 
designated breakout sessions from each track so 
that elements of the White Paper received 
sufficient time to be emphasized. The day ended 
with tours of new active learning space 
infrastructures and facilities that could support 
various aspects of DMTL. Tuesday’s sessions 
began with a keynote address followed by a track 
debrief by each track chair to the entire 
workshop. The workshop breakout sessions 
commenced after a Reflection Debrief having 
emphasis on trends and progress made and areas 
to focus the remaining time on to maximize 
efficiency. After parallel tracks concluded, action 
committees were formed to complete the 
remaining steps needed after the workshop. 
Post-workshop activities consisted of remote 
completion of chapter drafts for this White Paper 
report.  
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The workshop was divided into four separate 
tracks. To maintain participants’ focus during the 
workshop, each track was divided into five 
themes as listed in Table 1. Participants’ 
assignments to tracks were based on the Position 
Abstracts and Expertise Profiles that they 
submitted in the months preceding the 
workshop. To ensure that each theme was 
addressed comprehensively, while also managing 
and focusing the track discussions, the workshop 
was divided into a series of one-hour breakout 
sessions, with each breakout session being 
devoted to a particular theme. To facilitate 
engagement and discussion, participants were 
provided with a template for each theme, in 
which they were to identify key concepts, areas 
of concern, and emerging points of discussion, 
which would in turn be used to develop this 

White Paper. Each track, and each theme within 
each track, had its own guiding questions to 
initiate discussion among participants. Details of 
each track are provided in Chapters 3–6, and 
further information on the structure of the 
workshop is provided in Appendix B. 

Outline of Report 

Chapter 2 provides an Executive Summary 
highlighting the major findings and 
recommendations. Chapters 3 through 6 discuss 
the detailed outcomes and recommendations 
regarding each of the four tracks on a theme-by-
theme basis. Finally, Chapter 7 provides 
perspectives resulting from the workshop 
collaborations. 

Table 1 

Organization of Workshop into Four Tracks and Five Themes 
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Chapter 2 

Executive Summary
During the first week of April 2019, a total of 84 STEM educators, learning 
scientists, and other higher education faculty from 44 universities, as well as eight 
industry partners assembled at the University of Central Florida to discuss and 
advance the current state and the future potential of digitally-mediated team 
learning. Four concurrent tracks were conducted with the intent to explore the 
tools, learning analytics, pedagogies, and inclusivity of DMTL in STEM. Each track 
consisted of six sessions with three to six guiding questions related to major 
themes in each of the tracks. Additionally, four leaders in related fields shared 
current research and challenges for the future of DMTL.  

Workshop attendees agreed that DMTL is 
increasingly vital to the future of digital STEM 
learning, with numerous untapped opportunities 
for online instructional environments to engage, 
orchestrate, and assess STEM design and 
problem-solving teams in classroom settings in an 
era of proven pedagogical methods, inexpensive 
technology, and digitally-receptive students. 
Attendees saw value in a roadmap created for 
DMTL in a workshop setting, which could then be 
refined through interdisciplinary research 
spanning pedagogy, team sciences, machine 
learning, and more. These advanced fundamental 
design principles of DMTL including:  

1) Leveraging instructional technology during
group problem-solving activities which allows
team members to adopt technical/leadership
roles within a team to co-construct solutions to
exercises through peer teaching and learning.

2) Having the instructor serve in a supportive role
in which technology provides the instructor with
real-time analytics on team progress, which can
then be used to provide proper

scaffolding/formative feedback for maximum 
efficacy in reaching learning goals. 

3) Supporting equitable participation
encompassing the human aspects of learning in a
community of learners, which involves training of
stakeholders (instructors, technology designers,
and students) to uncover personal and perhaps
unconscious biases regarding increased
participation and sustainability in STEM.

With regards to these design principles, the 
remainder of this chapter provides a summary of 
the key objectives and challenges addressed 
within each of the four workshop tracks. 

Track 1: Facilitating Team Learning in 
Real-time via Online Technologies 

The past several years have witnessed an 
enormous growth in the potential and 
proliferation of enabling technologies for 
education, resulting in widespread availability 
and dramatic cost reduction in mobile hardware 
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as well as educational software applications. Thus 
opportunities exist for each student to feasibly 
have a mobile device, with a variety of available 
options for both student-facing and instructor-
facing interfaces. These include Google Docs 
which provide real-time editing capability (Zhou, 
Simpson, & Domizi, 2012), Etherpad which 
additionally provides traceability of student 
participation (DeMara, Salehi, Hartshorne, & 
Chen, 2017), InteDashboard™ which provides a 
platform for online team-based learning 
(O’Dwyer, 2018), CATME which features peer 
evaluation capabilities (Loughry, Ohland, & 
Woehr, 2014), and others mentioned in this 
report. Furthermore, new developments such as 
machine learning and extended reality promise 
continued technological expansion for years to 
come. However, as instructional technologies 
continue to be adopted by mainline instructors in 
STEM fields, the current lack of integrated 
workspaces, adaptable content, and scalability of 
research prototypes available to-date beckons to 
deploy these to realize their full potential for 
automation, reuse, and evaluation of their impact 
on learning outcomes. Herein, Track 1 seeks to 
provide a comprehensive overview of the current 
state-of-the-art in educational technologies, 
while identifying challenges and promising 
pathways to future research that may surmount 
these challenges. Namely, Track 1 has been 
organized into five themes: Activity Authoring, 
Student-Facing Delivery, Instructor Orchestration 
and Assessment Tools, Educational Games/XR, 
and Standards & Clearinghouses. 

The first theme on Activity Authoring relates to 
authoring activities that allow for engaging and 
lucrative collaborative learning experiences 
including game-based learning, knowledge-
building discourse, problem-based learning, 
online team-based learning, and collaborative 
problem solving. Next, the theme of Student-

Facing Delivery identifies salient features of both 
practical and ideal student-facing platforms for 
DMTL, including embedded widgets for effective 
student–student and student–instructor 
communication. The theme of Instructor 
Orchestration and Assessment Tools then looks 
at ideal features of an instructor-facing 
dashboard, allowing for examination of team 
progress as well as student-level participation in 
real-time by the instructor, and generation of 
real-time feedback and instructor–student 
communication in a minimally-intrusive manner. 
The next theme of Educational Games/XR focuses 
on how recent developments such as extended 
reality can offer future possibilities where 
students are able to interact with content in an 
immersive environment. The final theme seeks to 
identify means of developing a clearinghouse 
containing a set of standardized DMTL lesson 
plans and activities for use by all instructors, 
similar to the IMS Global Learning Consortium 
available for use in K–12 education. 

Track 2: Personalizing Collaborative 
Learning through Analytics 

The purpose of this track is effective utilization of 
student data for team formation and 
personalized instruction including providing 
students with proper scaffolding and feedback. 
The track is mainly focused on determining which 
data to collect, how to collect and organize the 
data, and how to make best use of the data to 
optimize both team formation and the cognitive 
demand of assigned tasks. The track consists of 
five themes: Types of Learner Data, Assessment 
Mechanics, Challenges for Optimization of Team 
Learning, Using Data to Provide Feedback, and 
Enhancing Cognitive Demand.  
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The first theme on Types of Learner Data 
explores the wide variety of learner information 
that is available for collection, including student 
performance, preferences, demographics, 
discourse analysis, and even eye movement and 
brain waves; the goal is to identify standards for 
data collection and reporting in DMTL and 
develop the tools needed to accomplish this. The 
second theme of Assessment Mechanics focuses 
on data analysis techniques for collecting, 
organizing, and analyzing student data applicable 
in a noisy classroom setting. The third theme 
focuses on strategies for efficient data-based 
formation and evaluation of student teams. The 
fourth theme focuses on the development of 
tools (including AI) which can facilitate and 
accelerate feedback across varying dimensions of 
team learning. Finally, the fifth theme explores 
how data can be used to effectively align the 
cognitive demand of a learning task with student 
capabilities and place appropriate scaffolds 
within the task to maintain learner efficacy 
without excessive cognitive demand. 

Track 3: Supporting Digital Teams 
Using Active Pedagogical Strategies 

Past research in STEM education has embraced 
numerous pedagogical benefits of collaborative 
learning environments, including increased 
learner engagement and improved learner 
satisfaction with STEM content areas and majors. 
Collaborative learning environments extend 
opportunities for both knowledge acquisition and 
communicative experiences, as these facilitate 
deeper learning through the introduction of 
creative ideas and approaches via shared mental 
models and active participation in project- and 
problem-based instructional settings. These 
benefits and opportunities improve both 

knowledge acquisition and the development of 
communication skills. Additionally, more 
intensive teamwork and the development of soft 
skills can be enhanced through intentional peer, 
content, and instructor interactions that are 
supported via collaborative learning 
environments. As a result, there is a likely 
enhancement in the development of critical 
thinking, problem solving, decision-making skills, 
and learner engagement with STEM content. 
Track 3 explored pedagogical mechanisms to 
support, extend, and enhance settings that utilize 
digitally-mediated team and collaborative 
instructional approaches. The track was divided 
into five themes: Pedagogical Methods for Team 
Management, Engagement and Accountability, 
Emerging Pedagogical Strategies, Faculty 
Development and DMTL, and Faculty and Student 
Orientation.  

The first of these themes explored the 
opportunity for a revision to STEM pedagogical 
approaches to provide student-centered, 
collaborative, and problem-solving opportunities, 
which has become increasingly necessary in 
STEM. The second theme focused on promoting 
student engagement in classroom and online 
settings through promotion of collaboration, 
teamwork, and accountability. The third theme 
discussed the role of emerging technologies, and 
the unique challenges they present related to 
pedagogical practices. The fourth of these 
themes looked at faculty development to help 
marry the knowledge of the STEM faculty with 
the desired pedagogical practices. The final 
theme was focused on the explicit instruction and 
deliberate practice needed to maximize student 
collaboration efficacy and adoption. 
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Track 4: Developing Inclusivity through 
DMTL 

Developing inclusivity and equity in digital-
mediated STEM learning environments is 
recognized as a promising and viable approach to 
broaden participation in STEM. Inclusivity of 
underserved populations is not limited to 
ethnicity and gender. Rather, areas of inclusivity 
discussed  included: (a) ethnicity, (b) gender, (c) 
neurodiversity, (d) accessibility, (e) culture, (f) 
intercultural collaborations with global diversity, 
(g) geographical inequalities, and (h)
intergenerational differences. Learners can hold
membership in multiple groups; they are not
limited to one identity or group identity. Rather,
there is an intersectionality of multiple. At the
intersectionality of multiple minoritized identities
(e.g., [dis]ability, neurodiversity, race/ethnicity,
gender, sexuality, socioeconomic status, religion,
mobility, culture, and generations) in digital
learning environments, there is a strong need for
innovations, interventions, and research.

Aspects related to inclusive DMTL learning 
ecologies were identified and discussed. 
Participants recognized that existing learning 
technologies could be harnessed in new ways 
that increase participation from all learners to 
support broad engagement. Further, the design 
of new technologies that would support broader 
participation should be dynamic and inclusive. 

Although new tools and ways to analyze resulting 
data are important aspects of broadening 
pathways in STEM, the human factor cannot be 
ignored. Training for instructors and students 
may result in reduced bias and more equitable 
learning. Embedding and fostering positive social 
skills in team learning could support students in 
the short term (classroom learning) and in the 
long term with skills that students will use 
beyond the classroom in their future STEM 
careers. 

Researching the nexus of self-reported identity 
inventories, student perceptions’ of outcome 
expectations, learning analytics, machine 
learning, and psychosociological factors could 
provide needed insights for developing 
sustainable STEM team learning frameworks, in 
which students gain self-efficacy and improved 
positive identity in STEM through successful team 
experiences. Current perspectives and future 
directions have indicated that DMTL would 
benefit from interdisciplinary investigations that 
include Learning Scientists, STEM Educators, 
Computer Scientists, and STEM Content Experts. 
These interdisciplinary teams could re-engineer 
current technologies and develop new ecologies 
and environments that would contribute to 
broadening and sustaining participation in STEM 
with reduced biases, offering high potential 
payoffs for advancing equitable participation. 
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Introduction 

Numerous high payoff research opportunities 
spanning the disciplines of Computing Sciences, 
Intelligent Systems, Learning Sciences, and Social 
Sciences can advance the development,  
refinement, and widespread use of novel, 

, and affordable instructional technologies
capable of efficiently supporting digitally-
mediated teams of learners. Namely, research 
under the umbrella term of Digitally-Mediated 
Team Learning (DMTL) leverages the 
convergence of efforts from the fields of 
Computer Supported Collaborative Learning 
(CSCL), Computer Supported Collaborative Work 
(CSCW), Cooperative Learning, Peer Learning, and 
Team-Based Learning (TBL) paradigms, which 
together have amplified potential to advance 
STEM learning from the perspective of new 
instructional technologies. This Track specifically 
addresses DMTL research which coalesces 
aspects across these fields to facilitate 
collaborative learning using real-time 
instructional technologies. 

During the last decade, the need, benefits, and 
potential of DMTL have continued to increase 
(DeMara, Salehi, et al., 2017; Lin & Lai,  2013). For 
instance, the popularity of active learning in 
STEM using group activities has become 
heightened by the growing delivery of STEM 

courses via “flipped classroom” models or so-
called “mixed-mode” delivery. Flipped instruction 
opens up a large opportunity for use of DMTL in 
classroom settings. Namely, mixed-mode delivery 
typically leverages hybridization of online 
instruction and face-to-face meetings whereby 
students conduct problem-solving activities in 
groups during the class meetings, rather than 
primarily listening to live lectures. Additionally, 
the availability of laptop and tablet computers, as 
well as mobile devices such as smartphones, offer 
low-cost technologies to advance the impact and 
scalability of DMTL. Thus, the scope of this 
workshop track focused foremost on the design 
of online instructional environments for 
engaging, observing, and assessing STEM design 
and problem-solving teams in real-time 
classroom settings, especially analytical problem-
solving and design tasks conducted by student 
teams. 

Guiding questions for this research track 
included: 

● How is the interaction between the
instructor and student teams supported
when using future real-time collaborative
technologies?

Chapter 3 

Track 1: Facilitating Team Learning 
in Real-time via 

Tools 
and

DMTL

Activity

Standards

Games /
XR

Instructor
Orchestration

Student-
Facing
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● What current DMTL-capable platforms (e.g.,
CATME, Etherpad, InteDashboard™,
Socrative) provide desirable features to be
adopted and extended in future
frameworks?

● How can the underlying DMTL strategies be
made adaptable to different device
platforms spanning Mobile Device apps and
Extended Reality (XR) environments
spanning Virtual, Augmented, and Mixed
Reality?

● How can teams and individual learners be
monitored and observed in real-time?

● What are economic benefits (e.g., in terms
of equivalent grader hours, number of
instructors/faculty/facilitators) of scaling up
DMTL to larger settings, as well as useful
longitudinal assessment measures of
learning benefits and skills of the future
STEM workforce?

Figure 1 shows the scope of DMTL research 
covered in Track 1 from an operational 
perspective. Each constituent Theme, labeled 1A 
to 1E, has been annotated within the diagram as 
follows: 

● Theme 1A: Activity Authoring
● Theme 1B: Student-Facing Delivery
● Theme 1C: Instructor Orchestration and

Assessment Tools
● Theme 1D: Educational Games / XR
● Theme 1E: Standards & Clearinghouses

Starting with the Authoring Phase depicted in 
Figure 1, Theme 1A: Activity Authoring considers 
the state-of-the-art and 1, 3, and 5+ year 
research opportunities to advance the methods 
and interfaces by which instructors compose 

team active learning activities for STEM curricula. 
After structuring a team learning exercise, the 
Delivery Phase commences wherein the 
instructor works with one or more teaching 
assistants to conduct the DMTL activity as 
depicted in Figure 1. Herein, the focus is on 
activities conducted by multiple groups of 
learners using Wi-Fi connected devices within a 
synchronous classroom setting. Students within 
each team collaborate using the student-facing 
DMTL interfaces and protocols whose research is 
addressed within Theme 1B: Student-Facing 
Delivery of this report. Meanwhile, the instructor 
is equipped with a computer-based user interface 
for real-time observation of the team learning 
activity and integrated assessment mechanisms, 
whose scopes of research are covered within 
Theme 1C: Instructor Orchestration and 
Assessment Tools in this White Paper document. 
Theme 1D: Educational Games / XR addresses the 
gamification strategies and advanced interfaces 
in DMTL, including their use as constituent 
approaches and technologies that crosscut wider 
use-cases such as cooperative informal science 
learning of STEM curricula. Theme 1E: Standards 
& Clearinghouses covers the research aspects of 
the Indexing Phase, including standards and 
conventions for interchanging, searching, and 
retrieving DMTL lesson plans, activities, 
questions, and results via database repositories 
and data clearinghouses that can increase 
transportability to aid propagation and benefit of 
DMTL across grade levels 6 to 20. Each of the 
aforementioned themes offers numerous 
research pathways to utilize and also advance 
new techniques, tools, assessments, and 
standards to enhance STEM learning at 1, 3, and 
5+ year timeframes. 
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Figure 1: DMTL components and their relation to Track 1’s Themes. Figure inspired and further extended 
from the HOWARD DMTL framework’s operational view (Kazemitabar et al., 2016, Figure 1). 
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Theme 1A: Activity Authoring  
Theme Editors:  Leslie Bondaryk, Ronald F. DeMara, 
Jody K. Takemoto, and Tian Tian 

Activity Authoring in DMTL spans several 
overarching research considerations: 

● Which types of STEM design and problem-
solving activities are most-suited for delivery
as classroom-based activities using DMTL?

● How can those DMTL use-case archetypes
be prioritized into 1, 3, and 5+ year research
foci to achieve a layered development flow?

● How can DMTL Activity Authoring
environments specify the essential
parameters of collaborative learning
activities using markup languages and/or
conversion utilities to semi-automatically
instantiate the authored content, including
specifying linkages needed with the Learning
Management System (LMS)?

● How can DMTL activities be efficiently
maintained, including adaptations from
semester-to-semester with methods to
create “activity clones” (DeMara, Sheikhfaal,
Wilder, Chen, & Hartshorne, 2019)  which
help reduce the feasibility of copying
solutions from the previous use of the
activity by the instructor or at other
institutions?

Foremost, workshop participants agreed on the 
importance of authoring and cataloging activities 
that students show empathy and/or interest in  

doing, as previously suggested by Fink (2013). 
Namely, a key factor is that activities should elicit 
constructive feedback among peers and from the 
instructor. Research is needed for instructional 
technologies that can help instructors to scaffold 
good practice in teamwork in addition to the 
topic at-hand. The activity must allow for various 
roles to be meaningfully adopted by different 
team members while still letting them all learn 
the core subject matter (Belbin, 2012). To 
advance such research, a set of archetypal 
activities would be extremely useful to be 
delineated by assimilating current research 
results. Across these use-cases, some common 
challenges include determining optimal team size 
and composition (e.g., homogeneous vs. 
heterogeneous with respect to ability as well as 
demographics), as outlined by Fiore et al. (2017). 
Within that work, Fiore and colleagues 
highlighted various factors that could have an 
impact on this determination, including the 
nature of the task and whether the team 
members are only interacting with each other or 
with agents as well which are central to 
advancing authoring of DMTL activities and their 
effective deployment to learners. 

Further challenges include determining the best 
way for all students to achieve maximal 
knowledge and skill competence through 
collaborative learning activities, balanced with 
allowing students freedom to choose their roles 
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in the task, all while efficiently documenting 
contributions and moments of educational 
advance during the brainstorming/idea 
generation phase of the activity. A final discipline-
specific research challenge arises from the need 
to develop and/or customize tools and projects 
that focus on team construction of domain-
relevant artifacts: graphs, data, equations, etc., 
which is a high-priority near-term research task 
to address as opposed to the plain text 
collaboration environments today. At the other 
end of the research timeline, longer-term activity 
authoring research should include more robust 
and varied scaffolding activities to engage 
learners having a range of collaboration styles, 
ranging from the leader to the contemplative 
observer (Azzam, 2016). Systems should be 
developed to apply machine learning techniques 
to hone, refine, and personalize the Activity 
Authoring procedures and templates, such as 
providing the instructor with intelligent guidance 
for which activities are better suited for either 
individual or collaborative completion, or 
individual preparation complemented by student 
group completion. 

A key challenge in DMTL is determining types of 
STEM design and problem-solving activities that 
can be implemented by new or existing 

technology that is accessible and affordable. This 
challenge has been substantially addressed from 
various perspectives, which have included such 
diverse solutions such as game-based learning 
(Mallavarapu et al., 2019), inquiry-based, 
knowledge-building discourse (Zhang, 2019), 
problem-based learning (Huang et al., 2017), use 
of a community deliberation process as an aid to 
team formation (Wen et al., 2017), distributed 
and generative design (White, Brady, Huang, & 
Stevens, 2019), online TBL (Clark et al., 2018; 
O’Dwyer, 2018), and collaborative problem 
solving activities in STEM classrooms (DeMara, 
Chen, Hartshorne, & Thripp, 2017). As shown in 
Figure 2, the Group Learning and Assessment at 
Significant Scale “(GLASS) learning flow is 
initiated by the instructor-led activities as 
indicated in the green-colored callouts. Once 
configured, the learning activity proceeds as a 
sequence of six steps comprised of 1) convening 
the teams, 2) disbursing the challenge problem, 
3) technology-enabled collaboration between
students, 4) reaching peer consensus on the
correct answer, 5) submitting machine-gradable
responses, and 6) presenting results to the
learners for discussion” (DeMara, Salehi, et al.,
2017, p. 12965). Each of these steps provides a
framework for needed research on to advance
the authoring of DMTL activities.
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Figure 2: Learning flow for student-design team activity using GLASS (DeMara, Salehi, Hartshorne, & 
Chen, 2017). 

As delineated via the steps shown in Figure 2, 
each student utilizes a laptop or tablet computing 
device to engage as a participant in the GLASS-
based learning event. Utilizing an LMS-
disseminated quiz, students are placed into 
random groups, and subsequently communicate 
and collaborate virtually, via Wi-Fi connectivity, 
with their team members, regardless of seating 
location in the physical classroom environment. 
Individual design team members then 
communicate and collaborate on solutions to a 
common challenge problem, using various 
technological applications to support the team-
based environment, such as a digital whiteboard 
for composition of a final answer document as 
well as a chat platform to discuss varying 
perspectives on potential solutions to the 
challenge problem (DeMara, Salehi, et al., 2017). 
GLASS has been integrated or piloted in Electrical 
Engineering, Industrial Engineering, Mechanical 
Engineering, and Computer Engineering Courses, 
and has been effective with measured 
improvements in learning outcomes (DeMara, 

Salehi, et al., 2017). Student perceptions have 
been highly-favorable with 76 of 123 enrollees 
agreeing that “electronically-mediated groups 
can be beneficial in large enrollment classes,” “I 
wish more courses would provide opportunities 
for digitally-mediated team learning,” and 
“conducting a digitally-mediated team activity 
each week was fun” (only 0%, 1%, and 5% of 
respondents disagreed, respectively). However, 
integrated Activity Authoring tools are needed to 
facilitate the design and construction of the 
learning activity to reduce the instructors’ burden 
to compose and maintain each component, 
which is currently done using disjointed tools in a 
piecemeal fashion. Namely, ad-hoc creation of 
team exercises is likely to result in students 
receiving substandard conveyance of ideas on a 
given topic or during the team learning event. 
Meanwhile, GLASS provides promising evidence 
on the feasibility of collaboration techniques for 
STEM problem solving activities with the face-to-
face meetings of flipped-classroom delivery and 
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framework to standardize such activity authoring 
tools. 

In all of these approaches, a common objective is 
to engage students in technical content while 
enabling higher-level educational learning 
objectives including metacognitive thinking 
through collaboration, while at the same time 
providing an appropriate level of scaffolding 
throughout the activity. Authoring tool support 
for both are lacking or scant at-present. Further 
challenges facing Activity Authoring include 
lifecycle viewpoints such as efficient generation 
of Activity Clones (DeMara et al., 2019) and 
maximization of reusable content while 
maintaining academic integrity between multiple 
course deliveries and institutions. Activity clones 
are variations of the learning assignment which 
mitigate learner crosstalk and the availability of 
previous solutions to the same or similar learning 
activities. Activity clones are typically generated 
by modifying elements of the problem 
specification or permuting the quantities sought. 
A primary objective of Activity Cloning is for 

students to be afforded the opportunity to 
participate in comparable learning activities, 
while simultaneously reducing the propensity for 
them to share answers. Research which advances 
the automation of Activity Cloning is crucial for 
the success and sustainability of DMTL wherein 
the availability of viable clones significantly 
increases the likelihood that students attempt to 
conduct the activity, rather than merely locating 
the answers previously determined by others. 

Currently, the state-of-the-art Activity Authoring 
support for DMTL is confined primarily to 
research prototypes utilizing diverse pedagogical 
approaches. These include adapting of LMS’s, 
chat systems, code authoring editors, math and 
data-analysis tools, and text editors having low 
automation and reuse potential. Given its 
centrality to creation and use of practical DMTL 
activities, the theme of Activity Authoring 
constitutes a fruitful area of both near-term and 
long-term research that crosscuts many other 
themes in this Track, as delineated in Table 2. 
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Table 2 

Research Opportunities to Advance the Activity Authoring Aspects of DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Collaboration 
Strategies  

Conduct surveys to
develop criteria which
define a standardized
DMTL framework of
authorable elements for
collaborative learning
activities suitable for
STEM learning.

Highlight differences /
similarities of
collaboration in STEM as
opposed to other
settings such as
playgrounds and
individualized
makerspaces.

Define and populate a
taxonomy of DMTL use-
cases that are most
likely to improve
student learning in
STEM, based on the
inventory from Year 1.

Research methods to
leverage patterns of
productive discourse to
author activities which
are suitable to enable
learning analytics based
on common ground of
these two communities.

Conduct studies of
efficacy of how DMTL
increases engagement
with course redesigns
moving from live-only
lecture to mixed-mode
delivery emphasizing
group problem-solving
activities during class
time.

Develop machine
learning techniques to
hone, refine, and
personalize the Activity
Authoring of
collaborative STEM
lesson plans.

Delivery 
Processes 

Build a relational
database of pedagogies,
tools, data collection,
analytics on Authoring
Tools for DMTL, e.g., an
integrated database that
could be navigated
easily and made
accessible to the
community via website.

Extend lesson planning
to include collaborative
learning and reduce
instructor burdens to
utilize DMTL.

Create highly-engaging
and maintainable
activities for computer-
supported collaboration
that are reusable and
adaptable by mainline
instructors.

Research the hidden but
fundamental
relationships between
“optimal” sizes of
groups, exercises,
activity durations, etc.
including longitudinal
studies of learning
outcomes, retention,
and equitable
participation.

Technology- 
Driven 

Advancements 

Extend the Collaborative
Learning Activity
Interoperability
Standard (CLAIS):
standard format for a
team learning activity
which defines a number
of parameters [open to
what they may be]; goal
of helping faculty easily

Develop visualization
and STEM-specific tools
(models, programming,
equations, simulations)
to make collaboration
fun/easy/clear and
elucidate pathways of
ideas.

Investigate how can
social media/platforms
be leveraged with team
learning tools and
activities?

Extend the enrollment
size with Wizard/Agents
that can modularize
enrollments into
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import/export/reuse/
modify/evaluate 
learning activities.   

Specifying an extensible
interface beyond
current LTI capabilities
to define how tools can
interchange data.

Develop authoring
extensions that allow
individual instructors to
customize activities
without having to
rewrite them from
scratch.

manageable numbers of 
groups. 

Research the high-risk /
high-payoff potential
hybridization of DMTL
with Intelligent Tutoring
System (ITS)
technologies for
applications in
cooperative learning
whereby ITS agents are
selected to actively
augment the activities
authored by the
instructor. This could
greatly increase
scalability of peer-
learning for large
enrollments.
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Theme 1B: Student-Facing Delivery  

Theme Editors: Leslie Bondaryk, Ronald F. DeMara, 
 Leilah Lyons, Brian O’Dwyer, Elliot Soloway, 
Jody Takemoto, and Jianwei Zhang 

Efficacious delivery of student-facing interactions 
in DMTL involves multiple research 
considerations: 

● What would suitable or even ideal student-
facing user interfaces for DMTL look like?

● Process implementation: What are the
essential widgets provided in a student-
facing interface to implement DMTL
processes: e.g., hand-raising, bannering,
balloting, bookmarking, pinning of notes,
strikethrough, submission, timing, and up-
voting?

● Team collaboration: How do learners
nominate team leaders or recognize team
contributions (e.g., via pick lists, ratings
systems, rubrics using blinded vs. open
feedback, or even the need to support a
range of these options)?

● Performance management: How do
students receive feedback on their
performance in DMTL environments?

● Social and emotional: How will improved
student interactions in DMTL modulate soft
skills and emotional intelligence
development?

● Accessibility: What infrastructure is
necessary to provide accessibility to all
students?

● Future: What are state-of-art tools today for
DMTL to identify a palette of desirable
features to consider for further inspiration?

A key challenge to advancing student-facing 
elements of DMTL spans both conceptual 
dimensions of collaboration and technological 
constraints of delivery. The state-of-the-art 
approaches showing efficacy for student-facing 
tools span the following features: distinct 
interaction in solution-submission windows, 
traceability of student participation, activity 
navigation, and optionally the display of student-
specific icons/credentials with participants’ 
information. Major recognized works on these 
topics have separately addressed both the K–12 
and higher education domains which form a 
constructive tension in DMTL with respect to the 
sophistication of user interface that learners can 
handle. For instance, within the K–12 domain, 
prototypical DMTL systems have been developed 
and fielded by Dede (Reilly & Dede, 2019), while 
Khaddage (2015) and Zhang (2019) provide other 
proven systems. In higher education classroom 
settings, products such as Intedashboard™ 
directly support the classic “TBL” Team-Based 
Learning paradigm promulgated by Michaelsen 
(Michaelsen & Sweet, 2011), while clicker tools 
such as those offered by Turning Point 
Technologies allow for anonymous participation 
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and may also be used for educational games 
(Martyn, 2007). 

An important dimension to consider for student-
facing components of DMTL arises from the 
specific learning opportunities that can be 
supported by various hardware platforms and 
interfaces. These span browser-based 
collaboration environments for “Bring Your Own 
Device” (BYOD) platforms such as PC laptops, 
tablets and mobile devices, up through dedicated 
hardware including virtual reality platforms. 
Specification of instructional technologies that 
enhance the traceability of activities within 
learner teams, including advanced mechanisms 
for integrated and automated scoring, and 
annotation/organization of feedback is 
paramount. Careful consideration when 
implementing BYOD, considers the feasibility 
and/or the accessibility of devices for all of its 
learners. 

There is consensus in the community that an 
ideal student-facing user interface would have 
the following essential characteristics: tractable 
to no learning curve, high usability for targeted 
age group, accessibility for students within 
Universal Design for Learning (UDL) guidelines 
(CAST, 2018). More advanced yet highly desirable 
characteristics would include interfaces which are 
more cognitively engaging, intrinsically 
collaborative, and remain interactive and viable 
throughout the DMTL exercise so as to improve 
outcomes through student engagement as 
suggested by Fink (2013). Such properties have 
been envisioned to necessitate student-facing 
features including widgets for communication 
such as voting and polling on fledgling ideas 
within the student team, digitally-mediated 
“hand-raising” mechanisms to seek instructor’s 
attention or guidance, freehand drawing and 
rudimentary , commenting,

thumbtacks/sticky notes, and possibly even 
three-dimensional freehand drawings. Other 
student-facing aids to facilitate effective 
collaboration include chat windows, in addition 
to future research toward conversational agents 
or opportunities for feedback from both the 
system and instructor to maintain student 
engagement. Notwithstanding instructor-facing 
features, an ideal interface for the learner would 
support selected methods for blinded peer 
evaluation and address a key need to thwart 
social loafing while discouraging lone wolf 
behaviors (i.e., individuals preferring to submit on 
their own rather than sharing work with their 
teammates). 

Although Google Docs and Google Classroom 
have been used extensively in education for the 
past several years, especially at the K–12 levels, 
future versions of these platforms or others may 
consider additional features which are valuable 
to realize a student-facing DMTL interface (e.g., 
text-based collaboration is challenging for lower-
elementary grade students, the collaboration 
space provides limited traceability and playback 
capability, and there is minimal support for 
equation symbols used in higher STEM 
education). As an alternative to Google Docs, the 
Etherpad collaborative real-time editor has been 
used for implementation of GLASS (DeMara, 
Salehi, et al., 2017) and the collaboration 
interface of Rosé et al. (Ludvigsen, Law, Rose, & 
Stahl, 2017), offer similar ease-of-use to Google 
platforms but with the added benefit of 
individual-student traceability with color-coded 
text background and playback features. Other 
platforms such as InteDashboard™ (O’Dwyer, 
2017, 2018), iPeer (Botha, Steyn, Weilbach, & 
Muller, 2018), CATME (Loughry, Ohland, & 
Woehr, 2014), and TEAMMATES (Ismail et al., 
2013) have, in addition, placed an emphasis on 
peer evaluation with potential for acquisition of 
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soft skills and perhaps emotional intelligence, and 
the Idea Thread Mapper (Zhang & Chen, 2019) 
allows students to co-organize discussion topics 
called wondering areas to trace their collective 
progress over time, including highlighting peers’ 
upvoted questions and ideas with others. Finally, 
approaches such as Academically Productive Talk 
(Adamson et al., 2014) use conversational agents 
to scaffold collaborative discussions between 
learners. 

A prototypical student-facing interface for DMTL 
developed by Rosé and her team at Carnegie 
Mellon University is shown in Figure 3 (Wen, 

2016). As depicted on the left, a virtual 
collaboration space is realized using Etherpad to 
provide a whiteboard for collaboration during the 
team learning activity on tradeoffs associated 
with alternative energy sources for fossil fuels. A 
chat-style correspondence interface provided to 
learners is depicted on the right. The measures of 
success in the project related to evidence of the 
knowledge integration process and transactivity 
was measured in collaborative chat. Teams under 
the Transactivity Maximization Condition 
demonstrated better team performance by 
roughly 5% on the overall activity. 

Figure 3: Prototypical Student-Facing DMTL interface (Wen, 2016). 

Another archetypical student-facing baseline for 
DMTL in  STEM curricula geared
toward problem solving and design tasks which 
has recently been proposed is GLASS (DeMara, 
Salehi, et al., 2017). GLASS seeks to maximize 
scalability and efficacy of student design teams 
and consists of students being randomly 
distributed into teams, with each team being 
assigned a problem set as a weekly in-class 
activity. Teams work 

collaboratively in Etherpad, which allows for 
individual-student traceability and real-time 
monitoring by instructors and teaching assistants. 
In GLASS, each of the student design teams 
receive the challenge problem, via the LMS, by 
clicking on the Question Launcher link, as 
depicted in Figure 4. Student design team 
members then negotiate various perspectives 
and aspects of proposed solutions, in an effort to 
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reach a consensus that the team-developed 
solution is correct. For instance, Figure 5 
illustrates one example of a somewhat typical 
design team interaction, with diverse 
contributions from individual team members. 
Highlighted are team collaborations to solve the 
design problem, as well as the consensus building 
processes, all strengthened by the 
documentation of learner participation. Thus, 

DMTL supports interactions that are not normally 
observable in conventional team problem-solving 
activities, where collaborative tools are not 
utilized. As a pedagogical incentive to contribute 
in the GLASS-based DMTL activity, each team 
selects a so-called Most-Valuable Peer (MVP) at 
the end of the session, who is awarded extra 
credit for outstanding contributions to the 
activity (DeMara, Salehi, et al., 2017). 
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Figure 4: Structure of LMS Quiz components used in GLASS  (DeMara, Salehi, Hartshorne, & Chen, 2017). 

Figure 5: Collaborative Learning by Virtual Student Design Teams on an Etherpad Whiteboard (DeMara, 
Salehi, Hartshorne, & Chen, 2017). 
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Although GLASS has proven successful in 
mechanical engineering and computer 
engineering curricula, a potential limitation is its 
completely random composition of its student 
groups, which such research is addressed 
explicitly within Track 2 of this document. A 
further desirable characteristic for student-facing 
interfaces that is critical in the smartphone era is 
mobile-device support and friendliness. Selected 
DMTL platforms such as Collabrify have already 
embraced and demonstrated efficacy in the K–12 
space. The challenge that remains is to devise an 
interface which unifies strengths across all of 
these platforms and is still cost-efficient, 
technically reliable, and easy to use. 

Dede’s team developed several generations of 
fielded inquiry-based DMTL frameworks that  

have been utilized successfully at the K–12 level. 
An example is the EcoMUVE Pond platform 
(Dede, Grotzer, Kamarainen, & Metcalf, 2017) 
shown in Figure 6. In this interface, students visit 
the pond over a virtual span of time, using their 
avatars to explore and collect data, with the goal 
of understanding changes and interdependencies 
within the ecosystem. The interface allows 
students to interact with virtual agents, chat with 
each other, and log their observations. Such an 
interface may also be extended using XR. As 
inspired by all of these current-generation DMTL 
frameworks, Table 3 summarizes potential 
research directions on this topic, which is 
congruent with the three dimensions of DMTL 
defined by Hmelo-Silver (Hmelo-Silver, Jeong, 
Faulkner, & Hartley, 2017). 

Figure 6: EcoMUVE platform for team learning in a virtual environment (Dede, Grotzer, Kamarainen, & 
Metcalf, 2017). 
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In the CLUE System developed by Concord 
Consortium (Edson, Bieda, Dorsey, Kimball, &  
Phillips, 2019), the emphasis is on a progressive 
widely known Scratch projects (Zuckerman et al., 
2009) that allow users to develop and share 
digital artifacts like graphics and music, which 
respond to user-programmed behavior. Similarly, 
CLUE allows a workspace for middle school math 
students to organize and map their ideas through 
digital artifacts while receiving input from their 
classmates and sharing their own work with 
others. Students are encouraged to begin on 

exposure of student work. Figure 7 depicts the 
user interface provided by CLUE that follows 
various systems for co-construction, such as  
their own, then share with progressively 
widening groups (1 to 4 to the whole class) in 
their classroom. The same interface that allows 
them to share and create collaborative work on 
an individual exercise is also used to draw ideas 
from the problem statement, solutions to other 
problems, and their own previous learning log 
ideas. 

Figure 7: Reuse and bootstrapping from groupmates/teammates and the original problem content 
creates an egalitarian view of content in which the student’s own work is seen as equal to their 

peers (Edson, Bieda, Dorsey, Kimball, & Phillips, 2019). 

Mechanisms for teams to manage their 
performance is another element of student facing 
interfaces in DMTL. An example from 
InteDashboard™ following a team readiness 
assurance test (TRAT) used in TBL shows two 
mechanisms. The first is a team report which 

shows teams how they performed on the TRAT to 
help them self-assess areas where the team still 
needs clarification (Figure 8).  Once the team has 
identified areas for clarification, teams can 
submit a clarification request to instructors 
(Figure 9).  
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Figure 8: Example of an InteDashboard™ TRAT report. 

Figure 9: Example of Clarification Request feature in InteDashboard™. 
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Table 3 

Research Opportunities to Advance Student-Facing Delivery of DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Collaboration 
Strategies  

Delineate attributes
that students find
important and valuable
in team learning tools,
e.g., via focus groups,
surveys.

Collect and unify
existing research
evidence on how
efficacy of student-
facing capabilities vary
according to delivery
modality (including
students that are
physically co-located, in
the same room but
sitting separately, and
not co-located) to
inform impact of
strategies in DMTL.

Define standardized
palettes of student-
facing widgets for DMTL
to determine the
essential tools necessary
to incorporate into the
learning activity into
specific K–20 curricula
or cross-discipline
activities.

Create and refine
prototypes providing the
above for browser-
based, mobile device
enabled, and XR-based
platforms

Research methods for
semi-autonomous AI-
enabled de-
identification of video /
observational raw data
information as part of
analysis including best
practices related to
privacy in collaborative
learning toolsets.

Delivery 
Processes 

Investigate policies for
role assignment and
rotation within teams,
exploration of how
these policies should be
adapted based on
properties of tasks and
distribution of the
learners’ characteristics
within teams.

Research methods to
design more effective
and  peer
evaluation strategies for
DMTL.

Research user interfaces
for learner feedback on
performance in DMTL
activities, e.g., ratings
versus rubrics versus
dividing points, etc.

Conduct research on
video analysis, capture
platforms, and eye
tracking for
instrumenting and
observing collaborative
learning. Include
pathways for
automation of
configuration,
operation, and report
generation from these
systems.
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Theme 1C: Instructor Orchestration 
and Assessment Tools      
Theme Editors: Leslie Bondaryk, Ronald F. DeMara, 
Leilah Lyons, Brian O'Dwyer, Elliot Soloway,  
and Jody K. Takemoto 

Research to advance the instructor-facing 
delivery of DMTL 
involves aspects of the orchestration of the 
activity as well as 
its assessment:  

● How should instructor-facing user interfaces
for DMTL operate and which
features would be provided, including
parameters which should be specified such
as the number of teams, activity timer, and
sub-goals?

● How to support instructor
observability/moderation/facilitation of
individual teams and the overall activity, and
what are “operator loading limits” to do so
(i.e., consider limited number of instructors
and teaching assistants)?

● What features are critical for action review?
For instance, are playback and freeze modes
of session activities beneficial to team
learning in STEM?

● How to provide both team-based and
student-resolution scoring as well as
feedback?

● Which are feasible solutions to automate
scoring and the mechanisms necessary to
implement within current and future LMSs?

● What would constitute real-time dashboard
display content versus static summary
report content?

● How to determine correctness, time-on-
task, and identification of “pioneer teams”
(i.e., first team to successfully complete a
task) automatically?

● How to annotate/organize/provide feedback
on submissions?

In the design of instructor-facing technologies for 
DMTL, a key design principle is supporting 
instructor observability/moderation/facilitation 
of individual teams and the overall activity within 
the classroom. Ideally, instructors would be 
informed of learner progress made during the 
activity in real-time, with more detailed data 
available for review after the activity. 
Implementation of real-time monitoring systems 
has received considerable attention in recent 
years, including works by Currey et al. (2019), 
Dillenbourg, Matuk, and Tissenbaum (2016), 
O’Dwyer (2018), and DeMara, Chen, et al. (2017), 
which emphasize real-time observability of 
student participation. Challenges that need to be 
addressed in such systems include determining 
necessary data to be captured, meaningful data 
presentation to the instructor, and efficacy of 
platform incorporation into the lesson plan. 
Although performance data has traditionally 
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attained a primary focus, Dowell, Poquet, and 
Brooks (2018) proposed a metric for analyzing 
group communications and thereby determining 
participants’ roles within a group, and the 
influence of these roles on student and group 
performance. A large body of research also exists 
on leveraging technology for developing effective 
formative and summative assessments for 
students, including work by Feng (2006) who 
developed the ASSISTment system for automatic 
data analysis of student assessments. The degree 
of automation that should be incorporated into 
assessment evaluation remains an open question 
suitable for ongoing research. 

Within the community, there is consensus 
regarding the need to be able to view team 
progress at a high level before diving into 
details—a watchlist-style feature allowing to 
search and/or alert capabilities for various 
characteristics (e.g., which teams have the 
most/least interaction), which would also be 
desirable in an ideal interface. However, research 
is needed to both define appropriate indicators 
from learner observations, as well as delivery in a 
suitable interface for the instructor. In addition, 
the system should have a feature that allows 
student–instructor communication without being 
obtrusive to collaborative activity. Finally, the 
interface should have automated grading 
capability, with both aggregate and individual 
student data readily available to the instructor. In 
particular, an open research question is how to 
scale-up assessment for high enrollment courses 
which have become increasingly prevalent at 
many institutions in recent years. 

Current widely-used platforms designed for team 
learning with one or more of these features in an 
instructor-facing dashboard include 
InteDashboard™, Socrative, Etherpad, and 
Perusall, an active reading-centered collaborative 

platform (Miller, Lukoff, King, & Mazur, 2018). 
Although these interfaces aim at improving the 
impact and efficiency of the instructor, several 
pedagogical challenges remain which must be 
addressed. For one, most LMS’s accommodate a 
team-wide submission that lack student-
resolution. Moreover, even the most assistive 
DMTL instructor interfaces which support auto-
grading of assessments do not provide any 
remedial feedback and therefore are limited in 
their potential with respect to learning outcomes. 
Furthermore, regardless of the analytics 
provided, whenever an instructor interacts 
individually with a certain team, he/she is unable 
to watch analytics pertaining to other teams. 
Thus, there is an open research question 
regarding the provision of dashboard-style 
mechanisms that allow the instructor to “catch 
up” without being constantly overwhelmed with 
data. Considering that the instructor may not 
always have the ability to go to a desktop 
computer to review dashboards, mobile support 
would be an advantage here. An intriguing 
research possibility is to integrate such 
dashboard features into a smartphone/tablet-
based display to realize a highly-effective 
mechanism for instructor orchestration of DMTL 
to direct and guide the instructor while 
navigating from team to team within large 
collaborative learning spaces. 

To illustrate recent instructor-facing DMTL 
interfaces and associated assessment capabilities, 
the GLASS framework provides a representative 
example. During DMTL activities using GLASS, 
individual student design team members submits 
discretized responses as highlighted in the 
Response Tabulator section of Figure 4. Critically, 
responses are structured for partial credit, as well 
as auto-grading and grade book tabulation. 
“Sample response formats include multiple 
choice having a single correct response which are 
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structured for incremental solution, multiple 
answer format having multiple subparts which 
must be selected for full credit, or a numeric 

value within some specified tolerance, usually +/– 
5%” (DeMara, Salehi, et al., 2017, p. 12967). 

Figure 10: Design team windows projected on auditorium screen during observation and guidance by 
Instructor / GTA. 

Meanwhile, as shown in Figure 10, “the instructor 
observes both the auto-graded scores from the 
Response Tabulator as well as the whiteboard 
windows, of each design team. At the University 
of Central Florida (UCF), the Canvas LMS is 
utilized and provides a Moderate Quiz feature, 
which displays the scores of submissions as they 
occur in real-time, thus allowing the instructor to 
monitor progress and more closely examine the 
details of submissions. This assists the instructor 
in identifying progress and misconceptions as 
they are occurring, even for large enrollment 
sections, as well as to identify the Pioneer Group, 
which is the first group to submit a completely 
correct response” (DeMara, Salehi, et al., 2017, p. 
12968). 

An intriguing feature provided by GLASS is to 
allow the instructor to either privately view the 
collaborative digital whiteboards of each design 
team, or display the design team work 
environment to the entire class. Similar interfaces 
to facilitate orchestration of the learning 
activities have been deployed in the CLUE system 

at the Concord Consortium within the context of 
informal STEM learning (Edson et al., 2019). For 
instance, Figure 10 also shows the instructor and 
GTA interacting with a team via their chat 
platform to provide real-time, individualized 
guidance, which can be done systematically for 
all teams. Thus, GLASS increases the efficiency 
and effectiveness of instructional staff, refocusing 
primary pedagogical activities from instructor-
centered (i.e., lecture) to student-centered (i.e., 
observation and guided learning). Utilization of a 
selected Pioneer Group extends the benefits of 
the learning environment beyond knowledge 
acquisition via the development of technical soft-
skills as the Pioneer Group presents and defends 
their design to other design teams in the class. 
Further, GLASS provides instructors with a more 
comprehensive view of the solution processes 
and level of understanding of each team, allowing 
for targeted guidance and traceability of learner 
interactions, both of which provide valuable 
feedback for refining the pedagogical approaches 
and pace for the course content, as well as 
opportunities to provide more individualized 
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instructional settings (DeMara, Salehi, et al., 
2017).  

Another example of a DMTL instructor tool is 
InteDashboard™ which has been used for team-
based learning classes. Several components that 
faculty have found useful include a dashboard of 
team responses during the team-readiness 
assurance test (as Figure 11 shows).  In this 
assessment, teams complete a multiple choice 
test and receive immediate feedback after each 
attempt. Faculty have valued seeing how teams 
are responding in real-time to hone in on 
troublesome spots (in the example below, 
Question 4) and have insight into what teams are 

thinking (in this case, most teams were thinking B 
or D initially). Furthermore, the real-time nature 
of the display provides an indication of progress 
as well as the ability for faculty to identify teams 
that might be progressing more slowly than 
others. This use of this display would indicate: 

1. Data on how the class is progressing as a
whole

2. Data on the relative pace of team progress
3. Data on which items were potential trouble

spots
4. Data on why particular items might be

trouble spots

Figure 11: InteDashboard™ real-time team analysis tool. 

Another use of InteDashboard™ in TBL classes is 
to support the facilitation of case discussions 
(through the interface depicted in Figure 12). 
Instructors have utilized several elements 
including: 

1. Visual display of which teams had selected
which answer

2. Mouse-over capability to access additional
information such as the names of students
on a particular team or the rationale a team
provided for an answer

3. Duration of case for classroom time
management
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Figure 12: InteDashboard™ case discussion tool. 

At the K–12 level especially, instructor-facing 
interfaces would need to provide analytics 
regarding both adherence to expectations (i.e., 
which teams are on task, while also providing 
data on strengths/weaknesses of teams and 
which can be drilled-down to assess and assist 
individual students). Finally, an additional 
challenge to such an interface would be 
determination of data collection protocols when 
student teams are working outside of class. This 
constitutes a challenging but high payoff 
extension for the use of DMTL in massive open 
online course (MOOC) settings. 

Teacher interfaces that longitudinally track 
student conceptual growth of cross-cutting ideas 
generated over time and over multiple units of 

content are prudent. Mechanisms must be 
developed to assist both the learner and the 
instructor in tracking progress through the 
domain and as a collaborator. Machine learning 
techniques should be developed to assist the 
instructor in recommending and providing 
extended exercises, either for remediation or 
challenge, and in helping them focus attention on 
those groups that require it. Instructor interfaces 
should likewise enable class-wide summarization 
in real time, and provide individual-, group-, and 
class-level “just-in-time” digital supports and 
commentary. 

Based on this discussion, Table 4 gives future 
research directions towards advancing the state-
of-the-art in instructor-facing dashboards. 



35

Table 4 

Research Opportunities for Advancing Instructor Orchestration and Assessment Tools 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Collaboration 
Strategies  

Conduct a workshop to
determine consensus
on essential
assessment measures
that will identify
effective collaborative
learning that are
feasible in current
DMTL frameworks.

Investigate means by
which DMTL can help to
reconcile:

(a) the analysis and
characterization of
situational phenomena
(so-called microscope
view) with the analysis
and characterization of
longer-scale trajectories
(so-called telescope
view)

(b) individual-level
analyses with group-
level analyses?

Design intelligent tools
to generate
collaboration-oriented
student progress
reporting, e.g.,
collaboration report
cards.

How can we employ
machine learning and
other AI-driven
techniques to better
characterize the
processes of
collaboration from
artifacts/data that can
be observed?

Delivery 
Processes 

Conduct a multi-
institutional survey to
delineate key
components and
dimensions of an
instructor dashboard
for DMTL frameworks.
Research
considerations include:
What are the human
factors or design
elements that make
them easy for faculty to
learn and use? What is
the relevant or useful
information for
instructors?

Conduct
interdisciplinary
research to advance the
transitioning of DMTL
orchestration from
guidance, to feedback,
to mirroring (for support
of self and social
regulation). Research
considerations include:
How to move through
these phases? What are
best practices in each
phase, including student
regulation and instructor
support?

Design, utilize, and
refine new assessments
that can capture the
longitudinal growth of
learners in collaborative
settings, respond to
students’ diverse
interests and expertise,
and discover their
strengths that they can
build on. This can
address the research
considerations of how to
not only identify their
gaps/deficits but also to
actively support the
needs of each learner.

Technology- 
Driven 

Advancements 

Research the
automation of
assessment for DMTL in
STEM curricula. First-
year research could
standardize methods
for automation of

Design dashboards /
interactive agents to
provide simple
integrated
analytics/feedback
based on teacher
demands and student

Initiate long-term
research on AI-assisted
orchestration of learning
teams. Research
considerations include:
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scoring and feedback, 
enabling longitudinal 
student assessment in 
a particular topic area. 

Continue on-going
research on video
analysis, capture
platforms and eye
tracking for
instrumenting and
observing collaborative
learning, but with an
increased emphasis on
its linkage to instructor
orchestration of DMTL
activities in STEM
classrooms.

needs in real-time. A key 
research question is how 
automation can focus on 
critical aspects of the 
work the instructor 
should prioritize to 
address the needs of 
effective DMTL within 
specific phases, 
contexts, and modalities 
of learning. 

a) How can machine
learning approaches
assist instructors to
maximize learning
outcomes in
collaborative
environments

b) How XR and AI be
combined in DMTL
settings to realize new
instructor-facing
applications to replay,
evaluate, and refine
collaborative learning
activities.

c) Approaches to realize
software platforms that
help teachers
learn/adapt their skills in
DMTL settings, besides
those of the learners
themselves.
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Theme 1D: Educational Games / XR 

Theme Editors: Leanne Coyne, Wendy Howard, 
Leilah Lyons, and Jody K. Takemoto 

Educational Games / XR constitute an end-use of 
DMTL of their own, as well as a potential 
contributor of constituent approaches and 
technologies crosscutting other use-cases of 
DMTL. Research considerations include: 

● Which attributes of educational games
relate most closely to DMTL, including
elements in common, and how do these
compare/contrast?

● Which progress achievement and features of
educational games can be most useful to
apply for learner teams in the STEM
classroom?

● What is the role of XR in conducting DMTL
activities in the near and long term?

● What would be archetypal “best
application” of games/XR for DMTL?

Gamification can best be understood as the 
integration of gaming elements into traditionally 
non-game context. Gaming elements such as 
conflict (i.e., between players, human or 
otherwise), problem solving/goal obtaining, 
storylines, and rewards (i.e., points, badges, 
money), are often integrated to foster increased 
task enjoyment, engagement, and performance 
(Cardador, Northcraft, & Whicker, 2017). 
Theoretical underpinnings for the effectiveness of 
learning through gamification can in part be 
explained by operant conditioning (Skinner 1938), 

constructivist theory (Piaget, 1953; Vygotsky, 
1978), motivational theory (Graham & Weiner, 
1996), and self-determination theory (Ryan & 
Deci, 2000).  

Educational games have been traditionally used 
in K–12 for fostering student engagement. 
Recently, there has been increasing emphasis on 
expanding the scope of educational games to the 
higher education realm as well, particularly in the 
context of extended reality (XR), an umbrella 
term encompassing virtual reality (VR), mixed 
reality (MR), and augmented reality (AR). 
Mallavarapu (2019) has been a pioneer in this 
area, with the virtual museum exhibit, 
“Connected Worlds,” offering what is described 
as “ludic engagement” whereby visitors are 
engaged more deeply with content by receiving 
access to visualizations of data skimmed from 
their use of the exhibit. 

Participants discussed the advantages of XR in 
the context of DMTL, including its ability to 
demonstrate difficult concepts. Future research 
could focus on enabling team learning settings 
infeasible within classroom and informal settings 
which provide opportunities to practice and 
demonstrate skills while receiving formative 
feedback from their endeavors, just as 
simulations have been used to educate the 
workforce and military personnel for training 
purposes for many years. 

Tools 
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Current state-of-the-art educational games 
supporting DMTL comprises quizzing products 
such as Kahoot! (Dellos, 2015), Socrative (Awedh, 
Mueen, Zafar, & Manzoor, 2015), Quizlet (Wolff, 
2016), and also simulation-based games offered 
by the Concord Consortium (Mutch-Jones, Gasca, 
Pallant, & Lee, 2018) and PhET simulations 
hosted by the University of Colorado, Boulder 
(Wieman, Adams, Loeblein, & Perkins, 2010). 
Thus far, these products have been incorporated 
primarily into K–12 settings. In higher education, 
games/competitions between students in 
classroom settings include the “beer game,” a 
classic group learning activity in undergraduate 
management courses such that students 
collaboratively form solutions to managing a 
profitable supply chain to meet the customer 
demand (Kaminsky & Simchi-Levi, 1998). 
Furthermore, simulation-based activities, such as 
virtual labs, have been gaining popularity in 
higher education as a solution to issues such as 
scalability and feasibility limitations of a 
traditional lab; with the advent of XR, this trend 
could easily grow to encompass DMTL. A 
recurring tension during workshop discussions 
spanned the possibilities such as using massively-
multiplayer online role-playing games such as 
MMORPG and Rumii as edugames and using 
story/simulation/narratives to build engagement, 
as well as within fields having attributes related 
to STEM, such as pharmacy education (Coyne, 
Merritt, Parmentier, Sharpton, & Takemoto, 
2019). 

STEM-focused educational games currently 
available in XR, such as HoloLab Champions by 
Schell Games (Cooper & Thong, 2018) and 
Number Hunt (PaleBlue XYZ, 2018), are primarily 
single-player games. However, single-player XR 
games can be adapted for team learning by 
enabling one student to wear a headset while the 
other team members provide guidance. An 
excellent example of this model is Keep Talking 
and Nobody Explodes, by Steel Crate Games 
(Kane, Fetter, & Pestaluky, 2015), a game that 
emphasizes communication. This game involves 
one player attempting to dismantle a bomb in XR, 
while non-XR players provide bomb defusal 
instructions. Multiplayer educational games 
where all players work together or competitively 
in XR are yet to be developed, highlighting an 
opportunity for research. 

While logistic challenges include training 
instructors on new technologies/platforms, 
research needs span devising more efficient 
methods of incorporating proper scaffolding for 
students, achieving cost effectiveness suitable for 
student use, and the effort required to develop 
XR scenarios as a platform for distance team-
based learning (Coyne, Takemoto, Parmentier, 
Merritt, & Sharpton, 2019). On the other hand, 
the potential for DMTL-driven games to 
significantly boost motivation and allow role 
playing in clearly-defined STEM design team roles 
is vast and compelling. Specific research 
directions are summarized in Table 5. 
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Table 5 

Research Opportunities Relating to Educational Games / XR in DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Collaboration 
Strategies  

Convene experts to
reach consensus on a
taxonomy of the most
effective strategies
used within current-
generation educational
games at supporting
collaboration.

Innovate new means to
design DMTL activities
that will engage multiple
roles or skills
distribution to
encourage collaboration
that scaffolds both
social/soft-skills along
with the acquisition of
content knowledge.

Study the benefit of
games and collaborative
simulations to advance
building of skills
associated with
proficiency in
collaboration.

Explore how DMTL-based
adaptive games can be
used to help bestow
learners practice with
alternative collaboration
patterns and escape low-
gain routine
interpersonal
interactions.

Delivery 
Processes 

Survey literature to
identify which
pedagogies were most
prevalent and effective
within games to
support teams and
discover the reasons
why.

Investigate role of
game-style strategies as
a mechanism to explore,
guide, and/or reinforce
the students’ roles as
learners on teams.

Explore how to use
game-based techniques
to keep team member
roles clear and learners
motivated

Develop and assess
responsive/adaptive
games (i.e., games that
change based on student
decisions) and research
ways in which XR can
augment these goals
(team collaboration, time
to pass the gavel, and
means to engage
lurkers).

Research the feasibility
and motivation benefits
to the potential of
“whole curriculum
gamification” whereby
graduation criteria are
gamified via perpetual
DMTL activity spanning
years of enrollment.
Which programs could
benefit from such a
DMTL approach to STEM
learning?
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Technology- 
Driven 

Advancements 

Convene a workshop to
identify which games
have STEM instructors
found to be effective,
including
differentiation by
discipline, age, and
educational setting.

Conduct research to
develop and refine the
kinds of design elements
that are critical for an
immersive (VR or game-
like) environment to
emphasize
interdependency and
the integration of
diverse talents or
competencies
distributed among
learners.

Apply and extend AI
technologies to:

Longitudinally suggest
team learning activity
that is adapted to the
skills and needs of
learners.
Adapt the XR
environment to increase
learning including auto-
insertion of virtual
students with teams,
possibly triggered by
stagnation of progress or
retreading the same
ground.
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Theme 1E: Standards and 
Clearinghouses       

Theme Editors: Leslie Bondaryk, Ronald F. DeMara, 
Mohsen Dorodchi, Wendy Howard, Leilah Lyons,  
and Jody K. Takemoto 

Research in Standards and Clearinghouses for 
DMTL spans  
open questions: 

● What types of open standards development
or synthesis workshops
can advance the community, which is highly
interdisciplinary and utilizes specific
terminology and perspectives, to collaborate
on the definition of transportable formats
for DMTL content?

● How can format standards help to
interchange activity content, results, and
studies to refine the learning activity
content narrowly and DMTL techniques
broadly?

● Who can and should host Clearinghouses for
problem banks: what, where, when?

A key challenge that is currently facing DMTL is 
the lack of standardized lesson plans, learner 
concept maps, and scaffolding for students who 
will be evolving as collaborative learners. Nor do 
we have robust technology standards and 
taxonomies for incorporation of these materials 
into existing systems, such as rostering. 
Therefore, fundamental research is needed on 
how to design transportable DMTL-based 
curricula and their associated assessments. 
Standardization of portable elements that lead to 
successful and efficient collaborative teams, and 

general characteristics of such teams, as well as 
an understanding of common target integration 
platforms is essential to achieve widespread roll 
out and popularization of DMTL. Research in this 
field has been performed by Wen (2017), Fiore 
(2003), Sottilare (2018), and Graesser (2018), 
which complement Tuckman’s previously-
published stages of team development 
(Tuckman,1965) . Tuckman’s team development 
model is challenged by Gersick’s punctuated 
equilibrium model of group development which 
suggests that “teams progress in a pattern of 
‘punctuated equilibrium,’ through alternating 
inertial change and revolution in the behaviors 
and themes through which they approach their 
work” (Gersick, 1991, p. 13). This idea is 
supported by several subsequent studies 
(Basoglu, Fuller, & Valacich, 2012; Jasperson, 
Carter, & Zmud, 2005; Koh & Lim, 2012; 
Maznevski & Chudoba, 2000). Standardized 
clearinghouses for problem banks are necessary 
to maintain assessment integrity. A standard 
understanding of issues will allow for 
determination of preferable mechanisms and 
interfaces needed for effective LMS integration of 
DMTL. Research areas in this endeavor are 
summarized in Table 6. 

It will be critical to the uptake of digital 
collaboration tools that they are gracefully 
integrated into common LMSs, MOOCs, and 
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informal science learning platforms that currently 
exist for creating rosters and assigning activities 
to the members of those rosters. Mechanisms for 
creating groups and reporting on both the group 
and the individual as appropriate must 
communicate with the system or they are 
unlikely to have impact. For instance, 
clearinghouses for geospatial data inventory and 
access have proven effective in geosciences 
(Nebert, 2000). Research can explore extensions 
to service-oriented architecture approaches that 
utilize object brokers with mediation services to 
allow indexing and retrieval of related DMTL 
activities across multiple STEM disciplines (Nativi, 
Bigagli, Mazzetti, Boldrini, & Papeschi, 2009). 

Currently, the IMS Global Learning Consortium 
has been attempting to bridge and standardize 
the broad variety of single-learner tools in an 
effort to make them more adoptable (IMS, 2019). 
IMS resources have attained widespread usage in 
K–12 education to deliver lesson plans. Research 
is needed to organize a similar extended set of 
taxonomy, interface, and pattern definition 
exercises, similar in character to those 
undertaken by the W3C, to create an easier 
method of incorporating both student and 
teacher tools. This is particularly critical for K–12, 
where the funding to adopt new technologies is 
scarce and core systems are seldom refreshed. 
Specific research directions are listed in Table 6.

Table 6 

Research Opportunities to Advance DMTL Standards and Clearinghouses 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Collaboration 
Strategies  

Convene a workshop to
coalesce data collection
and DMTL standards as to
what is done already for
related educational
interchange similar to
DMTL that can be
adapted.

Create and adapt
technologies for building
deep knowledge creation
through big data
collection of DMTL
activities.

Research the feasibility
of data-mining the
fielded DMTL use-cases
and lesson plans to
automatically infer new
standards and formats
to increase efficacy of
delivery, data
collection, and
reporting.

Delivery 
Processes 

NSF may advance survey
collection instruments
from DMTL participants,
open to community for
contribution via a Web
repository to form a
scoreboard that facilitates
more useful
comparison/contrast
across domains,
disciplines, and grade

Research the optimization
of DMTL environments
and practices: what is the
optimal team size, random
versus criteria-based

Leverage cognitive science
research on team
behaviors to distill down
into a compact form that
faculty can use to put

Develop and validate
tools to rapidly
optimize DMTL specific
learning environments
at scale.
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levels to gain new insights 
on cooperative learning. 

DMTL into practice in 
their classroom. 

Technology- 
Driven 
Advancements 

Support the creation of a
learning community
crowdsourced repository
of existing real-time
online learning (among
other educational tools)
for assessing solutions
available. Research
questions include how to
provide mechanisms for
the inventory, search, and
retrieval of different
DMTL environments,
practices, lesson plans,
and reusable activities:
definitions of terms, team
sizes, random teams
versus criteria-based,
teams changed each
week versus same teams
for a semester, time of
team activity, level of
team activity,
synchronous /
asynchronous, physically
co-located or distributed.

Advance DMTL
approaches that are
standardized or
interoperable so more
accurate and extensive
A/B testing of DMTL
innovations can be
performed.

Organize and orchestrate
a standards initiative in
partnership with existing
technology interface
organizations to produce
specifications that allow
easy reuse.

Design interfaces
accounting for new
approaches to data
collection,
management, and
analytics, and different
types of
discourse/collaboration
tools that support
students’ in situ
participation.
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Introduction
Selecting, organizing, and adjusting team 
members to promote 
full-engagement and learning by all members is a 
critical aspect 
of team learning. Yet, the current research base 
does not sufficiently 
inform nor automate the formation of groups to 
optimize learning and to promote personalized 
collaboration. The scope of this track focused on 
the types of data, use of analytics to guide team 
formation and organization, considerations 
around group learning versus collaborative 
learning, using data to provide feedback, and 
using data to enhance the cognitive demand in 
team learning. Data and analytics across varying 
contexts of team learning became the focus of 
the track discussions including team dynamics, 
data sets, analytic approaches, and challenges in 
contexts such as learning STEM in K–12 
classrooms, learning STEM in informal (out of 
school) settings, learning in higher education, and 
learning in professional settings (e.g., industry, 
emergency response teams, military, and so 
forth). Consensus in the community indicated 
that studies and practices should consider 
common features of data and analytics across the 
contexts, as well as some discretely different 
needs and tools in specific contexts. In other 
words, consensus in the community is that some 
aspects of personalizing collaborative learning 
are context specific, while others have broader 

generalizable aspects that could apply across 
varying contexts. 

Consensus in the community centered mostly 
around data and analytics related to 
personalization and collaboration. Data was 
considered in terms of five broad categories of 
foci: (a) individual learning (skills and knowledge), 
(b) team cognition (shared cognition), (c)
productivity (completing tasks—individuals and
teams), (d) social interaction and discourse
(communication) within and across teams, and
(e) personalization. Analytics were considered in
terms of time (length of time to gather, analyze,
report, and use), data source, and intended
purpose.

The goals and objectives of team learning have 
been refined for this paper to include: 
1. Develop students into better team members
2. Learning of content knowledge, mastery of

skills or building efficient high performing
teams

3. Learning about teams and team learning
4. Supporting diversity, equality, and

inclusiveness in teams

This theme encompasses consideration of how to 
lower barriers for: 

Chapter 4 
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1. Data collection in multiple environments
and at various time scales (real-time
neurotransmission through to K–16 and
beyond)

2. Connection of data across different
measurement resolutions and sources

3. Unification of data from different sources
into a common format and reducing
logistical, legal, and ethical barriers for
accessing data

4. Data cleansing and validation
5. Researchers to form effective multi-

disciplinary teams to study team learning
6. For practitioners to adopt and implement

data analysis in implementing team-based
learning

7. For continuous implementation of team-
based learning from kindergarten through

higher education, and in both formal and 
informal learning environments 

8. Formative assessment for learners and
instructors—seeing how they are
performing in regards to a goal or trajectory

This theme was further organized into five core 
sub-themes as illustrated in Figure 13: 

2A: Types of learner data 
2B: Assessment mechanics (analytic 
approaches for literally noisy data) 
2C: Challenges for optimization of team 
learning 
2D: Using data to provide feedback (to 
instructor and/or students) 
2E: Enhancing cognitive demand and 
mastery of learning outcomes via analytics 

Figure 13. DMTL components and relation to Track 2’s Themes. 
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Theme 2A: Types of Learner 
Data and Theme 
 2B: Assessment Mechanics 

Theme Editors: Samuel Spiegel, Jennifer Tsan, 
 and Dezhi Wu 

In today’s classrooms and technology landscape, 
there are 
vast and varied ways of gathering different data 
from different sources. For example, we can now 
trace proximity of team members, follow eye 
movement, gather team member perceptions, 
record data on emotional state of the team 
members, and in some studies even collect brain 
wave and activity functions (Salas et al., 2015). 
The challenge and “state of the art” for utilizing 
data to personalize collaborative learning is in 
explicitly knowing what you want the teams to 
accomplish, what you want to examine, and why 
(purpose and use). 

While emerging studies may come out of existing 
data sets, new data should be gathered and 
analyzed with explicit and intentional purposes 
defined. Data overload and/or not having the 
right data to inform your question or to better 
understand team learning has been a challenge 
noted by most of the participants in the session. 
This can be better managed by having clear 
research questions and/or a clear vision of what 
you are trying to understand. What problems are 
you seeking to understand or fix? What insights 
do you want to gain toward assessing student 
performance and learning? What are the 
intended learning outcomes? The context also 
makes a difference. For example, are students 
creating a product or studying an established 

concept? Is the setting a traditional four-year 
university classroom, an online course, or part of 
a workplace training? 

The context, research question, problem being 
addressed, and available resources as a whole 
should drive and inform the data to be collected. 
Given these caveats, there are some data 
gathering and analysis techniques that are 
providing new insights into DMTL. The field is 
widening in terms of what and how team 
interactions are being studied, and how these can 
then be used to personalize team learning. 

For instance, at the Colorado School of Mines, 
students study the design and enactment of 
learning experiences using the framework of 
Engineering Learning (). Engineering Learning 
guides instructors to explicitly define clear 
learning outcomes, and then to align the learning 
activities, learner organization (e.g., working 
individually or in teams), and assessments 
directly back to those learning outcomes. The 
design of the course is studied by gathering and 
analyzing course artifacts such as the syllabus, 
assessment tasks, lesson plans (when available), 
and instructor reflection notes. The enactment is 
studied by reviewing samples of student work 
(e.g., products produced through team work, 
student reflection logs) and through observation 
of the classes. The observation utilizes an online 
tool called the Engineering Learning Classroom 

and 
DMTL
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Observation Tool (ELCOT; Sanders, Spiegel, & 
Sherer, 2018; see Figure 14). Using ELCOT, the 
observer records what is happening in the 
classroom in real time at two-minute intervals 

through a Web browser on a laptop computer. 
The observer selects fields on a Web-based 
interface to note how students are organized. 

Figure 14: ELCOT user interface. 

(i.e., individually, small group, whole group); 
when students ask questions (quantity and type 
of questions are recorded); what students are 
doing along with the level of cognitive load 
(Webb, 1997); and what the instructor is doing 
such as modeling expert thinking, lecturing, or 
monitoring students. ELCOT provides a broad 
look at the ways classrooms and student 
interactions are organized, and considers how 
well that aligns with the desired learning 
outcomes. 

Other groups are looking at multimodal analysis 
of team interactions (Dale, Fusaroli, Duran, & 
Richardson, 2013; Richardson et al., 2005), while 
others are focusing on varying aspects of team 
dynamics such as emotions (Reidsma, Heylen, & 
Ordelman, 2006), intrapersonal and interpersonal 
interactions related to task complexity 

(Ramenzoni et al., 2011), socialization of 
intelligence (Resnick, 2017), neurodynamic 
organization (Stevens & Galloway, 2017), and 
communication analysis through computational 
linguistics (Dowell, Nixon, & Graesser, 2018). 
Others are looking at the interactions of multiple 
teams, such as emergency responder teams that 
consist of firefighters, police, medical, and other 
expert teams coordinating to respond to an 
emergency (Bannan, Gallagher, & Lewis, 2017; 
Steinke, et al., 2015; Zaccaro, & Fletcher, 2017). 
This data can be difficult and expensive to collect. 
There is also the problem of being able to parse 
this data quickly enough to intervene in real time. 

Video capture and analysis is growing in 
popularity in studying team learning through 
epistemic network analysis (ENA). ENA is a 
technique in quantitative ethnography that uses 
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visualization and statistical methods to identify 
meaningful patterns in discourse. ENA is a 
methodology grounded in epistemic frames 
theory, which posits that “learning can be 
characterized by the structure of connections 
that students make among elements of authentic 
practice” (Shaffer & Ruis, 2017, p. 182). ENA 
operationalizes this theoretical approach by 
modeling the connections between salient 
constructs in the data, particularly by examining 
the co-occurrences of codes within conversations 
(Shaffer, 2017). 

Spatial, time, and cultural data are also being 
used to facilitate and assess team learning. 
Cultural analysis is exploring cultural formative 
assessments that build on students’ pre-existing 
interests, identities, and knowledge (Penuel & 
Van Horne, 2016). The cultural aspects can both 
influence the interactions and ways of working 
together in teams, as well as inform what is 
viewed as successful in team learning (Ruvalcaba, 
Werner, & Denner, 2016). Others have been able 
to use proximity detectors and related 
approaches to examine interaction geography 
data as a means to understanding how learners 
coordinate with one another spatially (see 
Shapiro, Halls, & Owen, 2017). 

Therefore, the data sources being studied range 
from instantaneous measures of neuroactivity 
(e.g., microscopic assessment of individual brain 
activity and learning) up through enormous 
repositories of granular data that can be analyzed 
to look at team patterns across large groups (e.g., 
huge data sets that look at interactions and 
learning over extended time). 

In regards to platforms that facilitate optimal 
formation of teams, CATME (Loughry, Ohland, & 
Woehr, 2014) was one example of a platform 

used by varying institutions to plan and 
coordinate team formations. Newer models are 
being explored (e.g., Fathian, Saei-Shahi, & 
Makui, 2017). However, each model relies on 
different frameworks and perspectives of team 
learning. Further research is warranted in the 
design of tools to help construct, organize, and 
monitor teamwork. 

The driving factors in data selection and analysis 
should be the learning outcomes, task design, 
and contextual considerations. For instance, in 
one learning sequence designed to teach 
students about the sun, earth, and moon 
interactions to explain the phenomena of the 
phases of the moon, students are organized into 
homogenous groups based on misconceptions 
they hold about phases of the moon. The activity 
is designed to scaffold the learning from where 
each team is beginning and advances everyone’s 
learning to meet or exceed the desired learning 
outcomes. In this instance, the data used to 
organize the groups is a writing task where 
students are asked to write and/or draw (with 
labels) on a 3”×5” card (thereby limiting 
responses to quick answers) what causes the 
phases of the moon as we see them from earth. 
The responses are then quickly sorted by the 
instructor into one of eight categories based on 
expressed misconceptions. For example, some 
students will indicate that they have no idea, 
while others might indicate that clouds cause the 
phases, that it is the Earth’s shadow that causes 
the phases, and so forth. This design was possible 
due to research conducted around common 
misconceptions in science and engineering 
(Driver et al., 1994). Each group is given a 
different question to explore that will cause them 
to challenge their personal beliefs about the 
system. Other outcomes and tasks might be 
better served by organizing students into 
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heterogeneous groups, based on their content 
knowledge, experiences, gender, or a myriad of
other factors. This requires complex modeling 
and design to align the best group formation with 
the desired outcomes. It will also require more 
research into the formation of different groups 
in association with the desired outcomes and 
task design. 

Challenges 
Measuring and modeling the dynamic 
phenomena of team learning remains a 
challenge. The complexity of individual and group 
dynamics, cognition, performance, and learning is 
difficult to model. Research groups are making 
progress in using AI to better understand, model, 
and simulate group interactions (Rose, 2018). 
One such group is the Discussion Affordances for 
Natural Collaborative Exchange (DANCE). 

Another challenge is the state of available and 
affordable technology. A large amount of 
research in DMTL, particularly with co-located 
students, focuses on dialogue and eye-tracking. 
Unfortunately, the technology for speech-to-text 
is still very limited and does not work well in 
noisy classrooms, with young children, or with 
many regional accents. Additionally, eye-tracking 
equipment can be expensive to purchase and 
time-consuming to set up. Moreover, the typical 
eye tracking technology is not designed for teams 
but individual users, so it is challenging to capture 
team dynamics using eye tracking methods to 
accommodate multiple learners simultaneously if 
they are co-located. The cost of using this stream 
of eye movement data for teams would be much 
higher assuming the technical setup is 
appropriate.  

Other challenges lie in the category of data 
management. What are the best ways to 
manage the collection and storage of different 
data types (e.g., speech, biometrics)? This is 
true at the individual instructor level, 
institutional levels, and cross-institution levels. 
One recommendation from the group is to 
explore a national database on team learning 
that would allow researchers from multiple 
fields and institutions to share and utilize 
datasets. This will require both technical 
solutions (e.g., how to securely store and share 
the data) as well as solutions to 
multidisciplinary collaboration (e.g., using 
common nomenclature to allow easier cross 
referencing). 

Data and privacy concerns are also a challenge. 
Navigating the boundaries between the Family 
Educational Rights and Privacy Act of 1974, 
instructional enhancement data, and other 
institutional, state, and federal policies can be 
confusing and serve as a barrier for some 
researchers. One question that emerged several 
times is whether students’ data should ever be 
erased and, if so, what are the conditions to 
trigger the removal of the student data? Table 7 
summarizes specific research directions. 
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Table 7 

Research Opportunities to Advance Use of Data to Enhance Team Learning 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Data and analytics 
to select and 

organize groups 

Develop venues and
platforms/repositories
(e.g., data sharing
portals) that facilitate
cross-disciplines
(convergent research
approach) and cross-
setting studies of the
formation of teams. For
example, reducing the
barriers between
research in medical,
industry, military,
informal, K–12, and
higher-education
settings around DMTL.

Develop a glossary and
more clearly define
data, theories, and
research questions and
approaches to facilitate
cross-disciplinary
conversations and meta-
studies.

Research projects to
more clearly identify
how technologies can
and should be used to
organize and support
team learning. In other
words, what tools exist
that can help to both
organize the teams as
well as scaffold learners
to do more advanced
work.

Research to develop
tools that facilitate and
accelerate the
collection, analysis, and
useful reporting of
varying data sets that
inform DMTL (e.g.,
discourse data, video,
biometrics,
organizational patterns,
etc.).

Conduct studies to
explore how different
formations of teams best
match to intended
learning outcomes and
lesson(s) design.  For
instance, are there
outcomes that are best
achieved by
homogeneously or
heterogeneously
organized teams?
Categories of
homogeneity include
factors such as gender,
prior-knowledge, skills,
and interests.

Explore how different
formations of teams best
match to mode of
interactions (i.e., co-
located teams, virtual
teams including regional
geographic locations or
across global locations,
hybrid interactions).

Develop a database of
data and analyses to
facilitate meta-studies to
better understand the
impact of different team
formations based on
individual characteristics,
learning outcomes,
curricula design, and
learning context.
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Analyzing, 
reporting, and 

using data while 
teams work 

(embracing and 
tackling the 

complexity and 
dynamic nature of 

team learning) 

Build a relational
database of pedagogies,
tools, data collection,
and analytics on
Authoring Tools for
DMTL (e.g., an
integrated database that
could be navigated
easily and made
accessible to the
community via website).

Develop standards for
research and data
reporting regarding
DMTL (i.e., tackling
ethical considerations,
privacy concerns,
terminology across
disciplines, and
sharing/multiple
researcher use of the
data).

Expand research efforts
on how to use cognitive
and cultural data to
inform the design of
learning environments
(e.g., Bell, Stromholt,
Neill, & Shaw, 2017).

Develop tools to 
automate or accelerate 
the collection, analysis, 
and reporting of 
individual and team 
cognition and 
interactions so that the 
data can be used in real-
time to inform DMTL. 

Refine observation tools
for face-to-face
interactions that can
guide team learning in
real time or close to real
time; and consider
comparable ways to
assess team interactions
in online interactions.

Study the variety of
possible data sets
produced by Internet-
enabled devices (e.g.,
sensors, personal
watches, video, eye
tracking) to develop
protocols that are
appropriate for varying
settings considering
privacy, access, costs,
and value of the data
sets to inform DMTL.

Study the incorporation
of AI and machine
learning as part of the
“team” in team learning
(e.g., robot and human
teams, simulated
peers/coaches that are
machine-based to both
facilitate and enhance
human learning and
performance).

Identify patterns that
indicate stress points in
DMTL, which could be
used to formatively
assess and adjust
instruction (e.g., using
ENA [epistemic network
analysis] to identify
productive vs.
destructive patterns of
communication and
interactions).

Develop measurements
and modeling tools to
enhance situation
awareness,
coordination, learning
and performance across
multiple teams (e.g.,
first responder teams—
fire and rescue, medical,
police, dispatch, etc.).

Data and analytics 
to evaluate 

individual and 
team learning and 

performance 

Develop criteria for
what counts or is
important to evaluate in
terms of individual and
team learning (part of
this definition might
require explicit
definition of what we
mean by “learning”).

Develop protocols for
accessing and aligning
different data sources.
This should tackle the
lack of transparency in

Continue to refine
protocols for accessing
and aligning different
data sources, including
security and privacy
protocols (e.g., when
should a student’s
records be erased?
Can/should a student be
forgotten?).

Develop tools to
facilitate accessing and

Design new data
analysis methods (data
science approaches) to
better study and
evaluate DMTL. Many
of the traditional
methods for clean
small-scale data sets
won’t work with large-
scale messy data. This
poses challenges to
traditional educational
researchers and
practitioners.



52

how others share data, 
as well as concerns 
about equity (who can 
afford to access the 
data). 

aligning varying data 
sets. 

Study approaches to
DMTL that focus on
learning rather than
performance, allowing
students and teams
safe opportunities to
struggle and fail as part
of the learning process.
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Theme 2C: Challenges for  
Optimization of Team Learning 

Theme Editors: Samuel Spiegel, Jennifer Tsan, 
and Jessica Vandenberg 

In this paper, group and team learning are 
differentiated based on the goal and coordination 
of the effort. Group learning is what occurs when 
two or more individuals discuss and consider 
a topic, knowledge, or skill together for the 
purpose of each member better understanding 
the topic, knowledge, or skill. Team learning is 
based on the organization of the team, where all 
members have a common goal to accomplish. In 
order to accomplish the goal, team members 
must learn how to work together, share relevant 
information and skills development, and take on 
differing roles to achieve the goal. Unless there is 
an explicit effort to establish and monitor 
common learning goals for all individuals within a 
team, it is likely that team learning can lead to 
different individual learning outcomes. Defining 
clear and measurable learning outcomes for 
individuals and the team is a core aspect in 
optimizing team learning. You need to know 
where the individuals and team need to get to 
(i.e., learn) in order to guide and assess their 
progress. In some settings the focus may be more 
around the team performance and less on 
learning outcomes, but that should be aligned 
with the intended learning outcomes. 

One approach being developed to optimize team 
learning, referred to as Automated Peer Learning 
Cohorts (Auto-PLC), is based on the hypothesis 
that assessment data for individual learners can 
be useful in grouping learners into more effective 

and efficient peer learning cohorts (DeMara, 
Turgut, Nassiff, Bacanli, & Bidoki, 2018). As 
depicted in Figure 15, AutoPLC incorporates 
analytics from formative assessments to advance 
team learning. First, use of autograded digitized 
formative assessments reallocates instructor and 
teaching assistant workloads from lower-gain 
instructional activities, such as grading, to higher-
gain learning activities, such as targeted 
remediation and mentoring. Second, following 
the review of formative assessments, students 
are afforded remedial opportunities. To facilitate 
this process, Auto-PLC’s statistical clustering 
routines are applied to the auto-graded results of 
formative assessments to allow for partitioning of 
learners into focused peer learning cohorts 
consisting of members with complementary 
knowledge gaps and skill efficacies.  (DeMara, 
Turgut, Nassiff, Bacanli, & Bidoki, 2018). The 
learner cohorts were constructed automatically 
via chi-squared test clustering analysis using the 
formative assessment results which have been 
accumulated to-date in the course. Using the skill 
matrix scores of the students, the chi-squared 
method was used to compare students where the 
chi-squared distance gave a number to assess the 
similarity of two students. Auto-PLC selected the 
student whose skill score was the most distant. 
The farthest skill score student was iteratively put 
through the same process until a group of four 
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was formed. This further scales to large 
enrollments, typical with introductory STEM 
courses, by affording learners opportunities to 

participate in complementary peer mentoring. 
(DeMara, Turgut, Nassiff, Bacanli, & Bidoki, 
2018). 

Figure 15: Intelligent Clustering of Peer Learning Cohorts by mining digitized formative assessments 
already on-hand from the lecture component (DeMara, Turgut, Nassiff, Bacanli, & Bidoki,  2018). 

Another approach to team grouping builds on 
the work of semantic  and linguistic analysis. 
Group Communication Analysis (GCA), an 
automated methodology for linguistic analysis 
investigates communication between online 
learners. Learner's interactions over time (e.g
"participation, internal cohesion, responsivity, 
social impact, newness, and communication 
density") are explored sequentially through 
computational means (Dowell, Nixon & 
Graesser, 2018). The resulting information 
provides a structure for understanding the 
group dynamics including intra- and 
interpersonal group communication. GCA 
employs a multidimensional and robust 
methodologies to uncover more than the 
quantity of words spoken in a group. GCA 
extends what is known about a group and how 
a group functions. 

Statistical Discourse Analysis (SDA) is another 
methodology that is growing in use in studying 
teams. It models significant moments that can 
alter the pattern of subsequent behaviors, the 
effects that earlier behaviors have on important 
or target outcomes, and influences at different 
levels (Chiu, 2008). SDA has been used to 

explore how pivotal moments like conflict or 
idea breakthroughs change discourse patterns, 
how behaviors like asking questions or 
verbalizing confusion may lead to the outcome 
being studied, and how individuals influence 
the group over time (Chiu & Lehmann-
Willenbrock, 2016; Molenaar & Chiu, 2014). 

Challenges
Group learning has different indicators, 
purposes, and definitions across the varying 
disciplinary groups. For the purposes of this 
conference and paper, group learning is defined 
to be the changes in shared cognition, skills, and 
interactions that occur in group dynamics. 
Learning at the individual, component- 
team, cross-team, and multi-team levels were 
taken into consideration regarding team 
learning. There is consensus that within team 
learning you can have individuals that learn at 
different paces, and may or may not learn the 
same content and skills; so identifying and 
differentiating between individual and team 
learning is an aspect that needs to be further 
explored. Consensus in the community is that 
there are differences in how collaborative 
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learning, group learning, team learning, and 
parallel-individual learning are used in the 
literature; but no clear vision has emerged for 
defining these differently or marking them as 
similar enough to consider them, for practical 
purposes, the same. This is one of the areas we 

identified as needing further study to facilitate 
cross-disciplinary discussions and research. 
Specific research directions are outlined in 
Table 8. 

Table 8 

Research Opportunities to Advance Optimization of Team Learning 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Defining and 
understanding the 
goals and purposes 

of team learning   

Conduct a rigorous
literature review toward
defining purposes and
goals of team learning
across varying settings
(K–12, higher education,
industry, military, etc.).

Develop a glossary and
more clearly define
data, theories, and
research questions and
approaches to facilitate
cross-disciplinary
conversations and meta-
studies.

Research to develop
tools that facilitate and
accelerate the
collection, analysis, and
useful reporting of
varying data sets that
inform decisions to
utilize and/or organize
team learning
opportunities.
Research projects to
more clearly identify
when team learning is
necessary or the best
approach to use.

Research to develop
tools that facilitate and
accelerate the
collection, analysis, and
useful reporting of
varying data sets that
inform decisions to
utilize and/or organize
team learning
opportunities.

Conduct studies to
explore how different
formations of teams
best match to intended
goals and context.

Further analysis and
development of tools
that facilitate and
accelerate the
collection, analysis, and
useful reporting of
varying data sets that
inform decisions to
utilize and/or organize
team learning
opportunities.
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Analyzing, 
reporting, and using 

data while teams 
work (embracing 
and tackling the 
complexity and 

dynamic nature of 
team learning) 

Better define what is
meant by “optimization”
in team learning. Is it
related to team
dynamics, individual
learning, overall
performance of the
team, and so forth?

Examine the impact of
assigning roles and
other team-based
practices on
optimization of the team
learning.

Consider how the
context and goal(s)
influence the
optimization of team
learning. For instance,
does data from teams
working in mob
programing help inform
team learning for
business courses or first
responder teams?

Study ways to most
efficiently establish and
maintain team norms,
group interactions, and
tasks.

What are best practices
in task and group
designs to optimize
team learning?

Develop platforms or
tools that allow the
analysis and reporting of
varying and large data
sets in real time to
inform decisions while
the team is learning.

Determine best
practices for utilizing
unobtrusive sensor-
based and audio/video
digital data streams to
improve our
understanding of team
and multi-team
behavior, coordination,
and learning, including
visualization of the data
to uncover meaningful
indicators to optimize
learning.
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Theme 2D: Using Data to Provide  
Feedback (to Instructor and/or Students) 

Theme Editors: Mohsen Dorodchi, Leilah Lyons, 
 Michael Spector, and Samuel Spiegel 

Providing feedback based on formative 
assessment is critical to learning (Ambrose et al., 
2010; Maki & Kuh, 2017). Yet, given the growth of 
available data, the diversity of learners, and 
evolving domains and learning outcomes, it is not 
clear what data should be used, how it should be 
structured and delivered as feedback, nor how 
digital media can best be utilized to provide 
efficient and effective feedback. For instance, 
how is providing peer feedback perceived and 
accomplished? Is peer feedback seen as an 
important task that is both useful to the provider 
and the receiver, or is it just viewed as another 
task to complete by the provider? 
One technique called Dynamic Enhanced 
Evaluation of Problem Solving (DEEP) involves 
asking students to answer four questions about a 
problem situation: (a) what are the key factors 
influencing this problem situation?, (b) how 
would you briefly describe each of those factors?, 
(c) how are the factors related?, and (d) how
would you briefly describe each of those
relationships? That leads to an annotated causal
influence diagram or concept map that can be
compared to a reference model. The differences
can then be used to prompt a learner to consider
something not included in the initial
representation (Spector, 2008).

Another project, Tandem (Derry, 2019), is a 
robust application for improving student 

engagement in teamwork-related activities. 
Tandem uses the implementation of surveys 
provided at regular intervals, personalized 
feedback for each learner, and teamwork lessons 
as tools to support improved collaborative skills 
and experiences. is Web application provides
features for both student groups and 
instructional teams. Data from the integrated 
tools is visible via team and learner dashboard, 
and can be further enhanced through the 
integration of a digital coaching tool, ECoach, 
which provides personalized teaching and 
learning support mechanisms. 

Finally, another approach is using wearable 
Internet of Things (IoT) devices such as proximity 
sensors for analyzing the efficacy of multi-team 
systems in real-time for purposes of either 
immediate feedback or post-hoc remediation 
(Dubrow et al., 2017). 

Challenges for this theme: 
Our ability to provide rapid and effective 
feedback during team training depends on how 
well we can make sense of the parallel and 
complex information streams that are 
increasingly being generated about the team, 
team members, and the environment. An 
additional challenge in this regard is trying to 
avoid information and cognitive overload for the 
learner and the instructor by endeavoring to best 
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receive and utilize that feedback, is an area of 
growth for our communities. The role of AI and 
machine learning in providing feedback is 
another area that warrants further exploration. 
Developing standards, tools, and resources to 
help guide, develop, and assess human and 
machine feedback will further advance team 
learning. Table  gives specific research
directions. 

organize and present salient information at the 
right time, visualized in an intuitive way. 

Another core challenge is centered 
trustworthiness and usefulness of feedback. 
When someone generates and/or receives 
feedback, how can they best assess its relevance, 
accuracy, and usefulness? Training instructors 
and learners on how to efficiently and effectively 
generate feedback, as well as how to effectively 

Table 

Research Opportunities to Advance Use of Data to Provide Feedback 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Defining best 
practices with 

existing tools and 
infrastructure 

Conduct a rigorous
literature review to
consider best practices
in who gives feedback
and in what format (e.g.,
peer vs. instructor
feedback, written vs.
oral feedback, etc.).

Explore mobile apps and
online tools used to
facilitate feedback and
minimize distractions
and “off task” behaviors.

Research projects to
identify techniques that
can be used to automate
productive feedback so
it can be offered more
immediately.

Identify best practices in
how mobile apps can be
used to provide timely
and meaningful
feedback to learners.

Conduct studies to
consider aligning
feedback with intended
outcomes and learner
context modality (e.g.,
gamification of the
learning tasks, online
discussions, video
analysis and feedback,
etc.).

Further analysis and
development of tools
that facilitate and
accelerate feedback
across varying
dimensions of team
learning such as process
(learning, interactivity),
productivity (task
completion, ideation),
behavior, etc.



59

Analyzing, 
reporting, and using 

data while teams 
work (embracing 
and tackling the 
complexity and 

dynamic nature of 
team learning) 

What can peer feedback
accurately provide to
the receiver of the
feedback?

Examine the impact of
assigning roles and
other team-based
practices on
optimization of the team
learning.

How might providing
peer feedback in team
learning scenarios
facilitate both individual
and team learning?

How can we best
formatively assess
individual and team
learning to guide the
learner (peer and/or
instructor feedback) and
help them identify and
address their own
barriers to learning (self-
feedback)?

What are best practices
in task and group
designs to optimize
team learning?

Develop platforms or
tools that allow the
analysis and reporting of
varying and large data
sets in real time to
inform decisions while
the team is learning.

Determine best
practices for utilizing
unobtrusive sensor-
based and audio/video
digital data streams to
improve our
understanding of team
and multi-team
behavior, coordination,
and learning, including
visualization of the data
to uncover meaningful
indicators to optimize
learning.
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Theme 2E: Enhancing Cognitive  
Demand and Mastery of Learning 
Outcomes via Analytics 

Theme Editors: Samuel Spiegel, Jessica Vandenberg, 
and Dezhi Wu 

Modern life and work require more advanced 
ways of thinking and dealing with vast amounts 
of information and data. Our ability and the 
mechanisms to access information have changed, 
and there are implications for how we solve 
problems. However, as technology has changed, 
the way in which we solve problems has also 
changed. Today, many approach problems by 
spending less time in upfront formalized 
"research" and more time in trial-and-error and 
high-risk approaches. This necessitates focusing 
learning on higher cognitive demand levels 
(Francis, 2016). The added complexity and 
difficulty of tasks with higher cognitive demands 
lends itself to improved team learning outcomes 
(e.g. as long as the level of cognitive demand is a 
“stretch” but not a chasm, with respect to 
students’ present level of expertise and ability) 
(Hamar et al., 2016). 

Developing data access and analysis protocols, 
tools, and technologies that allow real-time 
feedback to both the learner and instructor can 

enhance the ways in which students can be 
assessed and then guided to master higher-level 
learning outcomes. A challenge is defining tasks 
that are cognitively demanding for both 
individuals within the team and for the combined 
team effort. Sometimes, the navigation of 
working in a team adds complexity, but not 
necessarily the complexity we intend or want 
students to focus on. 

One approach to this challenge is cognitive load 
theory, which suggests techniques for presenting 
information in a way that optimizes intellectual 
performance of all learners—for example, by 
coding multiple information elements as one 
element to reduce cognitive load (Kirschner, 
2002; Paas, Tuovinen, Tabbers, & Van Gerven, 
2003). Other techniques include the use of AI 
(Murphy, 2019) and gamification of tasks 
(Osatuyi, Osatuyi, & De La Rosa, 2018) to scaffold 
learning. 

Specific research directions are listed in Table .
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Table 

Research Opportunities to Enhance Cognitive Demand and Mastery of Learning Outcomes via Analytics 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Assessing and 
understanding 

cognitive demand  

Propose or host multi-
disciplinary meetings
supported by various
societies to consider
defining cognitive
demand definitions
that may be
contextually based or
learner based—is the
same task the same
cognitive load for each
learner and in each
context?

Develop a glossary and
more clearly define
assessment theories
and approaches, and
cognitive demand.

Research projects that
investigate data mining
techniques on log data
that have been
successful for
evaluating individual
learning and pilot them
on collaborative data to
assess learning and
cognitive demand
levels.

Improve on methods to
automate
coding/classification of
discourse data and
alignment with
cognitive demand of
the task.

Analyzing, 
reporting, and 

using data while 
teams work 

(embracing and 
tackling the 

complexity and 
dynamic nature of 

team learning) 

Better articulate
observable patterns of
different levels of
cognitive demands in
different settings.

Consider ways to more
tightly align the
cognitive demand of
the learning outcome,

Consider how cognitive
demand should
influence the design of
the team learning.

Study ways to most
efficiently establish
scaffolds that support
learner success without
reducing cognitive
demand.

Analysis and
development of tools
that facilitate and
accelerate the
collection, analysis, and
useful reporting of
varying data sets that
inform decisions
regarding cognitive
load and adjustments
to the learning tasks.
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assessment, and 
learning task. 

Develop platforms or
tools that allow the
analysis and reporting
of varying and large
data sets in real-time to
inform decisions while
the team is learning.
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Introduction 
Past research in STEM education has embraced 
numerous pedagogical benefits of collaborative 
learning environments, including increased 
learner engagement and improved learner  
satisfaction with STEM content areas and majors 
(Holland, Major, & Orvis, 2012; Michael, 2006; 
Prince, 2004). Collaborative learning 
environments extend opportunities for both 
knowledge acquisition and communicative 
experiences, as these facilitate deeper learning 
through the introduction of creative ideas and 
approaches via shared mental models and active 
participation in project- and problem-based 
instructional settings. These benefits and 
opportunities improve both knowledge 
acquisition and the development of 
communication skills (Duffy & Cunningham, 1996; 
Goggins, Jahnke, & Wulf, 2013). Additionally, 
more intensive teamwork and the development 
of soft skills can be enhanced through intentional 
peer, content, and instructor interactions that are 
supported via collaborative learning 
environments (Arnaud, 2013; Kuh, Pace, & 
Vesper, 1997). As a result, there is a likely 
enhancement in the development of critical 
thinking, problem solving, decision-making skills 
(Cortright, Collins, & DiCarlo, 2005; Walker, 

2003), and learner engagement with STEM 
content (Johnson, Johnson, & Smith, 1998). 

The focus of Track 3: Supporting Digital Teams 
Using Active Pedagogical Strategies was the 
exploration of pedagogical mechanisms to 
support, extend, and enhance settings that utilize 
digitally-mediated team and collaborative 
instructional approaches. The primary topics of 
Track 3: Supporting Digital Teams Using Active 
Pedagogical Strategies included the following: 

● Defining pedagogical strategies for

technology-enhanced active learning to

support synchronous and asynchronous

student team and collaborative events;

● Underpinning the group and collaborative

activities within STEM classroom settings via

cognitive science, including peer

interactions, intrinsic/extrinsic

incentivization, and lurker/lone wolf

interactions; and

● Exploring andragogical/pedagogical

methods leading to

autogradable/reusable/scalable problem
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design, Individual/Team Readiness 

Assessment Tests (IRAT/TRAT), 

incentivization/assessment/accountability 

protocols, and actionable lesson plans. 

Sample guiding questions for Track 3 included: 

● What are key characteristics of effective
pedagogical strategies that support
engagement of all learners in digitally-

mediated collaborative and team-based 
learning? 

● What are critical tenets of pedagogical
strategies that effectively minimize
challenges typically associated with digitally-
mediated collaborative and team-based
learning?

● Which pedagogical  “best practices” support
accountability and assessment of the
contributions/achievements of individual
students when utilizing digitally-mediated
collaborative and team-based learning?
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Theme 3A: Pedagogical Methods 
 for Team Management

Theme Editors: Richard Hartshorne, Hans Esteves, 
 Jody K. Takemoto, and Kenneth C. Walsh 

Introduction
In recent years, a relatively low percentage of 
young people have pursued STEM careers which, 
alongside the current aged population of 
engineers and scientists, has resulted in a 
continually diminishing STEM workforce pipeline 
(President’s Council of Advisors on Science & 
Technology [PCAST], 2010, 2012). According to 
the 2012 PCAST, colleges across the nation ought 
to increase the number of graduates in STEM 
careers by one million over the next decade. 
Consequently, there has been an unprecedented 
emphasis on reforming STEM education in hopes 
of addressing the impending needs and the 
extended implications of establishing and 
disseminating research-based evidence for 
increasing interest and engagement in STEM 
education and careers. Additionally, as STEM 
fields and careers are becoming increasingly 
specialized, the ability to quickly acquire, 
manage, and communicate/share knowledge is 
becoming increasingly important for tomorrow’s 
STEM workers. 

Often seen as a major contributor to the 
decreased interest of American young people in 
pursuing STEM degree programs and careers, is 
the perceived lack of excitement and personal 
relevance attributed to STEM educational 
settings (Holmegaard, Madsen, & Ulriksen, 2014; 
Lace-Costigan, 2017; Palmer, Burke, & Aubusson, 
2017; Prieto & Dugar, 2017). Indeed, 

considerable evidence has shown that actively 
engaging students yields greater levels of 
understanding and retention of content (DeHaan, 
2005). Therefore, affording STEM learners with 
numerous and diverse collaborative, 
communicative, and problem-solving 
opportunities is becoming increasingly necessary, 
though often overlooked, in STEM (Vennix, den 
Brok, & Taconis, 2017; Engle & Conant, 2002; 
Fiore, Graesser, & Greiff, 2018). Further, the 
facilitation of such skills, and the utilization of 
associated learning environments and 
pedagogical approaches, are not typical of STEM 
instructional practices. Thus, revising STEM 
pedagogical approaches and transitioning from 
teacher-centered to student-centered, 
collaborative, active approaches may be an 
effective strategy to simultaneously address 
these issues (Mayer, 2009; Meltzer & Thornton, 
2012). 

Consideration of a number of factors associated 
with the integration of effective pedagogical 
methods to support team management include, 
but are not limited to: (a) maximizing the student 
role in team management and minimizing the 
instructor role, via pedagogical approaches; (b) 
determining the most effective pedagogical 
methodologies of support team management in 
both synchronous and asynchronous DMTL 
learning environments; and (c) assessing the 
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impact of the role of group selection approaches, 
and resulting group dynamics, on team 
management strategies implemented. 

In shifting from more teacher-centered team 
management to more student-centered team 
management, numerous social, cognitive, and 
task-related dynamics, alongside varied 
pedagogical considerations, must be addressed. 
Such issues include (a) group structure, (b) team 
roles, (c) establishing team norms, (d) task 
relevance, (e) communication, and (f) 
incentivization.   

Group/Team tructure
For many students in STEM fields, collaborative 
learning in complex instructional settings is a new 
endeavor. Thus, simply putting students in groups 
and assigning a task is often a futile approach to 
integrating collaborative learning in an 
instructional setting. Adding further complexity is 
the integration of digital tools to support the 
collaborative learning environment. Thus, 
consideration of methods to support effective 
group structuring and team assembly are critical 
to address, particularly in the initial phases of 
collaborative learning.   

Scaffolding of the collaborative learning 
environment and use of varied digital tools that 
support collaborative learning are useful for 
orienting learners to new instructional 
approaches and settings (Quintana et al., 2004). 
For example, skills such as identifying key tasks, 
estimating the group workload, distributing tasks 
among group members, and accountability are 
new to many learners. Thus, scaffolding activities, 
such as modeling effective collaborative learning 
with gradual fading, are useful for setting 
expectations and outlining the structural makeup 
of groups (Collins, 1991). Additionally, effective 
scaffolding can support feedback mechanisms, 

group management, the role of leadership, and 
illustrate appropriate team member 
interactions—all processes necessary to turn a 
“group” into a “team.” However, we have to be 
mindful that some students prefer to work 
individually. These “lone-wolves” may prefer 
learning on their own and in certain cases, 
depending on whether the task at hand benefits 
significantly from teamwork, this desire might be 
accommodated. 

Effective group and team assembly approaches 
are pivotal to the success of collaborative 
learning environments. Although there is much 
existing research on this topic, it is limited in 
STEM contexts, and has not explored the use of 
advanced digital tools, data analytics, and other 
methods for supporting team assembly. A variety 
of areas for future exploration in this realm 
include: (a) optimizing team size with tasks and 
goals, (b) team assembly via advanced learning 
technologies (e.g , social networks, learning
management systems), and (c) interest-based 
team selection (e.g. self-selection, social style).   

Team oles
Orienting students to team roles is an important 
task to increase learner engagement in the 
collaborative learning process (Herrenkohl, 
Palinscar, Salvatore, & Kawasaki, 1999). 
Understanding the various roles within a team, as 
well as the responsibilities and associated tasks 
aligned with each role, are important processes 
to establishing effective collaborative learning 
environments. Although identifying the various 
roles, responsibilities, and tasks is a necessary 
and critical step in team formation, it is also vital 
to distinguish between social, cognitive, and task 
functions (Dillenbourg, 1999). Prior to 
determining teams and team roles, a variety of 
approaches may be taken to ensure that students 
are well matched by role, such as a personality 
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assessment or measuring transactivity (Feichtner 
& Davis, 1984). This may be useful, as it can be 
quite challenging to have a team comprised 
wholly of students who are relationship-oriented 
versus task oriented, or a team leader who 
provides inconsistent interactions with team 
members. The Myers–Briggs Type Indicator and 
other social styles assessments have also proven 
useful for students to find an awareness of self, 
how they interact with others, and how this plays 
out in the real-world. Another option might be 
the team-role questionnaire from Belbin (2012), 
which can be used to form teams based on a 
distribution of roles, or teams designed 
specifically to match diverse roles and other team 
characteristics, including their engagement. This 
can lead to an important class discussion on what 
team processes are and how they should interact 
with each other, including whether there might 
be an opportunity for shared leadership within 
the team. If students have input into the team 
formation, it is important to make sure they have 
criteria that are learning-focused, so that they are 
not making decisions based on friendship and 
cultural similarity. It may prove an interesting 
research question to explore how assembling 
teams based upon complementarity of social 
roles on a team can be used to maximize 
collaboration effectiveness and how one can 
avoid the natural social media echo-chamber 
effect on team formation. 

In addition to breaking students out by 
social/cognitive/task roles, other options such as 
skeptic, scribe, leader, researcher, and 
communicator, have proven successful. Mathieu, 
Tannenbaum, Kukenberger, Donsbach, and 
Alliger (2015) identify key roles of organizer, 
doer, challenger, innovator, team builder, and 
connector. In addition, Belland, Glazewski, and 
Ertmer (2009) discuss improved learning 
outcomes, particularly for mainstreamed 

students (i.e., special needs students placed in 
general education classrooms) as a result of 
assigning team roles such as group manager, 
guidance provider, and task performer. The roles 
can also be established based on the type of 
activities that will be completed by the team. 
Furthermore, it can be useful to rotate roles so 
we challenge students to step outside their 
comfort zone and take on roles that may not be 
their natural inclination. This also helps students 
to see the team process from different vantage 
points. Moreover, frequently re-assigning or re-
permuting students minimizes the risk that the 
group assignment and any outstanding conflicts 
negatively impacts group or team dynamics. 

There will always be many roles not anticipated 
by the instructor. Ultimately, whether instructors 
choose self- or forced-team selection will depend 
on their goals for the activity. Are they looking for 
the best average team, equally-divided teams, or 
best-best team? Self-selection may produce the 
best-best team, but may leave others in poorer 
teams so that the average is lower (think back to 
team selection in elementary school gym class!). 
Learning versus productivity is a second level 
with this—is the product the primary goal, or is 
learning the primary goal? 

Establishing eam orms
Although the scope of, expected adherence to, 
and ability to self-establish norms is highly 
dependent on the learning environment and time 
constraints, establishing such norms is critical to 
the effectiveness of team dynamics, and is most 
effective when norms are derived and developed 
by team participants (Scardamalia & Bereiter, 
1996). Subsequently, these norms can be used by 
learners at varied academic levels and can serve 
as useful reminders for learners to abide by the 
primary tenets of the norms, as well as serving as 
a deterrent for common team issues, such as 
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social loafing. Team norms are especially crucial 
to help students engage in socially shared 
regulation of learning (Järvelä & Hadwin, 2013). 
By generating a shared understanding of how to 
collaborate, students can then manage 
expectations about goal-setting, planning their 
tasks and addressing challenges that they may 
face when working collaboratively. 

A jigsaw pedagogy can also be a useful tool for 
facilitating the establishment of team norms, as 
each learner possesses elements of data essential 
for task completion, particularly as the jigsaw 
pedagogical approach scaffolds learners on the 
process of sharing ideas and then negotiating 
among team members. Although initially a time-
consuming process, such team dynamics and 
role-scaffolding activities can serve as valuable 
lessons for learners, and can provide mechanisms 
for accountability within the collaborative 
environment (Saleh et al., 2018a; 2018b). 

Task elevance and gency
Using grades as a motivating factor for activity 
completion is often insufficient. Consequently, 
grades in combination with other pedagogical 
approaches and structures are necessary to 
appropriately incentivize learning experiences. 
Such approaches and structures include (a) 
evoking interest and providing relevance to 
learners; (b) providing opportunities for shared 
goals, focusing on real-world problem issues and 
concerns; and (c) affording students with agency, 
perhaps via development of a measure of 
individual learner contributions in the 
collaborative learning process. 

Communication 
Communication is a key component of any team 
process, and processes should be outlined as part 
of the team norms, as social interaction 
preferences can inform how learners might 

manage their communication. For example, 
feedback is an essential form of communication 
in a collaborative learning environment, as it can 
serve as an option of encouraging students 
during the teamwork process (often in real-time 
via technological applications). Thus, in providing 
effective feedback in a team setting, it is 
important to consider a multi-layered approach; 
there should be both periodic team and 
individual evaluations, as well as evaluations 
based on both processes and products. These can 
often be mediated by digital tools, such as LMSs, 
which can provide a dashboard (familiar 
especially to those students who are gamers) that 
individually shows each student their level of 
contribution relative to the collective patterns of 
other members of the team (Bodemer & Dehler, 
2011). Other options include a system like 
Classcraft, or a voice-activated device that allows 
advisory feedback. 

Students tend to respond to feedback 
(particularly open-ended feedback) from peers, 
rather than an authority figure. Consequently, 
soliciting peer feedback throughout the 
collaborative learning process can improve the 
overall effectiveness of the learning 
environments, as well as help to moderate 
faculty workload, shifting focus from an 
assessment perspective to a more 
facilitative/instructional/mentoring perspective. 
As self-reflection is also a critical element of 
feedback, it is important to consider varied and 
frequent approaches to integrating such 
elements into the feedback and communication 
process of DMTL events. 

Incentivization 
Incentivization is an important consideration 
when developing any learning experience, and is 
particularly important in collaborative learning 
experiences, where an individual’s performance 
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will influence the experience of multiple learners. 
As previously mentioned, task relevance and 
providing for each learner’s agency in the 
development of teamwork assessments are 
important to address. There are a variety of 
additional incentivization approaches and 
considerations, including: (a) utilizing a point 
and/or rating system to reward positive team 
collaboration that impacts products, processes, 
and outputs, and clearly differentiating between 
each; (b) affording learners opportunities to 
appropriately, effectively, and contextually rate 
the contributions of fellow team members 
(research should explore how assembling teams 
based upon complementary social roles on a 
team can be used to maximize collaboration 
effectiveness, which can then be used to help 
understand, for example, how students respond 
differently to peer feedback); (c) establishing 
project milestones and using time parameters to 
gamify the experience (e.g., through scaffolding 
or a leveling system); (d) establishing recognition 
parameters and opportunities for both whole 
team performance and individual excellence 
within teams; (e) capitalizing on co-orientation to 
the subject matter, future profession, and 
community built among students on task and 
group orientation; (f) supporting agency and 
accountability through modeling and 
clear/thorough role delineation; and (g) providing 
diverse feedback structures and opportunities to 
reconcile perceived differences in feedback, and 
others. Others include reward structures such as 
changing team roles (e.g., promoting students to 
“learner leaders”; Paulin & Haythornthwaite, 
2016). Providing examination of incentivization 
techniques for DMTL is an area with limited 
existing research, so there are numerous 
opportunities for short- and long-term 
exploration.    

Pedagogical pproaches
From the discussion associated with the sub-
theme, “maximizing the student role in team 
management and minimizing the instructor role, 
via pedagogical approaches,” several 
characteristics and key issues to consider 
emerged for consideration of further examination 
when designing, developing, and implementing 
pedagogical approaches to support DMTL: 

● Facilitating team- and problem-based
learning and other inquiry models by
providing challenging and meaningful tasks
to teams while using backwards planning
and appropriate grouping strategies to
ensure success and rubrics to evaluate
progress, following guidance from Ertmer et
al. (2009).

● Providing challenging and meaningful tasks
to students through other research-based
instruction strategies including service
learning, inquiry-based learning, and
project-based learning (Froyd, Borrego,
Cutler, Henderson, & Prince, 2013).

● Differentiating collaborative learning
processes from the products is important. As
management of the team workflow is
different from thinking about learning
outcomes, learners need to be sensitive to
the different outcomes for which they might
be held accountable.

● Providing both formative and summative, as
well as expert and peer, feedback is vital to
the team process, but can also be an
important pedagogical tool (Michaelsen &
Schultheiss, 1989).

● Establishing shared cognition is critical, and
can be used to create synergy. Interestingly,
learners are unknowingly applying theory,
while simultaneously learning theory, which
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can lead to epiphanies in the classroom. This 
can also lead to a discussion of socially 
shared regulation and other regulations. 

● There is power in activity theory, play, and
learning (Danish, Enyedy, Saleh, Lee, &
Andrade, 2015).

● Virtual environments can be challenging, but
done correctly, can provide real-world
learning experiences, which is a key tenet of
meaningful learning experiences (Howland,
Jonassen, & Marra, 2013; Jonassen, 1995).

Challenges
While these characteristics and issues provide 
researchers and practitioners with numerous 
opportunities for exploration, there are 
additional challenges related to DMTL to 
consider. Challenges identified included: 

● In terms of gamification and learning, there
is an issue of avoiding “seductive details”
which are interesting but ultimately a
distraction, and balancing fun and learning is
always critical (Adams, Mayer, MacNamara,
Koenig, & Wainess, 2012).

● Moderation of the team process in real time
is critical to ensure that dialogue remains
professional and that someone is paying
attention for any coded or meaning-laden
language, such as
racial/ethnic/cultural/gender biases. This
may be an opportunity for the supervision of
the discussion by an agentic computer
program, with predetermined decisions
regarding how to proceed if the agent
detects unprofessional or biased language.

● Students form cliques quickly and
intrinsically, and as such, we must observe
this behavior and make every effort to
defuse it in the classroom or team setting.

● It is important to address the digital aspect;
what is lost or gained when the team
process is conducted within a technology
environment? Are there tradeoffs between
face-to-face and online learning
environments? Do certain groups (perhaps
K–12) need more face-to-face support than
other groups?

● A set of metrics are needed indicating
competencies and standards for excellence.
This includes processes and specific
outcomes for K–12 and/or higher education
and can be arranged in hierarchies such as
essential, desirable, and optional
competencies (Earnest, 2005).

● Standards for effective assessment are
needed.

● We must ask—what motivates students to
fully participate in a digital ecosystem, and
can we provide such motivation?

● Do team challenges vary as a function of
pedagogical tasks or contexts?

● Classification of DMTL and how it relates to
goals, pedagogies, methods, assessments,
and research should be differentiated for
synchronous versus asynchronous
environments; on-campus, hybrid, and
distance learning environments; and scope
of group/teamwork based on size of project,
time for completion, and group size.

As outlined here, it can be challenging to rethink 
the systems that we are in but it is even more 
critical to challenge the “center” of the field in 
order to promote change (i.e., what counts as 
participation in DMTL, what are the goals of 
DMTL, how does DMTL relate to the needs of the 
field in 5 years). Borrego and Henderson (2014) 
have outlined specific strategies which can be 
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reason, we have established 1–3–5 year 
goals and research objectives, outlined in 
Table 1 .

taken to bring about such a change, but the key 
remains novel and improved ideas.  For this 

Table 1

Research Opportunities to Examine Pedagogical Methods for Team Management 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Maximizing 
student 
role(s) in 
team 
management 

Conduct
multidisciplinary
reviews of state-of-the-
art in DMTL.

Conduct focus groups
with learners (K–20) to
determine their
experiences in DMTL
(e.g., team
management and
collaboration).

Analysis of themes
from focus groups →
share themes with a
smaller group that is
representative of the
learner population to
discuss next steps and
design an action plan.

Examination of
approaches to prepare
STEM faculty/teachers
to support student-
centered DMTL.

Unpacking
interdisciplinary
approaches that focus
on team management.
Research should focus
on integrating these
perspectives, or
understand the extent
to which these
perspectives align (or
not). What are the
challenges in
integrating these
perspectives?
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Supporting 
team 
management 
via 
pedagogical 
strategies 

Develop best practices
and implementation
strategies for mixed
realities and other
DMTL technologies.

Evaluate the impact of
reforming teams
frequently versus the
use of consistent teams
(e.g., shared mental
models, learning
outcomes, soft-skills
outcomes).

Examining best
practices in workplace
DMTL and
applications/alignment
in K–20.

What are best practices
in inquiry approaches
to supporting team
management in the
context of digital
environments for K–
12? There is a wide
range of what we mean
by inquiry—what is the
relationship between
managing the team and
inquiry processes?

Group 
selection 
processes and 
team 
management 

Observation/
ethnography of
affective and social
experiences of DMTL in
higher education [F2F,
hybrid, and fully
online].

Review and assess the
characteristics of the
most successful
mainstream gaming
platforms that support
DMTL.

Exploring the role of
social capital in DMTL
teams.

Longitudinal
examination of the
effectiveness of design
characteristics of new
DMTL environments,
pedagogical
approaches, and new
constructs related to
team selection and
management.
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Theme 3B: Engagement and 
Accountability 

Theme Editors: Eloy Hernandez, Richard Hartshorne, 
 and Asmalina Saleh 

Introduction
Before we start talking about engagement and 
accountability in DMTL, we need to provide 
broad definitions for both concepts and make a 
distinct separation between engagement and 
motivation. This last remark is crucial because a 
typical misconception in the community is that in 
order to increase learner engagement, 
motivation is essential. This is not necessarily true 
for one can be motivated and not engaged and 
vice-versa. Although engagement is usually the 
"what," motivation is typically the "why" 
(Galloway, 2016). Put another way, engagement 
is what links motivation and learning (Sinha et al., 
2015). Of course, they can both work 
synergistically in education because one can 
affect motivation both intrinsically and 
extrinsically, thus positively influencing 
engagement. 

Student engagement in learning depends on 
three main factors that keep the individuals 
involved in any activity in the classroom or 
online—their emotions, behaviors, and thought 
processes (Fredricks, 2014). In order to promote 
students’ engagement in an educational 
environment, one needs to find ways to affect 
any of these three factors to help students realize 
that they are learning and that through the 
learning experience, they are achieving 
something of value. According to James (2014), 
instructors who want to effectively engage 

students in learning activities need to be mindful 
about how to apply the following six elements: 
“make it meaningful,” “foster a sense of 
competence,” “provide autonomy support,” 
“embrace collaborative learning,” “establish 
positive teacher–student relationships,” and 
“promote mastery orientations” (paras. 3–8). 

When we think about motivation in student 
learning, one needs to think of what drives the 
behavior of these individuals in the classroom or 
online to attain satisfaction and avoid 
dissatisfaction. This perspective derives from 
Herzberg's two-factor motivation theory, broadly 
used in management but scarcely employed in 
education. For determining how to motivate 
student learning, one needs to figure out what 
are the real needs of students in their 
corresponding environments. It is known that for 
the most part, needs tend to evolve from 
external to internal motivation. Therefore, 
promoting collaborative learning, treasuring 
teamwork, and promoting a sense of contribution 
and accomplishments using external nudges can 
promote a culture of learning with a purpose. 

In order to increase motivation and engagement, 
simultaneously, one needs to make sure that the 
learning ecosystem eliminates demotivators 
while one retains motivators and rewards 
students for their achievements and 
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contributions. One should not ignore that new 
flexible learning spaces and adaptable IT 
capabilities engage and motivate students in 
learning. Having established the differences and 
similarities between engagement and motivation, 
we can proceed to define student learning 
accountability. This construct refers to keep 
students committed and connected to their 
learning. When we talk about student learning 
accountability, we seek to help students take 
ownership and responsibility for their own 
learning. A strategy we endorse herein to 
enhance accountability among students centers 
on the creation of independent collaborative 
educational ecosystems and providing clear 
guidance for expectations and assessments. 

Motivating earners in DMTL
A key consideration in increasing learner 
engagement, particularly in DMTL, is motivation, 
which is complex and often a research topic. 
While much research has been conducted on 
motivation and collaborative learning, the 
knowledge base related to motivation and DMTL 
is sparse, particularly in STEM contexts. 
Consequently, it is important to holistically 
consider factors and characteristics of 
pedagogical and assessment approaches in DMTL 
that maximize learner motivation, and ultimately 
positively influence engagement in the learning 
environment. Such issues and structures to 
consider include: (a) individualizing 
incentivization; (b) structuring learning scenarios; 
(c) utilization of role roadmaps and checkpoints
as tools for assessing engagement and
participation; (d) providing links to future
workplace practices (randomized team selection,
DMTL approaches in varied workplace settings);
(e) examining the role of simulated consequences
for positive actions as well as failure to act or

poor decision-making; (f) exploring the role of 
diversity and inclusion (addressing shunning, 
ignoring, or actively working against others in the 
group); (g) identifying the role of team norms to 
help overcome conflict and facilitate a motivating 
and inclusive DMTL setting; (h) establishing 
comprehensive “best practices” for group 
monitoring and encouragement of effective team 
practices; (i) exploring task/activity/goal types 
that facilitate motivation and engagement (i.e., 
mastery orientation vs. performance orientation 
coordination vs. collaboration); (j) integrating 
higher order goals, such as in the motion picture 
Apollo 13 where a team had to create a carbon 
monoxide filter to save the astronauts, and the 
influence of seeing one’s goals as part of a larger 
goal, as a mechanism for engagement in DMTL; 
(k) exploring the role of the scale of time or
difficulty and frequency of team composition
modifications and the influence on engagement;
(l) diversification of individual and group grading
components of DMTL and their influence on
engagement; and (m) exploring the influences of
game-based and problem-based learning
approaches, where students are motivated by the
designed contexts, on learner engagement.
Considering these approaches and their impact
on motivation and engagement will improve the
diversity, inclusivity, and effectiveness of DMTL
settings.

Accountability for ll in DMTL
nvironments

Even the most seasoned instructor who 
integrates collaborative learning as a key 
pedagogical approach often struggles with 
ensuring and measuring accountability of 
individual team members, as well as the group 
as 
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a whole. There are a number of strategies and 
associated issues to consider in ensuring 
individual accountability, the performance of the 
group as a whole, and a positive environment. 
These include: (a) understanding varied 
characteristics or participation and learning, (b) 
making participation visible (e.g., network 
diagrams of participation, perhaps from digital 
records), (c) increasing the role of accountability 
in the DMTL process by allowing students to take 
the lead, (d) assessing team contributions and 
providing feedback (both peer and instructor) 
based on individual contributions, and (e) 
considering how to account for passive learning 
(with a high level of cognition/learning). Of 
course, one should not ignore that to truly 
promote learning accountability among students, 
instructors need to set clear expectations from 
the very beginning, and state specific learning 
objectives for each session. 

Grouping trategies to ncrease
ngagement and ccountability

Although engagement and accountability are 
most definitely different constructs in DMTL, and 
there are numerous team development 
strategies in this field, it is important to consider 
the potential for merging best practices related 
to team formation, increasing engagement, and 
providing effective accountability measures and 
processes for both individuals and the team as a 
whole. Whether by pre-reading activities, 
readiness assessment tests, or in-class activities, 
providing a collection of both similarities and 
differences related to the best practices 
associated with these unique aspects of DMTL 
has the potential to enhance the effectiveness of 
DMTL settings in STEM. This approach would in 
turn, help optimize the orientation of learners to 
these relatively new learning environments, as to 

deepen the professional development of faculty 
and instructors to implement emerging DMTL-
based pedagogical practices. 

Pedagogical pproaches to nhance
the evelopment of oft- kills
Extensive diverse collaborative learning models 
that afford learners numerous opportunities to 
develop soft skills (National Academies of 
Sciences, Engineering, and Medicine, 2017), 
which are becoming increasingly important in 
STEM careers, exist in a variety of fields, but are 
not typically integrated into STEM instructional 
settings. Flipped classroom methodologies 
(Mazur & Hilborn, 1997), team-based learning, 
and “Johnson’s Learning Together Techniques” 
(O’Donnell & Kelly, 1994) are a few such 
pedagogical methodologies that have gained 
traction in varied STEM settings. Other inquiry-
based pedagogical approaches and models 
support the development of leadership and other 
soft skills, with Socially Shared Regulation of 
Learning (SSRL), self-directed learning (SDL), and 
co-regulated learning as possible models to 
support these pedagogical approaches. 
Extending these, it is important to consider the 
role of technological applications to support the 
development of soft skills, as well as how the 
integration of digitally-mediated environments 
(i.e., technological applications) impacts both 
what soft skills are important, as well as the 
emergence of new soft skills. 

Challenges
Although these characteristics and issues provide 
researchers and practitioners with numerous 
opportunities for exploration, there are 
additional challenges related to engagement and 
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accountability in DMTL, including but not limited 
to: 
● How can one use DMTL to maximize

individualization of incentives when
structuring new learning scenarios?

● What is the role of simulated consequences
for positive actions and poor decision-
making in a DMTL space?

● How can one address exploring the role of
diversity and inclusion in a virtual
environment, and what are the
characteristics of team standards to address
conflict resolution and facilitate group
identity in a digital setting?

● Develop strategies to proactively promote
randomization in team selection in DMTL.

● Explore the influences of game-based and
problem-based learning approaches in a
virtual space.

● Investigate and understand new approaches
that facilitate motivation and engagement in
DMTL, and study the role of the scale of
time, difficulty, and frequency of team
composition modifications and the influence
on engagement.

● Increase the role of accountability in the
DMTL process and understand the multiple
characteristics of participation and learning,
and make participation visible in a digital
environment.

● Assess team and individual contributions
and account for passive learning in DMTL.

For these reasons, we have established 1–3–5 
year goals and research objectives outlined in 
Table 1 .
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Table 1

Research Opportunities to Examine Engagement and Accountability in DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Maximizing 
student 

accountability 

Explore the
effectiveness of short-
term professional
development
opportunities for
faculty to learn to use
analytics to manage
and evaluate team
processes.

Measure the
effectiveness of varied
approaches/models of
peer evaluation and/or
peer feedback.

Focus group to
determine student
needs for
understanding/using
DMTL analytics; how to
make analytics
accessible to students /
instructors.

Survey of instructor use
of analytics as a tool for
accountability.

Assessing and engaging
individual and group
learning outcomes.

Exploring varied
point/credit allotment
models and the
influence on
engagement and team
accountability.

Integrate the use of
dashboards as a means
to promoting visibility
of teamwork and
determine useful
metrics, supporting
faculty and student
support for DMTL.

Explore models of
cultivating a culture of
accountability within
student life as opposed
to a culture of policing?

Measuring validity and
reliability of
assessment
instruments (both
individual and group).

Identify best practices
for building team
accountability?
Develop and measure
the effectiveness of
accountability tools.

Develop a
guidebook/resource for
instructors?
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Increasing 
student 

engagement 

Develop best practices
and implementation
strategies for mixed
realities and other
DMTL technologies.

Examine models of
motivating/orienting
faculty/students to
support engagement
and accountability in
DMTL?

How can we facilitate
collaborative
interactions with
advanced learning
technologies?
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Theme 3C: Emerging Pedagogical 
 Strategies 

Theme Editors: Chris Dede, Richard Hartshorne, 
Leanne Coyne, 
and Jody K. Takemoto 

Introduction
The most transformative uses of collaboration 
technologies in  
education create or support sustained 
communities of learners,  
educators’ communities of practice, and 
knowledge building experiences (Dillenbourg, 
Baker, Blaye, & O’Malley, 1995; Laurillard, 2009; 
Fishman & Dede, 2016). Emerging technologies 
such as XR (including virtual, mixed, and 
augmented reality) and AI can aid with core 
aspects of knowledge advancement, such as 
iterative “idea improvement” and the creation of 
“epistemic artifacts” that externalize knowledge 
as the goal of the learning enterprise 
(Scardamalia & Bereiter, 2006). Social media, 
while no longer novel, are continuously evolving 
new affordances based on a tacit epistemology 
that “knowledge” is collective agreement about a 
description combining facts with other 
dimensions of human experience, such as 
opinions, values, and spiritual beliefs. Within this 
framework, expertise is an attribute of the 
community as well as its individual members and 
involves understanding disputes in detail and 
proposing syntheses that are widely accepted by 
the group (Dede, 2016). 

These emerging/evolving tools and media pose 
challenges for teaching because they involve a 
different epistemology than communicating and 

assimilating pure factual information. Immersive 
authentic simulations based on XR enable types 
of collaborative learning that prepare students 
for life as well as for further academic work, and 
the various types of real-time information they 
generate provide opportunities for diagnostic 
assessment embedded in learning and formative 
assessments for process improvements by 
teachers and students (Dede, Jacobson, & 
Richards, 2017). AI offers a type of cognition and 
knowledge generation complementary to human 
beings in its strengths and limitations (Center for 
Curriculum Redesign, 2019). Research is urgently 
needed on how to use these powerful 
technologies well and transformatively via 
innovative instructional methods, rather than 
simply automating conventional approaches to 
collaborative learning that are no longer 
sufficient in the era of the Fourth Industrial 
Revolution (World Economic Forum, 2019). 

Innovative edagogical pproaches
and tudent chievement using DMTL.

By their nature, innovative and emerging 
pedagogical approaches have extensive issues for 
consideration. This is due in part to the 
complexities associated with the STEM content 
area and instructors typically lacking expertise in 
the implementation of innovative, emerging 
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pedagogical approaches, further complicated by 
the integration of digital mediation. That said, 
there are extensive opportunities for 
groundbreaking research examining best 
practices of innovative pedagogical approaches 
and student achievement using new tools, media, 
and experiences for fostering DMTL. Such 
opportunities and issues to consider include: (a) 
integrating XR into DMTL environments, and 
examining what it means to support XR-based 
learning environments; (b) studying factors that 
maximize the quality of XR learning; (c) merging 
embodiment and play with XR-based pedagogical 
approaches; (d) visualizing student-centered XR 
pedagogical approaches; (e) considering how 
embodied cognition support collaboration and 
team-based experiences; (f) exploring the role of 
simulations of collaborative and team-based 
experiences in STEM learning environments; (g) 
examining simulations for development of soft 
skills, as opposed to solely knowledge-based 
outcomes, in DMTL settings; (h) exploring 
interactions with non-human teachers/facilitators 
and team members (i.e., robots, AI); (i) examining 
the role of AI in team processes and formation; (j) 
identifying limitations/drawbacks of XR, AI, and 
other emerging technologies in STEM DMTL 
settings; (k) exploring the role of technology in 
assisting team learning; (l) examining the impact 
of using AI and other technological applications 
to reallocate instructor workloads; and (m) 
investigating the impacts of the novelty effect 
(return on investment, etc.) on the integration of 
advanced and innovative learning technologies 
and associated pedagogies on learner 
achievement, soft skills, and other instructional 
outcomes. 

Aligning edagogical ractices with the
ntegration of irtual eality,
ugmented eality, and ther
merging igital ools in STEM
ducation

As outlined in the 2019 Horizon Report 
(Alexander et al., 2019), XR technologies are 
particularly appropriate for student-centered and 
active learning. Whether simulation, virtual 
reality, augmented reality, mixed reality, or 360o 
video, learners are able to experience scenarios, 
as well as very quickly manipulate scenario 
variables, in ways that were not possible in the 
not-so-distant past, significantly affording 
learners with an ever increasing range of tasks, 
experiences, and activities. In addition, AR allows 
students to explore complex content through 
physical movement as one possible 
implementation of Vygotsky’s notion of play 
(DeLiema et al., 2016). However, with great 
power comes great responsibility, and the 
emergence of these tools has highlighted an 
increased need of STEM instructors to become 
proficient at identifying, developing, and 
integrating appropriate pedagogical strategies to 
support the inclusion of these emerging 
technologies into the instructional setting. For 
example, while XR facilitates active learning, 
reflection and self-assessment are not typically 
key aspects of these emerging technologies. So, 
how do instructors maximize both the 
pedagogical benefits of DMTL and these 
emerging technologies, while simultaneously 
minimizing the drawbacks of each? Further 
complicating the effective integration of these 
emerging technological applications into STEM 
instructional settings, is the alignment of 
pedagogical practices that also support specific 
instructional outcomes alongside the previously 
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mentioned issues. Therefore, considering the 
most appropriate DMTL-based pedagogical 
approaches that integrate emerging technologies 
will look very different depending on the focus of 
the instructional outcomes (e.g., digital literacy, 
reflection/metacognition, problem-solving, 
embodied cognition, problem-based learning, 
ideation, etc.). For the integration of XR to be 
effective, it is critical that STEM instructors 
become versed in the alignment of learning 
outcomes, pedagogical approaches, and the 
functionality of emerging technological 
applications.   

Future ossibilities of nnovative and
merging DMTL-centric edagogical
pproaches

The ability of emerging and future technologies, 
such as XR and AI, to afford learners with 
personalized learning experiences, reallocate 
faculty and learner workloads, and support the 
analysis of complex data to support DMTL, 
provides significant promise for future STEM 
learning environments. With the emerging 
growth and adoption of such tools necessitate 
revisiting pedagogical strategies that support 
collaboration, learner engagement, and the 
development of problem-solving and critical 
thinking skills, while also facilitating curiosity and 
engagement among learners. All of these factors 
are foundational for student success, and serve 
as critical considerations for future research and 
development in STEM education (Alexander et 
al., 2019). Additional opportunities and issues to 
consider include: (a) the consolidation of machine 
learning in DMTL environments (i.e., best 
practices about collaborative learning and 
machine learning), (b) the use of AI to support 
collaboration and to challenge expertise that 

would otherwise not be challenged (and vice 
versa), (c) the use of XR to increase social 
presence in DMTL, (d) voice activation and 
translation in real-time, (e) visual-based 
interactions that facilitate sharing and 
organization of knowledge, (f) joint attention 
tools that shape interactions, (g) eye tracking 
tools to support understanding of student 
learning, (h) technology as scaffolding tools, and 
(i) teacher support for classroom orchestration.

Challenges

While these characteristics and issues provide 
researchers and practitioners with numerous 
opportunities for exploration, there are 
additional challenges related to DMTL to 
consider. Challenges identified included: 

● How can XR, play, and games/gamification
support metacognition?

● How can administrator/faculty/instructor
resistance (and incentivization) be most
effectively addressed?

● How can student resistance be most
effectively addressed?

● What strategies can be integrated to
alleviate student apprehension (i.e., privacy
in use of data)?

● In this complex landscape, what strategies
are best for determining which emerging
technologies align with particular
pedagogical approaches and learning
outcomes?

● What strategies most effectively address the
technical challenges associated with the
integration of these emerging technologies
and the associated pedagogical approaches
in STEM instructional settings (e.g., Wi-Fi
quality, usability, cost, motion sickness,
bulky equipment, etc.).
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● What strategies are most effective for
supporting individual learning as they cycle
through multiple teams (e.g., personal
learning spaces)?

As outlined here, addressing the integration of 
emerging technological applications in STEM  

settings in an increasingly complex landscape, 
while aligning their use with pedagogical 
applications and instructional outcomes, can be 
challenging, but a necessary activity to promote 
substantial and needed change. For this reason, 
we have established 1–3–5 year goals and 
research objectives, outlined in Table 1 .

Table 1

Research Opportunities to Examine Emerging Pedagogical Strategies in DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Extended 
realities 

Identify areas of
highest need for XR
(extended reality:
virtual, mixed and
augmented reality),
development and
instructor training

Establish XR
preferences for
students and teachers.

Build and test
prototype XR (VR, AR
and MR) for STEM
content. Identify
unexpected issues and
challenges. Fully
explore instructor
training needs. Assess
perceptions of learning,
engagement, and
actual learning

Examination of
approaches to prepare
STEM faculty/teachers
to support student-
centered DMTL utilizing
advanced learning
technologies.

Using eye tracking to
determine team
engagement in face-to-
face, online, and XR
team learning

Test entire XR courses
and impact on learning

Can XR overcome the
limitations of current
online learning
strategies? Should VR
headsets replace
computers for online
courses? Will this
enable us to have face-
to-face classes and
online classes that are
almost identical?
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Supporting 
integration of 

emerging 
pedagogical 
applications 

Focus groups,
observations, surveys
exploring the barriers
for implementing
emerging technologies
and pedagogies?

Identify best practices
for instructor training
on emerging
technologies.

Examine the balance
between inquiry designs
that support agency and
learning.

Gather the multiple
individual experiences
with using tech and
DMTL in their own
environments (meta-
analysis; interview
studies; workshops).

Articulate learning
outcomes for use of
DMTL, i.e., why should
we do it.

Develop methods for
analysis of DMTL.

Development/Synthesis
of theories for DMTL.

How can we integrate
narrative inquiry and
performance theory
(embodied learning and
the importance of
stories/storytelling) into
DMTL?

Understanding team
knowledge construction
in DMTL, individual
knowledge construction
in DMTL, and the
relationship between
them.

Promoting, making
visible, and evaluating
social network analytic
perspectives on actors,
relations, emergent
roles, and structures
relevant to DMTL.

What does it mean to
scale these pedagogical
approaches in the
context of DMTL?

What are new
pedagogies that will
push the boundaries of
how to support DMTL?

New theories for DMTL
(pedagogy, andragogy,
heutagogy)

How can we best
integrate embodied
learning approaches
(e.g., embodied
metaphors, grounded
cognition, etc.) toward
supporting
collaborative learning
in the context of
technologies like
AR/VR/MR?

What does it mean to
implement emerging
pedagogical
approaches in the
context of K–20
classrooms?

What does it mean to
support teachers in
supporting embodied
learning?

What forms of data are
needed to support
learners and instructors
as they engage in
collaborative learning?
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Synergizing 
pedagogy and 

technology 

Prioritize most
opportune techniques
and technologies to
focus on; identify 

, including
accessibility and ease
of adoption.

What is the
effectiveness of library-
based makerspaces for
technology exploration
and support for DMTL?

Compare the benefits
of integrated
technologies and
systems (e.g., VR + AI +
voice recognition)
versus separate
systems (e.g., one type
of LMS, a different peer
evaluation tool, etc.).

Disseminate turnkey
methods to adopt and
use these techniques
and technologies.

Establish a repository
of digital team
activities using cutting-
edge technology and
pedagogical
approaches.

Develop personalized
degree programs such
as picking your own
courses to build a
customized degree
program—in what
ways can emerging
technology be
leveraged to do this?

How can we use
emerging technology to
gamify education?

What are some play-
based pedagogies that
can be used to support
DMTL? What are the
strengths and
limitations?
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Theme 3D: Faculty Development 

and DMTL
Theme Editors: Julie Donnelly and 
Richard Hartshorne 

Introduction
Although identifying best practices for planning, 
implementing, and facilitating DMTL is a first 
step, considering how to encourage faculty to 
adopt these practices is the next necessary step. 
STEM faculty are content-area experts, but not 
necessarily pedagogical experts (Raker & Holme, 
2014). Their knowledge of teaching relies 
primarily on experience rather than scientific 
evidence (Cooper & Stowe, 2018). In fact, even 
when they are aware of evidence that supports a 
particular pedagogical reform, a negative 
experience with using it is likely to deter them 
from using the reform repeatedly (Gallos, van 
den Berg, & Treagust, 2005). Further, recent 
research reveals that even when provided with 
tools that support active learning (e.g., flexible 
learning spaces), most faculty will continue to use 
didactic teaching methods (Stains et al., 2018). 
Thus, engaging faculty in effective opportunities 
for development related to teaching is an 
essential component of the propagation of DMTL. 
In addition to making faculty aware of 
pedagogical strategies related to DMTL, effective 
professional development programs will address 
the development of pedagogical reasoning. 

Assisting aculty in eveloping
ffective and ppropriate edagogical
trategies elated to DMTL.

Effective methods for assisting faculty in 
developing effective and appropriate pedagogical 
strategies are pivotal to the success of the 
widespread dissemination and adoption of DMTL 
environments in STEM education. Although there 
is extensive research on strategies, models, and 
activities that support faculty development, such 
research related to DMTL in STEM education is 
limited, and has yet to extensively explore the 
use of advanced digital tools, data analytics, team 
assembly, faculty teacher identity, and other 
issues associated with extensive pedagogical 
reform. A variety of areas for current and future 
exploration in this realm include: (a) optimizing 
the use of university centers for teaching and 
learning; (b) developing models and resources 
that align the emerging technological 
applications, pedagogical strategies, and STEM 
education; (c) providing symposiums highlighting 
effective tools to assist in solving pedagogical 
problems faculty may encounter; (d) supporting 
faculty with additional credentials, awards, and 
other incentives; (e) exploring characteristics of 
effective models of graduate student 
instructional preparation; (f) investigating the 
effectiveness of innovation frameworks, the 
adoption of multiple innovations, and the factors 
that influence readiness of faculty to integrate 
DMTL; and (g) exploring factors that influence or 
impede the adoption of effective DMTL 
pedagogical strategies.   
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Supporting the evelopment of
edagogical easoning in aculty

Pedagogical reasoning, or the values and ideas 
regarding teaching and learning, is a driving 
factor in an instructor’s pedagogical decision-
making process. Thus, devising effective 
strategies and processes for developing robust 
pedagogical reasoning that supports the 
integration of DMTL-related instructional 
practices is a critical component to increasing 
DMTL practices in STEM education. Although 
there is much existing research on this topic, it is 
limited in STEM contexts, and has not explored 
the use of advanced digital tools, data analytics, 
and other methods for supporting team 
assembly. A variety of areas for future 
exploration in this realm include: (a) optimizing 
team size with tasks and goals, (b) team assembly 
via advanced learning technologies (e.g., social 
networks, LMSs), (c) and interest-based team 
selection (e.g., self-selection, social style). A 
variety of areas for current and future 
exploration related to the development of 
pedagogical reasoning that supports the 
integration of DMTL in STEM education include: 
(a) distributing models that support faculty
development related to high impact DMTL
teaching and learning practices in STEM
education, (b) exploring models that support the
effective use of learner metrics and analytics
from classrooms for instructors, (c) identifying
methods of encouraging faculty to explore the
use of emerging technological applications and
pedagogical structures in STEM education, (d) the
composition of communities where instructors
share high-impact teaching practices, and (e)
examining accreditation standards as drivers of
reflective pedagogy (i.e., creating sound program
and learning outcomes and closing learning and
performance gaps).

Challenges

Although these characteristics and issues provide 
researchers and practitioners with numerous 
opportunities for exploration, there are 
additional challenges related to DMTL to 
consider. Challenges identified included: 

● What strategies are most effective in
developing a teacher identity and
willingness to try new technological
applications and pedagogical approaches
among STEM faculty (incentives, reallocation
of time, Scholarship of Teaching and
Learning [SoTL], inclusion in tenure and
promotion)?

● How do we encourage pedagogical risk-
taking, innovation, and high impact teaching
practices?

● What models and strategies are most
effective for supporting faculty development
in STEM education (workshops,
development courses, peer networks,
communities of practice, etc.)?

● What is the role of teaching and learning
centers in STEM pedagogical reforms and
faculty development?

● How are faculty development resources and
tools disseminated in a manner that
supports extensive use?

● How does faculty development keep up with
continuously evolving technological
applications and associated pedagogical
processes?

● What are the best practices associated with
developing and supporting undergraduates,
graduate students, and post-docs?

● What is the role of innovation frameworks in
faculty development?
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For these reasons, we have established 1–3–5 
year goals and research objectives, outlined 
in Table 1 .

As outlined here, addressing the faculty 
development and DMTL in STEM settings affords 
numerous opportunities and challenges, but is 
also an increasingly complex landscape. 

Table 1

Research Opportunities to Examine Faculty Development in DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Faculty/Profession
al Development 

Focus group and
listening tour to
identify best
practices/processes,
affordances, and
constraints leading to a
design symposium that
enables experiences
with new technologies
but also works on
developing the
infrastructure needed
to support future work.
This could work at the
instructor level—why
do you use the
technologies you use?
At the institutional
level—how do you
select technologies to
adopt, and how do you
share them and
support them with
faculty? This could also
work with developers
of successful
technologies—how did
you develop your
product, how did you
promote its adoption,
how did you sustain it?
What about a student
user level? Bring results
of these listening tours

Symposium (new
technology,
infrastructure, and
practices to support
new technology,
developing standards
for best practice and
metrics) → design
communities of
practice that will live
past the symposium.

Enhancing
collaborations between
instructional designer,
instructor, and other
stakeholders
(administrators,
students, etc.).

Building communities
of practices across
campuses (new
technologies, problems
of practice).

Virtual innovation
center that houses
high-impact practices
and a repository of
resources.

Program for
undergraduate and/or
graduate students to
become campus
technology innovators /
support specialists.

What are the roles and
responsibilities of a
faculty member with
respect to DMTL?
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together—share 
student/faculty/
institution feedback 
with developers, and 
vice versa. 

What are possible
conceptions of core
faculty skills with
respect to DMTL?
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Theme 3E: Faculty and Student 
Orientation 

Theme Editors: Richard Hartshorne, Julie Donnelly, 
Caroline Haythornthwaite, and Matthew Ohland 

Introduction
As with any innovation, DMTL can be expected to 
diffuse in  
accordance with the diffusion of innovations 
theory (Rogers, 2010). 
Here we address the needed effort to reduce 
barriers to adoption so that DMTL is more likely 
to be adopted and used effectively by both 
students and faculty. First, although DMTL 
introduces benefits to students and faculty in 
terms of conceptual understanding in STEM, it 
also offers opportunities for students to learn 
how to work collaboratively in a way that is 
effective. Exercising these skills will ensure that 
students become DMTL learners, proficient in 
collaborative learning. However, students do not 
possess skills for effective collaboration by 
nature. Explicit instruction and deliberate 
practice working on teams is necessary for 
successful DMTL participation and development 
of a skill valued by most 21st-century employers 
(Michaelsen, Knight, & Fink, 2002). Faculty are 
the other most important agent in the 
propagation of DMTL. A survey of engineering 
department chairs revealed that word of mouth 
and conference presentations were more 
effective methods of communicating pedagogical 
reforms than publications (Borrego, Froyd, & Hall, 
2010). Thus, effective development of early 
adopters and encouragement to disseminate 
results to their peers in less formal settings will 
help influence the early and late majority of  

faculty adopting DMTL. The pedagogical 
reasoning, knowledge of DMTL pedagogies, and 
experience using DMTL held by early adopters 
will be an invaluable resource to faculty 
interested in adopting DMTL. 

Preparing earners as entors and
caffolding earners to nhance the
ffectiveness of DMTL

As students play a critical role in the teaching and 
learning process, effective methods for 
scaffolding learners in DMTL processes and 
procedures are pivotal to the success of the 
widespread dissemination and adoption of DMTL 
environments in STEM education. Although there 
is extensive research on strategies, models, and 
activities that support faculty development, such 
research related to orienting students to DMTL 
environments in STEM education is limited. A 
variety of areas for current and future 
exploration in this realm include: a scaffolding 
learners on DMTL-related approaches at younger 
ages (with gradual disengagement/fading), b) 
developing models and resources for teaching 
communication and other soft skills, c) exploring 
methods of facilitating learner agency in the 
DMTL environment, d) examining methods for 
monitoring and measuring individual learner 
contributions and self-reflection of those 
contributions, e) highlighting reflection and 
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metacognition as soft skills in the DMTL process, 
f) examining the role of competition within a
group/team learning setting, g) experimenting
with learner achievement/experience level
pairing and team composition, and h) developing
a program-wide space/community for sharing
DMTL experiences where more experienced
DMTL learners pass on knowledge to newer
DMTL learners.

Models of aculty evelopment that
are ost ffective for upporting
DMTL nstructional kills

Effective models of fully developing DMTL 
pedagogical skills of K–20 faculty are pivotal to 
the success of the widespread dissemination and 
adoption of DMTL environments in STEM 
education. As previously mentioned, while there 
is extensive research on strategies, models, and 
activities that support faculty development, such 
research related to DMTL in STEM education is 
limited, and has yet to extensively explore the 
alignment of these strategies, models, and 
activities that support faculty development with 
those that orient learners to effectively 
participate in DMTL environments. 

A variety of areas for current and future 
exploration in this realm include: (a) optimizing 
collaboration between instructors, learners, and 
instructional support mechanisms, (b) developing 
models of joint faculty–learner recognition (i.e., 
credentials, awards, etc.), 3) exploring effective 
alignment of incentives for faculty and learners, 
and (d) supporting DMTL partnerships among 
institutions (both faculty and students). 

Challenges

Although these characteristics and issues provide 
researchers and practitioners with numerous 
opportunities for exploration, there are 
additional challenges related to DMTL to 
consider. Challenges identified included: 

● What is the role of gamification, learning,
and balancing fun/learning (Adams, Mayer,
MacNamara, Koenig, & Wainess, 2012)
How is this effectively addressed with
orienting faculty and students to DMTL
technological applications and pedagogical
strategies?

● How do we effectively moderate team
processes in real-time to ensure that
dialogue remains professional and
appropriate?

● What technological applications and/or
pedagogical strategies minimize the
formation of student cliques in DMTL?

● What are the most effective strategies for
facilitating DMTL in different disciplines and
domains?

● How do we explore what is lost or gained
when the team process is conducted within
a technological environment? Are there
tradeoffs between face-to-face and online
learning environments? Do certain groups
(perhaps K–12) need more face-to-face
support than other groups?

● What metrics indicate competencies and
standards for excellence in DMTL settings
(processes and specific outcomes that are
specific to K–12 and/or higher education)

● What are standards for effective
assessment?

● Beyond orientation, what strategies are
most effective in encouraging students to
fully and effectively participate in DMTL?

● How do team challenges vary as a function
of pedagogical tasks or contexts?



91

● How do we encourage all STEM disciplinary
communities to value innovations in
teaching and learning, as opposed to
research productivity?

As outlined here, there are numerous 
opportunities and challenges associated with 

orienting both faculty and students to 
effectively and appropriately participate in 
DMTL  For this reason, we have established 1–
3–5 year goals and research objectives, outlined 
in Table 1 .

Table 1

Research Opportunities to Examine Faculty and Student Orientation to DMTL 

Dimension 1-Year Research 3-Year Research 5+ Year Research 

Faculty / 
Professional 
development 

Faculty moving into
online and blended
learning spaces are
already doing a lot to
manage integrating
new approaches and
technologies—identify
groups / gatherings of
people learning to
teach in those modes
and identify barriers to
using teams in those
classes.

How to extend faculty
support for DMTL in
their
programs/departments
?

Review of current
literature regarding
faculty development
and orientation to
digitally mediated
classroom technology
(e.g., Special and Digital
Collections at the

When it comes to
increasing SoTL support
for STEM education,
incentivizing
collaborations between
learning sciences
experts and subject-
matter expertise would
be helpful.

Combine fundamental
science questions (the
disciplinary-based
research need) with
the educational goals
(the learning sciences
need)?  For example,
can NSF’s Research
Experiences for
Undergraduates
program be adapted so
that it is not simply
supporting the
disciplinary based
science, but also
contributing to the
STEM education needs
more generally? As a
use-case, this could
involve a basic science
Marine Biologist who
studies something like
fisheries depletion in
small coastal towns,
collaborating with a
Biology Education
faculty member.
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University of South 
Florida). 

Survey faculty
regarding what they
need to support their
use of DMTL.

Student 
orientation 

Augment the pipeline:
doctoral students,
post-docs, junior
faculty.

Not Applicable. Not Applicable.

Synergizing faculty 
and student 
orientation 

Focus groups to define
DMTL best practices.

Explore what works or 
does not work related 
to DMTL, both in use by 
teachers and with the 
approach itself in order 
to orienting faculty and 
students. 

What are effective,
scalable, feasible
approaches to the
faculty and student
orientation?
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Introduction 
Inclusivity in educational environments has been 
a known concern (Annamma & Morrison, 2018; 
Nachman & Brown, 2019) whether in MOOCs 
(Rolfe, 2015), traditional STEM disciplines in 
higher education (Moriña, 2017; Tennial et al., 
2019), or in online education (Dowell, Lin, 
Godfrey, & Brooks, 2019; Millheim, 2015). Due to 
this concern, inclusivity in digital-mediated 
learning environments were explored during the 
workshop as it related to building learning teams 
in STEM. Areas of inclusivity discussed included: 
(a) ethnicity, (b) gender, (c) neurodiversity, (d)
accessibility, (e) culture, (f) intercultural
collaborations with global diversity, (g)
geographical inequalities, and (h)
intergenerational differences.

The intersectionality of multiple minoritized 
identities ([dis]ability, neurodiversity, 
race/ethnicity, gender, sexuality, socioeconomic 
status, religion, mobility, culture, and 
generations) in digital environments are factors 
that need to be understood through research and 
practice. Throughout each area of inclusivity 
there was a commonality expressed that  

technologies, such as simulation and virtual 
reality, could be leveraged to prepare educators 
for individual and intersectional diversities 
among students. Immediate solutions, such as 
training to uncover personal unconscious biases 
and connecting the potential impact of these 
biases on pedagogical practices, begins with 
educators uncovering their own identities 
(Killpack & Melón, 2017). 

During this workshop, inclusivity (theory, 
practice, and research) were discussed in 
relationship to STEM and digitally-mediated team 
learning in higher education. These topics 
included: 

Theme 4A: Engaging Communities of Diversity 
Theme 4B: Fostering Inclusivity through DMTL 
Theme 4C: Equity and Diversity 
Theme 4D: Transferability and Sustainability 
Theme 4E: Possibilities of DMTL 

The following chapter explores the state of the 
field, challenges and benefits of implementation, 
context, and potential research related to DMTL 
in STEM for the next five years and beyond.   

Chapter 6 

Track 4: Empowering Equitable 
Participation through DMTL
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Theme 4A: Engaging Communities 
of Diversity 

● What are the general communities of
diversity in learning?

● What are potential perceived barriers
towards learner
engagement in DMTL?

● Are there examples of potential affordances
towards
learner engagement in DMTL?

Inclusivity encompasses the human aspects of 
learning in a  
community of learners. The social characteristics 
and associations of a person may attribute to 
how a person identifies and acts in social 
circumstances. Identity has been linked to a 
person’s self-efficacy, confidence, and motivation 
to interact and contribute. For instance, teachers 
that have a low self-efficacy in teaching science 
tend to not teach it at the same level of 
confidence that they teach higher self-efficacy 
subjects. Likewise, in the same way learners’ 
identity (consisting of multiple factors including 
community identity) can impact their self-efficacy 
and willingness to interact in learning contexts 
like STEM. 

Ethnicity
The underrepresentation of varying ethnicities in 
STEM is known. The inequalities of ethnic 
representation have contributed to 
underrepresentation in the STEM workforce 
(Riegle-Crumb, King, & Irizarry, 2019). In forming 
teams for problem-based learning, student team  

members realized and valued the importance of 
sociocultural diversity (Bani-Hani, Al Shalabi, 
Alkhatib, Eilaghi, & Sedaghat, 2018). Fostering 
success of ethnically diverse students in STEM is 
considered to be essential. Increasing equitable 
social and ethnic diversity in participation rates in 
STEM education leads to a more multiethnic 
workforce in STEM. Increasing ethnic diversity in 
STEM fields promotes greater global 
collaboration and innovation. Recruiting, 
preparing, and maintaining K–12 STEM teachers 
that can encourage students’ future STEM 
careers plays a role in the digitally-mediated 
learning space (Leonard, Burrows, & Kitchen, 
2019). However, more research in this area is 
needed. 

Gender
When considering the binary gender classification 
of males and females, more males than females 
are learning and ultimately working in STEM-
related fields (Dasgupta, Scircle, & Hunsinger, 
2015; Dowell, Lin, Godfrey, & Brooks, 2019). 
Recent statistics indicate that the percentage of 
females in STEM lags behind males. While 52% of 
the general population is female, in 2016, women 
comprised only about 20% of students graduating 
with a bachelor’s degree in engineering (NSF, 
2019). Where engineering ranks for men and 
women among major fields of baccalaureate 
completion provides further evidence that 
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women are lagging behind. Engineering, the 
second largest field of study for Caucasian and 
Asian males in 2016, was ranked 18th for all 
female ethnic populations except Asian 
(Anderson, Williams, Ponjuan, & Frierson, 2018). 
Women participating in communities of learning 
have seen significant increases in retention and 
graduation in the STEM disciplines over non-
participant counterparts (Dagley, Georgiopoulos, 
Reece, & Young, 2016). For those who do not 
identify with binary classifications, there are no 
published statistics. In online collaborations, 
males and females interact differently, with 
women engaging in more productive discourse 
and more productive and dynamic interactions 
(Lin, Dowell, Godfrey, Choi, & Brooks, 2019). 

Neurodiversity
Neurodiversity remains an area with minimal 
research and support for learners in DMTL. 
Although work has begun with learners with 
autism (Cox et al., 2017; see also NSF award nos. 
1612009 & 1612090), broadening pathways for 
learners of all abilities, other research remains 
limited and unrelated to team learning. Special 
education and disability services in higher 
education are often based on a medical model of 
disability leading to a deficit model that implies 
that the individual (i.e., learner) needs to be 
diagnosed, and the problem needs to be fixed or 
“accommodated” in order to access education. 
Yet, researchers have identified learning 
strategies that higher education students with 
learning differences have found to be useful in 
learning science (Cox, Ogle, & Campbell, 2019). 

Accessibility for Inclusion
For those with hearing, seeing, or mobility 
impairments, opportunities to access DMTL may 
be limited to the accessibility technologies that 

are available for learners to gain access. The lack 
of assistive technologies has been known to 
prohibit learners from accessing educational 
experiences (Koch, 2017). Overcoming these 
challenges in DMTL environments necessitates 
planning and partnering with university or 
college-wide accessibility services. For example, 
students who are colorblind or have vision or 
hearing deficits could be empowered to be strong 
contributors in team environments by virtue of 
assistive technologies (Ismaili & Ibrahimi, 2016; 
Lersilp & Lersilp, 2019). 

Culture
Students working in culturally diverse groups may 
have differing learning expectations and the 
behavioral motives than others in the group 
(Popov, Biemans, Brinkman, Kuznetsov, & 
Mulder, 2013; Popov et al., 2012; Popov et al., 
2014). To foster intercultural CSCL, dynamic 
adaptive scaffolding has been recognized as an 
approach that incorporates machine learning 
techniques.     (Adamson, Dyke, Jang, Rosé, 2014; 
Gweon, Jain, McDonough, Raj, & Rosé, 2013). 
Machine Learning techniques are applied to 
identify potential and actual problems occur ing
in culturally diverse CSCL groups. By identifying 
problems within transactivity of talk (i.e., degree 
to which students refer to each other and build 
upon each other’s contributions during this 
process) communication can be addressed and 
increased. Culture can be advantaged by virtue of 
the way the content is presented. For instance, 
Asset-Based Practices in Engineering Design 
(APRENDE), an NSF project (EEC 1826354) aims to 
build culturally sustaining and responsive 
informal and formal STEM experiences for Latinx 
students by connecting classroom content within 
the social, cultural, and historical contexts in 
which students live (Wertsch, 1998). The project 
focuses on providing context to make content 
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more relevant as the students culturally relate to 
the content while collaborating with peers 
(Passel, Cohn, & Lopez, 2011). 

Global Connections
First, these challenges may include 
communication difficulties from language, 
culture, and technology differences. Second, the 
technological access and affordances (e.g., 
Internet access, software and hardware, and 
electricity) can be a barrier. Espino, a Co-PI of the 
International Community for Collaborative 
Content Creation (IC4), discussed how her project 
evidenced students working together across five 
continents in informal learning environments to 
create STEM-focused digital media artifacts that 
addressed real-world STEM based projects like 
poverty and air quality. Although students were 
motivated to participate in their international 
collaborations, co-constructing digital artifacts 
required overcoming basic language barriers and 
technological tools. 

Geographical Inequalities
Geographical inequalities can occur both 
domestically and internationally. These 
inequalities can manifest in access, assignment 
type, or instructional preparation (Herman, 
Davinia, & Klein, 1996). Baker (2019) at the 
recent Learning Analytic and Knowledge 
Conference discussed the need to investigate 
technologies by geographical location, as what 

works in one geographical location may not work 
in another. 

Further, teams without geographical diversity 
learning experience may not be as robust as 
those with greater geographical diversity. 
Kulkarni, Cambre, Kotturi, Bernstein, and 
Klemmer (2015) higher geographically diverse 
discussion had greater learning than those from a 
more homogeneous geographic background. The 
differences in opinions expressed based on local 
geographical contexts were valued over 
immediate compromises without discussion 

Intergenerational and Non-Traditional 
Students
The growth of non-traditional undergraduate 
students (National Center for Education Statistics, 
2015) and the unique needs of these learners due 
to their need to balance out-of-school 
responsibilities (e.g., family, financial, and 
occupation) provides another type of diversity 
(Erisman & Steele, 2012). Research is needed 
related to student teams and non-traditional or 
intergenerational students. Insights into how 
their experiences and background affect their 
group interactions should be considered. 

Table 1  shows the current status of research
relating to each of the above-mentioned socio-
cultural factors. 
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Table 1

Status of Socio-Cultural Research Related to DMTL 

Socio-Cultural 
Factors 

No 
Evidence 

Developing 
Evidence 

Foundational 
(Minimal) Emerging Advanced 

Ethnicity X 

Gender X 

Neurodiversity X 

Accessibility for 
Inclusion 

X 

Culture X 

Intercultural Global X 

Geographical X 

Intergenerational X 

Note: Developing (at least 1 study), Foundational (at least 10 studies), Emerging (more than 10 less than 
25), Advanced (25 or more) 



98

Theme 4B: Fostering Inclusivity 
through DMTL 

● What types of digital learning environments
foster inclusivity?

● What type of training is needed for faculty
to foster inclusivity in DMTL?

● What type of skills do students need to
foster inclusivity with each other?

● How can active learning be fostered among
all learners in DMTL?

The Partnership for 21st Century Skills identifies 
collaboration, communication, critical thinking, 
and creativity as skills that are needed and 
necessary for success in future work 
environments.  Although students may work 
alone in digital spaces (Borowczak & Burrows, 
2019), all of these foundational skills have been 
identified as outcomes of team interactions 
(Theobald, Eddy, Grunspan, Wiggins, & Crowe, 
2017). However, minoritized participants may not 
contribute to the same level as non-minoritized 
team members. It is incumbent on educators and 
researchers to recognize this incongruence and to 
investigate solutions that could promote student- 
and instructor-facing solutions to mitigate 
interaction deficits. 

Culturally-Relevant Pedagogy
Culturally-relevant pedagogy, when employed 
(Ladson-Billings, 1995a, 1995b), provides a 
transformative approach to challenge educators 
thinking about students’ individual deficiencies as 
the cause for limited learning (Valencia, 1997). 
When educational opportunities are designed 
and structured to incorporate culture-relevant  

pedagogies, research shows that learning 
improves (Aronson & Laughter, 2016). 
Incorporating the foundational ideologies of Gay 
(2013), Siwatu (2007), and others (Lee, 1998; 
Mejia, 2018; Nieto, 2010; Tatum, 2000) both in 
the classroom and in tools utilized in developing 
and mediating digital teamwork may contribute 
to more culturally diverse teams. Steps to 
incorporate these practices with students 
necessitates both instructor and tool developer 
training in this framework (Bandura, 1997; Gay 
2013; Pajares, 2003). 

Universal Design for Learning
Universal Design for Learning (UDL) approach to 
learning serves as a framework for designing 
instruction and learning tools to make learning 
accessible to all learners (Hollingshead, 2018).  
UDL leverages learning technologies to aid 
learners who may need varying modifications and 
accommodations (Schreffler, Vasquez, Chini, & 
James, 2019). Further, UDL considers the 
principles of learning sciences (Rose & Meyer, 
2006). Tools, curriculum, and pedagogy that 
incorporate a UDL approach are characterized by 
providing multiple pathways to meet the needs 
and challenges of all learners (Hall, Meyer, & 
Rose, 2012). 
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Learner Anonymity
In online learning environments there are several 
ways that a digital learning environment may 
identify a person to all users. For some programs, 
users’ first and last name may be automatically 
shared with other users, while other programs 
allow users to identify themselves by a 
pseudonym. Personal avatars or images add 
another complexity for self-identity. Although 
some may want to use their own image, others 
may consider the image of themselves to create a 
barrier or advantage (Groom, Bailenson, & Nass, 
2009). Although some students prefer to remain 
anonymous in online contexts (Devaraj, Alfred, 
Madathil, & Gramopadhye, 2015), others may 
not want to interact with those who do not self
identify (Kang, Brown, & Kiesler, 2013). The 
reluctance to engage in online team discourse 
may be related to self-protection from bias 
(Nilizadeh et al., 2016). 

Privacy concerns abound in team learning. 
Learners may be fine with their learning activities 
being analyzed to help them optimize their 
learning or to prevent dropout. However, some 
students prefer that their learning activities not 
be used to be compared to other students 
(Arnold & Sclater, 2017). There is a delicate 
balance between the benefits of learning 
analytics, anonymity, and respecting privacy. 
Creating a safe space in a digitally-mediated 
learning environment can be complex. It remains 
an issue to be explored through research and 
practice. 

Soft Skills
Understanding the role of one’s sociocultural 
background is pivotal in productive and effective 
team learning. Developing interpersonal skills 
while working in STEM content can be developed 

before a person enters the workforce. Valuing 
the sociocultural differences and developing an 
understanding of each other may contribute to 
the retention and achievement of traditionally 
underrepresented groups in STEM. 

In DMTL, soft skills include communication, 
cooperation, and collaboration needed to 
communicate and navigate team dynamics 
(Burrows & Borowczak, 2019; Burrows & 
Harkness, 2016). Cooperation and collaboration 
often go hand in hand for effective 
communication to take place. The opposite of 
these positive characteristics are incivility and 
conflict. Academic incivility moves beyond civil 
discourse to discourteous actions including: (a) 
lurking, (b) failure to respond or failure to 
respond in a timely manner (Clark, Werth, & 
Ahten, 2012), and (c) trolling (Carr, Zube, Dickens, 
Hayter, & Barterian, 2013). Developing 
collaborative skills can provide a foundation so 
students can: (a) craft purposeful 
communication, (b) become active and 
empathetic listeners, and (c) contribute to shared 
expectations (Campbell, Tinstman Jones, & 
Lambie, 2019). 

Active Learning
Active learning moves the learner from a passive 
role of listening to information to an active role 
of participating. In a DMTL environment, students 
actively interact with content and each other to 
develop knowledge. Students realize 
achievement gains when participating in an active 
learning approach. For example, Snyder, Sloane, 
Dunk, and Wiles’s (2016) use of Peer-Led Team 
Learning in an introductory biology course 
produced greater achievement for all students 
and a “drastic reduction in the failure rate” (p. 1) 
of underrepresented minority students, when 
compared with traditional lecture instruction. 
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Theme 4C: Equity and Diversity 

● What are examples of existing DMTL
technologies to improve equity among all
learners?

● What considerations need to be addressed
in these existing technologies to provide an
equitable digital learning environment?

Existing Tools to Foster Inclusivity
Current tools for creating equitable groups may 
be available as open source or commercial tools. 
Tools can be as simple as a spreadsheet like 
Grumbler (Group Rumbler) that calculates 
maximized diversity based on the instructor-
established criteria (Houston, 2011; Sparrow, 
2019). More sophisticated tools, such as SAGLET, 
use machine learning to provide live real time 
data. The Scaffolding Agent (SA) that monitors 
and prompts positive collaborative behaviors 
considers inclusivity of all members. 

SA, a cloud-based computational tool, monitors 
student psychophysiological  inputs (e.g. facial 
expressions, eye gaze) as well as keystrokes, and 
verbal conversations through the analysiss of 
automated speech recognition technology. SA 
prompts members on an as-needed basis to 
promote transactive discourse and/or get the 
team member(s) back on track. For example, if SA 
decides that Student X in a Group Y has been 
inactive for a period of time (e.g. lack of 
interaction, and or no speaking), SA prompts the 
student with a message (e.g., “your group could 
use your input”—to Student X directly). 

Likewise, Tandem offers teamwork lessons and 
personalized coaching (ECoach) for effective 
team membership when working on projects. 
While SA uses machine learning to prompt 
member participation, Tandem relies on regular 
check-in surveys (Derry, 2019) to provide 
feedback on progress and team behaviors. These 
real-time perspectives can be monitored by the 
instructor as well. 

There are multiple online tools that contribute to 
team formation, dynamics, interactions, and 
learning analytics. However, most tools do not 
specifically address all areas of sociocultural  
inclusivity and further do not have an educator 
feedback mechanism to ensure learner agency 
and autonomy. Further, even with tools that 
consider team formation and machine learning 
for instructor feedback, caution should be 
exercised in relationship to equitable algorithms 
and programming. Programs that require gender 
identification or images to be transparent to 
other learners may contribute to biases 
(Palomares & Lee, 2010) 

LMSs
Most universities utilize LMSs that need further 
development to meet the needs of students 
engaged in DMTL environments (Gillett-Swan, 
2017; Obizoba, 2016). Shared collaboration 
spaces, research, and infrastructure of seamless 
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solutions to facilitate DMTL remain a need. Ideas 
to develop seamless solutions include 
incorporating expanded workspaces, providing 
personalized adaptive feedback, student-driven 
personalized affective team dashboards, and 
teaming tools for faculty and students. 

Challenges in DMTL elated to quity
Challenges facing learning scientists in DMTL span 
from human interactions (affective and 
communication) to technological supports 
(inequity in technological supports, and access).  
Barriers for equitable access includes: (a) 
research and dissemination, (b) beliefs regarding 
technologies, and (c) human behaviors. More 
research and its dissemination is needed to 
enable actionable knowledge for improving 
teaching and learning environments. Without 
research, educators in STEM will not have 
evidenced-based practices to follow to improve 
equitable teaching and learning.  Further the 
belief that learners are automatically connected 
by virtue of technology can be misleading as 
technology is not the bridge to cultural 
connections (Fussell & Setlock, 2014). 

Challenges for students as team members include 
the level of engagement in collaborations 
(Fischer, Killar, Stegmann, & Wecker, 2013, p. 
57). Likewise, the coordination of different 
attitudes, styles of communication, and patterns 
of behaving may negate powerful discourse and 
interactions (MacLeod, Yang & Xiang, 2017; 
Uzuner, 2009). Further, instructors may not 
realize in real-time how these social dynamics are 
impacting the team, creating a missed 
opportunity for learning and collaboration. 

Self-identity, preconceptions, biases, and status 
are at the foundation of human interactions. 
Overcoming bias of other team members, 
addressing self-identity, and empowering agency 
are a few of the affective and communication 
challenges in a DMTL environment. Learner 
engagement and personal motivation to 
participate in online group dynamics are often 
governed by prior experiences in team learning. 
Negative prior group experiences may contribute 
to students being hesitant to fully participate in 
group interactions.   
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Theme 4D: Transferability and 
Sustainability of DMTL  

● What research topics could be conducted to
promote transferability and sustainability of
inclusivity in DMTL?

● What research methodologies could be
considered to investigate issues of
inclusivity?

● Are there ways to contribute to learners’
efficacy in DMTL?

With multiple advances in “theory, 
computational linguistics, and educational 
technologies”, the field of DMTL is at an 
intersection to advance knowledge and practice, 
“enabling new kinds of personalized 
interventions focused on increasing inclusivity 
and equity” (Goldstone & Lupyan, 2016; Paxton & 
Griffiths, 2017). 

Research
Research related to DMTL and team members 
primarily focuses on culturally homogenous 
groups of learners. New lines of research could 
broaden knowledge related to some of the 
aforementioned sociocultural groups in digital 
collaborative learning. The following research 
questions are representative of explorations for 
new knowledge that could promote inclusivity 
approaches and practices. 

● How do learners of certain sociocultural
groups collaborate to build knowledge?

● What strategies are most helpful in
developing teachers’ understanding and
elicitation of students’ funds of knowledge

when they engage them in collaborative 
learning? 

● How do learners perceive their and others’
behavior in culturally mixed groups of
learners?

● How can we facilitate mixed groups by
making learners aware of specific pitfalls
and misconceptions or by guiding them
towards a shared discourse culture?

Action Research
Social psychologist Kurt Lewin (1946) provided 
the foundation for action research (AR), 
describing it as a style of research that moves 
beyond “basic social research” to investigate the 
background, nature, and impact of social action. 
AR methodology allows researchers to 
investigate and further practical solutions that 
can create positive social, political, and 
environmental changes in order to establish and 
strengthen international and interdisciplinary 
bonds (Burrows, 2019; Burrows & Borowczak, 
2019). The framework of AR pairs reflection with 
action to bring about change and emphasizes 
consideration and inclusion of diverse 
perspectives to co-create knowledge through 
mutual understanding. Action research values the 
voice of all stakeholders (Schwortz, Burrows, & 
Guffey, 2017). 
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Methodologies for the Analysis and 
Development of Inclusivity Knowledge 

Machine Learning and Data Analytic 
Advancements. 
Wise (2019a) expounded on the need to pursue 
new computational approaches to support 
learners through integrated analytic feedback at 
the individual, group, and collective levels.  
Machine learning can analyze interactions to 
better understand if inclusivity and equity are 
evident. 

Discourse Analysis.  
Discourse analysis involves exploring written or 
spoken language and often relates to meaning 
instead of grammar use (Salkind, 2010). There are 
some studies showing that even the syllabi that 
are used can impact student perceptions (Parson, 
2016; Savaria & Monteiro, 2017). Other studies 
show that there are some effective means to 
measure communication in teams, but they are 
not used as frequently as needed (Borowczak, 
2015; Borowczak & Burrows, 2016; Simpson, 
Clemens, Kinningsworth, & Ford, 2015). Thus, 
what STEM educators at all levels do and say can 
impact DMTL spaces. Further research, 
specifically focusing on discourse analysis, could 
inform the DMTL space for optimal student 
achievement and instructor encouragement. 

Potential Idea: A Communication Hub. 
Future possibilities in teaming might include 
developing a real time communication hub to 
consider the affective aspects of teaming 
accessible to the instructor and team members. 
Beyond a typical dashboard, students might have 
an option of hovering over a team members’ 
name or icon that provides real-time analytics of 
how the member was feeling at the moment 

emotionally about the work. Further, a student 
would have the ability to choose how and to 
what degree they wanted to identify to their 
team members. For instance, if a team member 
chooses anonymity, the team member could 
choose an anonymous icon to represent 
themselves with their digital team or course. 
Student/team members could disclose other 
items and change the degree of disclosure based 
on their preference. These affective status 
updates may help to provide valuable 
information as it relates to student and team 
performance. 

Potential Inventories: Beyond Demographics. 
How can students move themselves forward to 
interact in STEM environments when they do not 
feel comfortable or lack the content knowledge 
to interact with others in STEM environments and 
the instructor is unaware of these barriers? Pre-
content knowledge assessment would help 
instructors identify students who need 
scaffolding and remediation. Students can be 
provided resources to fill in the knowledge gap. 
Further, students could be grouped in such a way 
that content deficiencies are redressed and 
remedied. By identifying students with content 
deficits instructors can provide solutions to 
alleviate negative perceptions that students may 
have regarding participating in group 
environments.   

Another possible idea is to consider the 
expectations of diversity that exists between 
learners. The notions and nuances of students’ 
communication styles and behaviors are 
important elements in group dynamics. Student 
perceptions related to outcomes could be 
considered by completing a goals and outcomes 
inventory. Students with shared expectations 
would be paired into homogeneous teams based 
on shared learning goals and expected outcomes. 
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Students might complete an inventory of their 
course expectations (outputs) and their 
willingness to contribute (inputs). Other inputs 
might include: (a) the times of the week they are 
available, (b) their intended behavior regarding 

completing assignments early or right before the 
deadline, and (c) their preferred modes and times 
of communication. Shared expectations regarding 
contributions and outcomes may contribute to a 
robust learning experience. 
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Theme 4E: Future possibilities for 
 inclusivity and equity building in DMTL 

● What are the 1, 3, and 5+ year research,
development, and implementation goals of
DMTL?

● What resources (financial and human) may
be needed to support these needs?

Although discussing and exploring broadening 
inclusivity in teaming was the goal of the 
workshop, it was clear that additional 
foundational work related to understanding the 
intersectionality of diversity remains a necessity. 
Foundational themes appear in plans for one and 
three years, and in the five year section the 
suggestions are contingent on foundational 
themes being addressed. 

Possible objectives for research and 
funding +1, +3, +5 years 

1-year research objectives
Many digital environments and DMTL-type
projects are focused on certain communities and
populations (Hollingshead & Carr-Chellman,
2019). Because there is a general sense that there
is a lack of strong examples of all-inclusive digital
environments, initial research projects and
objectives could evaluate the perceived and
known inclusivity of digital team learning
environments.

The following research areas, needs, and 
questions were suggested to be evaluated in the 
next one year as it relates to inclusive 
cyberlearning. 

1. Define inclusivity. Expand definitions that
define factors that exclude any individual
from the learning community.

2. Develop a glossary of common inclusivity
terms for faculty and students (a common
language) for digitally-mediated
environments (Wise & Schwartz, 2017).

3. Identify ways to quantify inclusivity.
4. Establish and assess programs with the

specific goal to change the culture both
quantitatively and qualitatively.

5. Incorporate curricular discussions with all
students to define and address inclusivity
within the specific learning community.

6. Engage and equip students and faculty to
address marginalization issues through
affective and digital means.

7. Develop programs in teacher education that
consider the intersectionality of
marginalization.

8. Train faculty in student identity.
9. Test interventions to mitigate bias, including

learners’: (a) sense of belonging, (b) STEM
identity, and (c) motivation.

10. Identify interventions from cross-curricular
perspectives related to inclusivity (e.g.,
psychology, group dynamics,
communication, and special education).

11. Assess the degree to which faculty and
students understand and address inclusivity
within DMTL and STEM environments.

and
DMTL

Engagement

Possibilities

Transferability &
Sustainability

Equity & 
Diversity

Inclusivity
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12. Consider curriculum such as UDL in digital
STEM environments for inclusivity purposes.

13. Identify the characteristics of inclusive
teams.

3-year research objectives
Building on the 1-year foundation suggested
above, the following provides a pathway towards
understanding ways to embed and train for
inclusivity within STEM digitally mediated
learning.

Create automated, scalable methodologies
to quantify and increase inclusion in DMTL
environments. These may include
pyschophysiological, self-report
mechanisms, and inventories.
Discover ways to increase all populations
representation in STEM environments to
build more robust digitally mediated teams.
Expand analysis of communication for coded
language.
Develop policies and procedures to mitigate
coded language, selection bias, and
incivilities.
Increase technological equity for all students
currently marginalized beyond geographical
restrictions (e.g., using Google Cardboard
instead of Oculus Rift or Magic Leap).
Develop and assessing safe environments.
Develop training for faculty for an inclusivity
mind shift to reduce marginalization.
Build on coaching app like Tandem or
CATME.
Multi-institutional grants to develop a
database to house DMTL STEM datasets on
underrepresented individuals engaging in
team learning (e.g., Discourse DB )—to allow
us (interdisciplinary research teams) to share
and explore students’ lived experiences across
STEM disciplines.

10. Develop a feedback mechanism that reports
the neurological, social, cognitive, and
affective experience in real time for group
cohesion.

11. Develop action research projects that
engage all stakeholders (students, faculty,
education, and industry) to measure real-
time DMTL contributions.

12. Design funding opportunities that consider
infrastructure to avoid piecemeal solutions.

13. Investigate levels of motivation,
engagement, and commitment to
participate in team learning in STEM.

14. Investigate interventions to assess and
improve educators’ skills for inclusivity both
in higher education and in K–12.

15. Develop machine learning to investigate an
assets approach to team building versus a
deficits approach.

5+ year research objectives
The following section outlines the five year and 
beyond plan, which is contingent on items from 
Years 1–3 being addressed.  

1. Develop technological affordances that help
students self-define with flexibility
promoting a safe learning environment.

2. Investigate strategies that promote
autonomy and agentic behaviors.

3. Explore how learners perceive their and
others’ behavior in socioculturally diverse
groups of learners.

4. De-emphasize special education in favor of
personalized and customizable education.

5. Develop informational overviews that
include separate but related disciplines (e.g.,
terminology use) that directly impact this
type of work and include the stakeholders in
the work (e.g., include in-service teachers in
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the research team if the work is studying in-
service teacher use/work). 

6. Utilize AR methodology; look at the
Accreditation Board for Engineering and
Technology’s “soft skills” from engineering
education as a 21st-century skill set base.

7. Develop curriculum to facilitate diverse
group communication and culture by making
learners aware of specific pitfalls and
misconceptions or guiding them toward a
shared discourse culture.

8. Design collaborative environments that
support inclusivity.

9. Define pedagogies and ecologies that
support inclusivity.

10. Create an app to scaffold and support
faculty when working with students who
have an identified neurodiversity.

11. Investigate the hidden curriculum biases of
digital teaming programs.

12. Develop realistic real-world scenarios that
support sociocultural groups.

13. Contribute to a mechanism for international
and interdisciplinary partnerships.

14. Reimagine funding mechanisms and their
impact on research—instead of incremental
funding, consider sustainable metrics for 5–
8 or even 10-year funding to allow for
research that is cohesive, coherent, and
broadly impactful.

Conclusion

The Track 4 discussion on DMTL has provided 
information regarding sociocognitive factors of 
learning related inclusivity and equity. Current 
perspectives and future directions have indicated 
that DMTL would benefit from interdisciplinary 
investigations that included Learning Scientists, 
STEM Educators, Computer Scientists, and STEM 
Content Experts. These interdisciplinary teams 

could re-engineer current technologies and 
develop new ecologies and environments that 
would contribute to broadening and sustaining 
participation in STEM without biases. 

While new tools and ways to analyze resulting 
data are important aspects of broadening 
pathways in STEM, the human factor cannot be 
ignored. Training for instructors may result in 
reduced bias and more equitable learning. 
Embedding and fostering positive social skills in 
team learning could support students in the short 
term (classroom learning) and in the long term 
with skills that students will use beyond the 
classroom in their future STEM careers. 
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Track 1: Facilitating Team Learning in Real-time 
via Online Technologies 
Track 2: Personalizing Collaborative Learning 
through Analytics  
Track 3: Supporting Digital Teams using Active 
Pedagogical Strategies  
Track 4: Empowering Equitable Participation 

A concluding summary of prominent research 
recommendations from each track is listed in 
Table 1 .

Chapter 7 

Concluding Remarks 

This White Paper responds to the driving 
question: “Which research will advance effective 
and scalable digital environments for 
synchronous team-based learning involving 
problem-solving and design activities within 
Grades 6–20 STEM classrooms for all learners?” 
Addressing this question encompasses the 
detailed identification of research objectives 
feasible to initiate immediately (within 1 year), in 
the near term (within 3 years) and the long term 
(5 or more years) along four parallel tracks: 

Table 1

Summary of Top-Level Research Recommendations 

Track 1-Year Research 3-Year Research 5+ Year Research 

1. 
Tools for 

DMTL 

Survey students on which
widgets/features they
most value in student-
facing interfaces.

Conduct a multi-
institution survey or
workshop to determine
consensus on essential
features of an instructor-
facing dashboard for
DMTL frameworks.

Conduct a multi-
institutional survey to
reach consensus on a set
of standards for DMTL.

Develop STEM-specific
platforms beyond plain
text collaboration to
include equations,
graphics and digital
objects.

Design new instructor
dashboards based on
survey consensus.

Develop a set of design
elements for an
immersive VR
environment.

Extend instructor-facing
platforms with AI-based
data collection and
feedback systems, together
with mechanisms for
capturing longitudinal
growth together with
situational single-class
learning gains.

Apply and extend AI
technologies to adapt the
XR environment to increase
learning including auto-
insertion of virtual students
with teams, possibly
triggered by stagnation of
progress or retreading the
same ground.
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Extend DMTL
clearinghouses to allow for
new approaches to data
collection, management,
and analytics.

2: 
Analytics 
for DMTL 

Develop standards for
data collection and
reporting regarding
DMTL.

Identify best practices to
providing feedback based
on formative assessment
data.

Determine optimal ways
of aligning cognitive
demands of learning
tasks with student
abilities.

Develop tools to capture
learner data in a
minimally obtrusive
manner.

Identify techniques that
can be used to automate
productive feedback
based on student and
team data.

Develop ways of placing
appropriate scaffolds in a
team learning exercise
without reducing
cognitive demand.

Develop tools (including AI)
that facilitate and
accelerate feedback across
varying dimensions of team
learning.

Implement data analysis
techniques appropriate for
large-scale, noisy data.

Develop real-time data
analysis tools for evaluation
of team efficacy.

3: 
Pedagogy 
of DMTL 

Explore the effectiveness
of short-term
professional
development
opportunities for faculty
to learn to use analytics
to manage and evaluate
team processes.

Develop best practices
and implementation
strategies for XR
(extended reality: virtual,
mixed and augmented
reality) and other DMTL
technologies.

Measure the
effectiveness of varied
approaches of team
formation, peer
evaluation, and/or peer
feedback.

Explore models of
cultivating a culture of
accountability within
student life as opposed to
a culture of policing.

Build and test prototype
XR (VR, AR and MR) for
STEM content. Identify
unexpected issues and
challenges. Fully explore
instructor training needs.
Assess perceptions of
learning, engagement and
actual learning.

Incentivize collaborations
between learning sciences
experts and subject-
matter experts.

Examine approaches to
prepare STEM
faculty/teachers to
support student-centered
DMTL

Unpack interdisciplinary
approaches that focus on
team management.

Identify best practices for
building team
accountability. Develop and
measure the effectiveness
of accountability tools.

Create a virtual innovation
center that houses high-
impact practices and a
repository of resources.
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4. 
 Equitable 

Participati
in DMTL

Identify ways to quantify
inclusivity.

Define inclusivity. Expand
definitions that define
factors that exclude any
individual from the
learning community.

Develop a glossary of
common and cross-
cutting inclusivity terms
for faculty and students
(a common language) for
DMTL.

Arrange for multi-
institution cooperation to 
develop a database to 
house DMTL STEM 
datasets (quantitative and 
qualitative) of 
underrepresented 
individuals, teams, and 
groups engaging in team 
learning (e.g., Discourse 
DB) for interdisciplinary 
research teams to share 
and explore students
experiences across STEM 
disciplines. 

Create automated,
scalable methodologies to
quantify and increase
inclusion in DMTL
environments. These may
include
pyschophysiological, self-
report mechanisms, and
inventories.

Investigate how learners
of certain sociocultural
groups collaborate to
build knowledge.

Develop realistic real-world
scenarios that support
diverse sociocultural
groups.

Contribute to a mechanism
for international and
interdisciplinary
partnerships.

Based on the detailed discussions within each 
track, there emerged several crosscutting 
Immediate (Imm), Near-Term (NT), and Longer 
Term (LT) recommendations for future research, 
which are highlighted below: 

Imm: Unify research evidence on 
efficacy of real-time classroom-based 
DMTL across delivery modalities (e.g., 
co-located, synchronous-but-seated-
separately, and mobile-devices) via 
studies and workshops. 

Imm: Assemble glossary of inclusivity 
terminology, methods, and metrics relevant to 

DMTL. Consider potential advances in 
equitable participation across the range of 
interactions enabled within digital teams. 

NT: Create reusable and adaptable DMTL 
activities with engaging learner interfaces 
supporting STEM-specific tools (e.g., models, 
programming, equations, simulations) while 
employing analytics for personalization and 
instructor orchestration of cooperative 
learning in real-time. 

NT: Create a Virtual Innovation Center 
showcasing high-impact DMTL 
practices, users, and an adaptable 
resource repository that leverages 
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methodologies emphasizing 
interdisciplinary pyschophysiological 
efforts, self-report mechanisms, and 
inventories to advance inclusivity.  

    LT: Design new data science approaches 
exploring various team formations’ impact on 
learning outcomes. 

     LT: Apply and extend machine learning and 
AI technologies within DMTL to: (a) 
longitudinally suggest (or automatically 
construct) team learning activities 
personalized to the learners at-hand, (b) 
hybridize DMTL with Intelligent Tutoring 
Systems (ITS) whereby ITS agents have co-
instructor roles, and (c) adapt the XR 
environment to spontaneously insert virtual 

teammates at pivotal moments (e.g., 
triggered by retreading the same ground or 
persisting on a wrong path). 

Overall, discussions within each track led to a 
similar research flow consisting of establishing 
standards/best practices in the immediate term, 
followed by development of tools, models, and 
methodologies in the near-term, and finally 
extension of these tools/models/methodologies 
(e.g., using emerging technologies such as XR/AI) 
in the long term. It is the collective objective of 
the contributors that beyond these capstone 
findings themselves, the detailed outcomes and 
citations summarized in this White Paper can 
provide a unified compendium for future 
research in DMTL. 
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Appendix A: Glossary of Acronyms and Terms 

Digitally-Mediated Team Learning (DMTL) 

Digitally-Mediated Team Learning (DMTL) encompasses cooperative learning in a digital classroom-
based synchronous setting. The focus of DMTL can include STEM problem-solving and design activities 
within a classroom setting in real-time. Every team members’ role is valued and members can adopt 
shifting roles during the activity. During a DMTL activity, the instructor supports rather than directs the 
learning experience via the shared virtual space. Work products and knowledge are co-constructed 
utilizing common resources and mutually-shared views of the exercise.  DMTL leverages data analytics 
and the potential of machine learning to advance learning outcomes and scalability.  

Term Acronym Definition with Citation 

Activity clones are variations of the learning 
assignment which mitigate learner crosstalk and the 
availability of previous solutions to the same or similar 
learning activities. Activity clones are typically 
generated by modifying elements of the problem 
specification or permuting the quantities sought. A 
primary objective of Activity Cloning is for students to 
be afforded the opportunity to participate in 
comparable learning activities, while simultaneously 
reducing the propensity for them to share answers 
(DeMara, Sheikhfaal, Wilder, Chen, & Hartshorne, 
2019, p. 8). 

Augmented reality (AR) refers to incorporation of 3D 
virtual objects into a 3D real environment in real time 
(Azuma, 1997). 

CBL uses "...a story, describing or based on actual 
events and circumstances, that is told with a definite 
teaching purpose in mind” (Lynn, 1999, p. 2) 

Coded language may be a phrase or a sentence that 
targets a specific group with shared characteristics 
such as race, gender, ethnicity or sexual preference. 
These phrase are often nuanced with bias or prejudice. 
For example, coded language is often used "to bring 
up racist views without seeming racist" (Bush, 2004, p. 
xi). 

"...students working in pairs or small groups to achieve 
shared learning goals... learning through group work 
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rather than learning by working alone" (Barkley, Cross, 
& Major, 2014, p. 4). 

"any form of information humans present or exchange 
by means of a computer" (Sigrid, 2008, p. xxxvii). 

“Computer-supported collaborative learning (CSCL) 
refers to collaborative learning that is facilitated or 
mediated by computers and networked devices. CSCL 
can occur synchronously, with learners interacting 
with each other in real time (e.g., a chat room), or 
asynchronously, with individual contributions 
stretched out over time (e.g. e-mail exchange)”
(Stahl, Koschmann, & Suthers, 2014, p. 479). 

"... an identifiable research field focused on the role of 
the computer in group work" (Suchman, 1996, p. 9). 

“a set of processes which help people interact 
together in order to accomplish a specific goal or 
develop an end product which is usually content 
specific. It is more directive than a collaborative 
system of governance and closely controlled by the 
teacher” (Panitz, 1999, p. 5). 

Some form of digital technology is involved in 
transacting communication or development of a digital 
product or process. 

“Educational Data Mining is concerned with 
developing methods for exploring the unique types of 
data that 
come from educational settings, and using those 
methods to better understand students, and the 
settings which they learn in." (Baker & Yacef, 2009, p. 
4). 

Extended Reality (XR) references Augmented Reality 
(AR), Virtual Reality (VR), and  Mixed Reality (MR. 

"FC...is a... pedagogical method, which employs 
asynchronous video lectures and practice problems as 
homework, and active, group-based problem solving 
activities in the classroom. It represents a unique 
combination of learning theories once thought to be 
incompatible—active, problem-based learning 
activities founded upon a constructivist ideology and 
instructional lectures derived from direct instruction 
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methods founded upon behaviorist principles" (Bishop 
& Verleger, 2013, p. 2). 

“The first in-class activity in each instructional unit is 
an individual readiness assurance test (iRAT) over the 
material contained in the preclass assignments. The 
tests typically consist of multiple-choice questions that 
enable the instructor to assess whether students have 
a sound understanding of the key concepts from the 
readings. As a result, the questions should focus on 
foundational concepts, not picky details, and be 
difficult enough to stimulate team discussion” 
(Michaelsen & Sweet, 2008, p. 17) 

Interactions for learning optimization (human being 
focused to find patterns) Informing instructors and 
coaches 
 "Learning Analytics is the development and 
application of data science methods to the distinct 
characteristics, needs, and concerns of educational 
contexts and the data streams they generate for the 
purpose of better understanding and supporting 
learning processes and outcomes” (Wise, 2019b, p. 
119). 

"Learning analytics is the measurement, collection, 
analysis, and reporting of data about learners and their 
contexts, for the purposes of understanding and 
optimizing learning and 
the environments in which it occurs" (Siemens, 2013, 
p. 1382).

“...the majority of MOOCs are virtual, distributed 
classrooms that exist for six to ten weeks at a time. 
These MOOCs are structured learning environments 
that emphasize instructional videos and regular 
assessments, centralizing activities on a single 
platform” (Kizilcec, Piech, & Schneider, 2013, p. 170). 

“Mixed reality (MR) refers to the incorporation of 
virtual computer graphics objects into a real three 
dimensional scene, or alternatively the inclusion of 
real world elements into a virtual environment.” (Pan, 
Cheok, Yang, Zhu, & Shi, 2006) 

"...the acquisition of knowledge and skill through 
active helping and supporting among status equals or 
matched companions. It involves people from similar 
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social groupings who are not professional teachers 
helping each other to learn and learning themselves by 
so doing" (Topping, 2005, p. 631). 

"...learning that results from the process of working 
toward the understanding or resolution of a problem. 
The problem is encountered first in the learning 
process!" (Barrows & Tamblyn, 1980, p. 1). 

“Project Based Learning is a teaching method in which 
students gain knowledge and skills by working for an 
extended period of time to investigate and respond to 
an authentic, engaging, and complex question, 
problem, or challenge” (Buck Institute for Education 
PBLworks, n.d.). 

"techniques include measures of heart activity..., brain 
activity..., and eye activity. Psychophysiological 
techniques utilize the combination of physiological 
variables and learning process markers (such as task 
completion rate or percent of correct responses on 
transfer measures). Psychophysiological measures can 
best be used to visualize the detailed trend and 
pattern of cognitive load..." (Schraw & Robinson, 2008, 
p. 20)

Facial reaction, eye tracking, and attention. 

The study of the pedagogy and andragogy of Science, 
Technology, Engineering, and/or Math (STEM). In this 
context STEM can be inclusive of all subjects or it can 
be a singular or combination of the subjects. 

“... 
STEM education has been defined as ‘a standards-
based, meta-discipline residing at the school level 
where all teachers, especially science, technology, 
engineering, and mathematics (STEM) teachers, teach 
an integrated approach to teaching and learning, 
where discipline-specific content is not divided, but 
addressed and treated as one dynamic, fluid study’” 
(Brown, Brown, Reardon, & Merrill, 2011, p. 6). 

A group of people working together with a shared 
purpose. Moves beyond a group or grouping. 

"...a group of people working together to achieve a 
common purpose for which they hold themselves 
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mutually accountable" (Scholtes, Joiner, & Streibel, 
2003, pp. 1–2). 

“Once students turn in their individual tests, they then 
take the exact same test again, and must come to 
consensus on their team answers. Importantly, teams 
must get immediate feedback on their performance, 
currently best achieved using scratch-off forms in the 
immediate feedback assessment technique (IF-AT)” 
(Michaelsen & Sweet, 2011, p. 43). 

“...an active learning and small group instructional 
strategy that provides students with opportunities to 
apply conceptual knowledge through a sequence of 
activities that includes individual work, teamwork and 
immediate feedback. It is used with large classes (4100 
students) or smaller ones (525 students), incorporating 
multiple small groups of 5–7 students each, in a single 
classroom” (Parmelee, Michaelsen, Cook, & Hudes, 
2012, p. e725). 

“TBL employs a structured three-phase sequence: (1) 
preparation, during which learners study an advance 
assignment defined by faculty, (2) readiness assurance, 
where learners demonstrate knowledge through 
individual and group readiness assurance tests (RATs), 
and (3) application, when learners apply course 
concepts to problem-solving exercises designed by 
faculty and analyzed by teams” (Koles, Stolfi, Borges, 
Nelson, & Parmelee, 2010, p. 1739).  

Often employed in medical education. 

“The term universal design for learning means a 
scientifically valid framework for guiding educational 
practice that - 
(a) provides flexibility in the ways information is
presented, in the ways students respond or
demonstrate knowledge and skills, and in the ways
students are engaged; and
(b) reduces barriers in instruction, provides
appropriate accommodations, supports, and
challenges, and maintains high achievement
expectations for
all students, including students with disabilities
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and students who are limited English proficient” 
(Edyburn, 2010, p. 34). 

“Virtual reality (VR) is the use of computer graphics 
systems in combination with various display and 
interface devices to provide the effect of immersion in 
the interactive 3D computer-generated environment.” 
(Pan, Cheok, Yang, Zhu, & Shi, 2006) 
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Appendix B. Workshop Flow and Agenda 

The DMTL Workshop took place March 31 - April 2, 2019 in the Morgridge International Reading Center 
at the University of Central Florida. In the months leading up to the Workshop, qualified participants 
were selected based on an application which included an Expertise Profile listing their qualifications and 
a Position Abstract on a specific research direction relating to DMTL. After selection of participants was 
completed, track templates were made available for participants to note talking points ahead of the 
Workshop.  

Over the duration of the Workshop, participants attended parallel breakout sessions (one for each track) 
where they used these same track templates to record ideas on the state-of-the-art, challenges and 
future research directions regarding each track. After the conclusion of the Workshop, an action 
committee was assembled, consisting of participants from each of the four tracks: action committee 
members served as editors for their respective track in completion of this White Paper. The overall 
Workshop flow is summarized below, followed by an hourly agenda of activities which took place during 
the Workshop. 

DMTL Workshop Agenda 

Sunday, 31 March 2019 

Attendees arrive and are introduced to each other through a poster session and social mixer. 

3:00 - 3:10 Reception Welcome (Dr. Michael Georgiopoulos: Dean of College of Engineering & 
Computer Science - UCF) 
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3:10 - 6:00 Poster Session / Demos: Researcher/Student Poster Session, Demos, and Industry 
Table 

3:10 - 6:30 Social Mixer: Reception and Hors d’oeuvres - McGraw Hill Education 

6:00 - 6:30 Poster Awards 

7:00 Dinner - Restaurants for dinner at attendees' own expense / opportunity to 
coordinate with peers 

Monday, 1 April 2019 

Attendees participate in their first day of breakout sessions; highlights include keynote speakers, 
panel discussion, and tour of digital learning facilities. 

8:30 - 9:00 Coffee & Pastry: Networking/Conversation 

9:00 - 9:05 Welcome (Dr. Debra Reinhart: Associate Vice President for Research and Scholarship 
- UCF)

9:00 - 10:00 Keynote: "Balancing Learning and Productivity Through Shared Cognition in Team-
Based Learning" (Dr. Carolyn Rose - CMU) 

10:00 - 11:00 Workshop Overview (Drs. Ronald DeMara - UCF, Laurie O. Campbell - UCF, Richard 
Hartshorne - UCF) 

11:00 - 1:00 Parallel Breakout Sessions for Tracks 1 to 4 (Led by Track Co-Chairs) 

1:00 - 1:05 Lunch Welcome (Dr. Pamela "Sissi" Carroll: Dean of College of Community Innovation 
and Education - UCF) 

1:05 - 2:00 Lunch & Presentation: "Analytics, Adaptivity, and Agency in Digitally-Mediated Team 
Learning" (Dr. Alyssa Wise - NYU) 

2:00 - 5:00 Parallel Breakout Sessions for Tracks 1 to 4 (Led by Track Co-Chairs) 

5:00 - 5:45 
Panel Discussion: "Future of Instructional Technologies for Cooperative Learning: 1, 
3, and 5 Year Research" (Drs. Sarah Carey - MHE, Cathleen A. Norris - UNT, Matthew 
Ohland - Purdue, Elliot Soloway - Michigan, and Jianwei Zhang - Albany) 

5:45 - 6:00 Digital Learning: Today and Initiatives (Dr. Kelvin Thompson: Executive Director of 
Center for Distributed Learning - UCF) 
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6:00 - 7:00 Tours:  Active Learning Sandbox, EPC, and Mixed-Mode Production Facility (refer to 
Section 4 below) 

8:00 Dinner - Restaurants for dinner at attendees' own expense / opportunity to 
coordinate with peers 

Tuesday, 2 April 2019 

Attendees participate in a second day of breakout sessions focused on refining and organizing ideas in 
track templates; action committee is formed to edit White Paper. 

8:30 - 9:00 Coffee & Pastry: Networking/Conversation 

9:00 - 9:05 Welcome (Dr. Melody Bowdon: Interim Vice Provost of the Division of Teaching and 
Learning - UCF) 

9:05 - 10:00 Keynote: "Collaboration via Constructing Shared Mental Models: The Value of 
Immersive Experiences and Representations" (Dr. Christopher Dede - Harvard) 

10:00 - 11:00 Debrief (Dr. Ronald DeMara - UCF and Track Co-Chairs) 

11:00 - 1:00 Parallel Breakout Sessions for Tracks 1 to 4 (Led by Track Co-Chairs) 

1:00 - 1:05 Lunch Welcome (Dr. Wendy Howard: Program Director of Pegasus Innovation Lab - 
UCF) 

1:05 - 2:00 Lunch & Presentation: "Shared Regulation in CSCL" (Dr. Angela M. O'Donnell - 
Rutgers) 

2:00 - 3:30 
Parallel Breakout Sessions for Tracks 1 to 4 (Led by Track Co-Chairs) 

3:30 - 4:30 
Action Committee Formation (Led by Track Co-Chairs) 

7:00 
Dinner - Restaurants for dinner at attendees' own expense / opportunity to 
coordinate with peers 



141

Appendix C: Workshop Participants 

Participant Institution Track 

Roger Azevedo University of Central Florida 2 

Brenda Bannan George Mason University 2 

Joseph Beck Worcester Polytechnic Institute 2 

Jennifer Blacklock Colorado School of Mines 2 

Leslie Bondaryk Concord Consortium 1 

Kristy Elizabeth Boyer University of Florida 1 

Laurie O. Campbell University of Central Florida 4 

Sarah Carey McGraw Hill Education 3 

John Carroll Pennsylvania State University 3 

Zhongzhou Chen University of Central Florida 2 

Min Chi North Carolina State University 2 

Leanne Coyne University of Texas at Tyler 3 

Melissa Dagley University of Central Florida 4 

Chris Dede Harvard University 3 

Ronald F. DeMara University of Central Florida 1 

Julie Donnelly University of Central Florida 3 

Chad Dorsey Concord Consortium 1 

Nia Dowell University of Michigan 4 

Danielle Espino Pepperdine University 4 

Steve Fiore University of Central Florida 3 

Benjamin Gallegos University of Portland 4 

Edward Gehringer North Carolina State University 2 

Glenda Gunter University of Central Florida 4 
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Brian Harte St. John's University 3 

Richard Hartshorne University of Central Florida 3 

Caroline Haythornthwaite Syracuse University 3 

Eloy Hernandez University of Central Florida 3 

Wendy Howard University of Central Florida 1 

Zhewei Hu North Carolina State University 2 

Hwee-Joo Kam University of Tampa 3 

Fengfeng Ke Florida State University 1 

Seung Lee Pepperdine University 2 

Hongli Li Georgia State University 2 

Leilah Lyons New York Hall of Science 1 

Shanshan Ma University of North Texas 2 

Brian Magerko Georgia Tech 2 

Thayer Merritt University of Texas at Tyler 1 

Homero Murzi Virginia Tech 2 

Gloria Niles University of Hawaii West Oahu 4 

Cathie Norris University of North Texas 1 

Angela O'Donnell Rutgers University 3 

Brian O'Dwyer Embry-Riddle U. & CognaLearn 1 

Matthew Ohland Purdue University 1 

Babajide Osatuyi The Pennsylvania State University 3 

Katia Passerini St. John's University 3 

Amanda Perez Carnegie Mellon University 2 

Vitaliy Popov University of San Diego 4 

Hossein Pourmeidani University of Central Florida 1 

Debra Reinhart University of Central Florida 4 
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Carolyn Rose Carnegie Mellon University 1 

Asmalina Saleh Indiana University 3 

Soheil Salehi University of Central Florida 1 

Shadi Sheikhfaal University of Central Florida 1 

George Siemens University of Texas At Arlington 2 

Elliot Soloway University of Michigan 1 

Michael Spector University of North Texas 2 

Sam Spiegel Colorado School of Mines 2 

Frank Starmer Duke University 2 

Ron Stevens UCLA School of Medicine 2 

Michael Stucker Indiana University 2 

Jody K. Takemoto The University of Texas at Tyler 3 

Adrian Tatulian University of Central Florida 1 

Michelle Taub University of Central Florida 2 

Tian Tian University of Central Florida 1 

Gina Tesoriero University of Washington 3 

Jennifer Tsan North Carolina State University 2 

Jessica Vandenberg North Carolina State University 2 

Kenneth Walsh Oregon State University 3 

Alyssa Wise New York University 3 

Sally Wu University of Wisconsin, Madison 3 

Dezhi Wu University of South Carolina 2 

Wanli Xing Texas Tech University 2 

Soobin Yim University of California, Irvine 4 

Jianwei Zhang University at Albany 1 
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Appendix D: ASEE Manuscript 

The following manuscript is publicly-available for downloading as a PDF at the link below:  
https://www.asee.org/public/conferences/140/papers/26880/view 
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Appendix E: ASEE Poster 
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Appendix F: NSF Summit Slides
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Appendix G: Workshop Exit Survey Responses
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