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Theoretic Derivations of Scan Detection Operating on Darknet
Traffic

Morteza Safaei Pour∗, Elias Bou-Harb

Cyber Threat Intelligence Laboratory, College of Engineering & Computer Science, Florida Atlantic University,
Florida, USA

Abstract

Cyber space continues to be threatened by various debilitating attacks. In this context, executing
passive measurements by analyzing Internet-scale, one-way darknet traffic has proven to be
an effective approach to shed light on Internet-wide maliciousness. While typically such mea-
surements are solely conducted from the empirical perspective on already deployed darknet IP
spaces using off-the-shelf Intrusion Detection Systems (IDS), their multidimensional theoretical
foundations, relations and implications continue to be obscured.
In this article, we take a first step towards comprehending the relation between attackers’
behaviors, the width of the darknet vantage points, the probability of detection and the minimum
detection time. We perform stochastic modeling, derivation, validation, inter-correlation and
analysis of such parameters to provide numerous insightful inferences, such as the most effective
IDS and the most suitable darknet IP space, given various attackers’ activities in the presence of
detection time/probability constraints. One of the outcomes suggests that the detection strategy
employed by the widely-deployed Bro IDS is ideal for inferring slow, stealthy probing activities
by leveraging passive measurements. Further, the results do not recommend deploying the
strategy utilized by the Snort IDS when the available darknet IP space is relatively small, which
is a typical scenario when darknets are operated and employed on organizational networks. In
addition, we provide an optimization problem set that identifies a new botnet early infection
strategy, which can be leveraged by evolving stealthy bots to circumvent a certain IDS strategy
as it operates on the darknet IP space. The implications of this formal derivation are especially
factual with the advent of evolving paradigms such as IPv6 deployments, and the proliferation
of highly-distributed, orchestrated, large-scale and stealthy probing botnets.

Keywords: Probing activities, Stochastic analysis, Botnet analysis, Darknet traffic, Data
analytics, Network Telescope

1. Introduction

Cyber space has radically altered our every day life and impacted a large number of
its crucial aspects. This is clearly realized nowadays with the large-scale adoption of the
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Internet-of-Things (IoT) paradigm [1], the modernization of Cyber-Physical Systems (CPS) [2]
and the continuous rise and utilization of digital currencies [3], to name a few. Nevertheless,
the increasing dependence on cyber space continues to make organizations and Internet-wide
services highly vulnerable to targeted threats and exploitations. In an attempt to thwart
such malicious attempts, typically, Intrusion Detection Systems (IDS) are often configured,
deployed and managed. Complementary, in recent years, security operators and researchers
have become increasingly interested in passive monitoring of unused Internet address spaces,
which is often known as darknets or network telescopes [4]. A darknet is a collection of
routable, allocated yet unused Internet Protocol (IP) addresses. These IP addresses have
no interaction with other hosts and only passively gather packets without generating any
replies. Since these unused address blocks contain no legitimate hosts, the received packets are
characteristically unsolicited and are often the results of Internet-scale probing activities [5],
backscattered packets from victims of denial of service attacks [6] or misconfiguration traffic [7].

As noted, one of the most prevalent darknet traffic types is related to probing activities. Such
activities are indeed a first step and an enabler of a large number of cyber attacks [8]. The
empirical results discussed by Raftopoulos et al. [9] showed that the probability of devices
becoming infected by malware increased if they were previously scanned. Autonomously
spreading worms [10] employ probing to fingerprint other vulnerable hosts to infect them.
Botmasters, orchestrating large-scale botnets [11], adopt probing activities to identify and add
more bots to their campaigns [12]. Very recently, the IoT-centric malware Mirai [13] was
inferred to be generating a momentous amount of probing activities in an attempt to exploit
Internet-facing IoT cameras and video recorders [13]. To this end, promptly detecting such
probing activities often aids in preventing actual attacks from occurring or at least contributes in
limiting the expansion of botnets. In this context, a darknet has recurrently proven its capability
to infer probing activities by analyzing incoming packets to unused IP addresses [14].

There exists a plethora of research contributions which have been conducted on passive
detection methods and the practical implementations of darknets [4], yet, to the best of the
authors’ knowledge, the research effort which endeavors to theoretically derive and analyze
darknet-specific notions in the context of darknet size, scan detection algorithms operating
on such darknet IP spaces, and attackers’ behaviors, among various others, have never been
attempted before. Indeed, the lack of such formal understanding hinders the optimized deploy-
ments and usage of the darknet IP space in a given network subnet. Further, without such formal
analysis, one can not determine the best scan detection algorithms to leverage, given a certain
attacker’s behavior and the available network resources. Additionally, given the proliferation of
evolving cyber events such as large-scale, stealthy probing botnets [15], it is required to leverage
the formal analysis of the available passive measurement strategies and inference mechanisms,
coupled with their implications, in order to select the most suitable approach to employ against
these ever-evolving phenomena. Moreover, with the continuous deployment of IPv6, one needs
to take into account the implications of passive measurements in such deployment settings,
given an operated IDS strategy and certain requirements on detection time and probability.
Please note that throughout this paper, when we refer to the open source IDS Snort or Bro, we
are indeed specifically referring to their probing detection systems and settings (and not their
full blown implementations) and any other probing inference mechanims which closely mimick
their behaviors. Further, given that analyzing network information from all sub-networks for
detecting bot campaigns is known to be hard [16], darknets typically provide a promising
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Internet-scale (macroscopic) approach to infer distributed unsolicited behaviors and activities.
In contrast to IoT botnets such as Mirai, Hajime [17] and brickerbot [18] which employ fast,
stateless scanning modules to scan networks with the highest possible rate that can be relatively
easily detected by IDS operating on the darknet [13], recently discovered IoT botnets similar to
IoTroop [19] exploit a non-aggressive vulnerability scan and propagation methodology which
makes it relatively stealthy, thus enabling it to pass under the radar of monitoring tools [20].
Another example, would be the Sality botnet which was a generic botnet that attempted to
propagate in a low-rate fashion to circumvent deployed IDS on the darknet IP space [21].

Having discussed the aforementioned information and pointed out a few research gaps, we
frame the contributions of this article as follows:

• Formalizing the operations of three, widely-deployed detection mechanisms (typically em-
bedded in open source IDS) by focusing on their probing detection modus operandi when
operated on the darknet IP space.

• For each of the formalized detection approaches, we perform stochastic modeling, deriva-
tion and validation of their detection probabilities, their minimum detection time and the
minimum number of required darknet IP addresses to achieve a certain detection prompt-
ness and accuracy when conducting passive measurements.

• Shedding the light on the impact of detection time, given a certain probing rate and a par-
ticular width of the darknet vantage points, and comparing the effectiveness of the inves-
tigated detection strategies deployed on darknet traffic in various scenarios. This provides
insightful results such as the particular detection strategy employed by the Bro IDS being
more architecturally effective in the inference of stealth low-rate scanning cases. Another
outcome demonstrates why the detection strategy utilized by the Snort IDS on a relatively
small darknet is not recommended.

• Proposing an early infection methodology based on the derived relations of minimum de-
tection time and darknet vantage width by framing it as an optimization problem set where
stealthy botnets can exploit. We concur that such an expansion/propagation methodology,
although may be generic to typical botnets, could prove advantageous to evolving IoT bots,
enabling them to circumvent the radar of measurement techniques, such as those utilizing
darknet monitoring.

The road-map of this paper is as follows. In the next section, we review the literature on various
topics such as probing events, darknet as a means of probing detection, and stochastic analysis
of scanning behavior. In Section 3, we formally define the considered detection strategies and
other required preliminaries. To this end, we also present the stochastic derivation, validation
and analysis of the defined detection methods in the context of detection probability and time. In
Section 4, we execute, compare and contrast several experimentation by leveraging the proposed
formalization scheme. In Section 5, we highlight the existence of a botnet (early infection stage)
strategy that can be leveraged by evolving bots to avoid detection methods operated on passive
measurements. Subsequently, in Section 6, we discuss the implications of some of the results on
today’s cyber security and Internet measurement challenges. We demonstrate the limitations of
the proposed approaches and techniques in Section 7. Finally, in Section 8, we summarize the
contributions of this work and pinpoint several topics that aim at paving the way for future work.
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2. Related Work

Considering that the contributions of this article are at the intersection of scan detection, pas-
sive measurements, botnet analysis and worm propagation, in this section, we review the litera-
ture in the context of such inter-related topics.

2.1. Scan Detection
Since probing activities is an important topic in cyber security and Internet measurements,

it has been the focus of attention in many contributions. In [5], the authors provided an
extensive survey in which its categorize the scanning topic based on their natures, strategies,
and approaches. Bhuyan et al. [22] present a taxonomy and survey related to cyber scanning
and some of the existing detection mechanisms. Threshold Random Walk (TRW), proposed for
scan detection by Jung et al. in [23], is one of the well-known methods which was implemented
as part of the Bro [24] IDS. Sridharan et al. in [25] investigated the effectiveness of existing
methods such as Snort and TRW, and proposes a new method dubbed as Time-based Access
Pattern Sequential hypothesis testing (TAPS). Irwin et al. [26] empirically compared visualized
scans with alert outputs of scan detection algorithms employed by Snort and Bro on darknet
traffic. Leonard et al. [27] performed stochastic derivation of a number of relations in order to
propose an optimal stealth distribution scanning activity based on the probability of detection.
The authors undertook the attackers’ perspective (and not the measurement point of view) in
order to significantly minimize the probability of detection. Further, in [28], the authors analyzed
data from a large darknet composed of 5.5 million addresses to detect and study Internet-wide
probing activities. Additionally, Fukuda et al. [29] explored the effectiveness of darknets for
detecting large-scale IPv6 scan activities. The intuition behind their proposed approach is based
on the idea that firewalls, upon detecting any probing activity, will look up reverse DNS names
of probes’ source IP addresses. As such, the authors demonstrated that DNS backscatter can
play an important role in IPv6 Internet measurements.

In contrast to such research contributions, which have been mainly dedicated to the empiri-
cal inference and analysis of scan activities, we rather focus on the stochastic analysis of scan
activities from the perspective of detection systems as deployed on darknets to comprehensively
discover their strengths and weaknesses under various situations and scenarios.

2.2. Passive measurements
The darknet (network telescope) topic have attracted significant initial attention from the

research community through its usage in Distributed Denial of Service (DDoS) attack detection
[6] and analysis of the propagation of worms [30]. Throughout the past, researchers have shifted
their focus to monitoring large-scale cyber events using darknets [31] and towards the role
of passive measurements in the study of amplification attacks [32, 33]. Further, a number of
research works have been dedicated to studying the impact of reducing the number of utilized
darknet IP addresses (i.e., the width of darknet vantage points). For instance, in [34], the
authors introduced the concept of the sparse darknet, a network subnet that is sparsely populated
with darknet addresses as a way to study the impact of this reduction on its effectiveness.
Alternatively, other literature approaches analyzed effective sensor placement strategies such as
distributed darknet IP address placement [35], considering placing such IP addresses near live
hosts or analyzing the impact of special patterns of localization [36]. Moore et al. [37] studied
the relationship between the size of network telescopes and the detection ability of different
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network events, along with their precision based on stochastic and probabilistic relations. In
[38], the authors collected data from a /20 darknet to show that IP scanning activities can
be modeled accurately with mixtures of Poisson distributions. They validated their proposal
using well-known scanning methodologies (by using activities generated by the scanning tool
Zmap [39] and the Shodan service [40]) and verified that each scanning process has its own
signature in terms of the number of mixed distributions and their corresponding parameters.
Additionally, in [41], the authors investigated performance metrics such as detection rate, false
alarm rate, computational cost and ease of use of two network traffic analysis tools, namely,
Corsaro [42] and Cisco ASA 5515-X. The authors also investigated and reported the findings
of the application of two machine learning classifiers (i.e., C4.5 Decision Tree, AdaBoost.M1)
on diverse darknet datasets. Further, Benson et al. [43] opportunistically leveraged Internet
Background Radiation (IBR) or unsolicited traffic sent to darknets, to investigate its effectiveness
in generating macroscopic Internet measurements. To this end, the authors considered three
application case studies related to identification of open resolvers, determining uptime, and
characterizing path changes. Indeed, their goal was to highlight the strengths and limitations of
employing IBR as a unique data source for Internet-wide measurements.

In contrast, we present a first attempt ever which exploits darknet-specific parameters and vari-
ables to formally comprehend the multidimensional relations between darknet vantage points,
various probign detection strategies operating on such darknet IP spaces, the rate of the probing
activities and the detection time/probability.

2.3. Botnet Analysis
Li et al. [44] presented analytical schemes as applied on honeynet data to understand the

significance of large-scale botnet probing and explored the prevalence of different types of
scanning activities. Moreover, they designed mathematical schemes to extrapolate the global
properties of scanning events such as total population and target scope, from the limited, local
view of a honeynet. Further, in [45], the authors discovered and reported on a large-scale,
stealthy orchestrated scanning event by executing darknet analysis. The authors noted that the
inferred bots aimed at achieving comprehensive coverage, though enduring higher costs in terms
of task completion time. Such unsolicited activity was thoroughly investigated in [21], where
a stealthy horizontal scan of the entire IPv4 address space conducted by the Sality botnet was
investigated. In a closely related work, Raftopoulos et al. [9] correlated different datasets such
as darknet and Snort alerts, with the aim to analyze the same Sality botnet scan. Based on
their analysis, only 4% of all the probing flows were shown to have triggered a scan-related
intrusion detection signature, which indeed demonstrated the stealthiness of such a large-scale
botnet activity. Garcia et al. [46] provided a comprehensive survey about network-based botnet
detection methods. The authors presented a new classification, taxonomy, and comparison of
network-based botnet detection mechanism, along with extensive highlights in this area. Ban
et al. [47] employed an abrupt change-detection algorithm on their darknet data for detecting
botnet probing campaigns. Similarly, Bou-Harb et al. [16] proposed a probing botnet detection
engine and empirically validated it by uncovering large-scale, previously undocumented stealthy
botnets by solely leveraging passive measurements.

In contrast to such contributions, this papers extends network telescope research by initially
deriving a stochastic passive measurement scheme to permit the analysis of two commonly em-
ployed probing detection strategies. Subsequently, we propose a novel, coordinated propagation
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methodology (i.e., early infection strategy), which can be leveraged by ever-evolving botnets,
including IoT-centric bots, to avoid a widely deployed detection method as it operates on darknet
measurements.

2.4. Worm Propagation

Wang et al. [48] provided a comprehensive survey of worm propagation methods. The
authors analyzed various models and highlighted each model’s significance. The authors divided
worms into two main categories: scan-based and topology-based. A scan-based worm probes
the entire cyber space, or a sub-space, and infects vulnerable hosts to propagate itself. Code Red
II [49], Witty [50], and Conficker [51] all fall under this scan-based class. In addition, recently
emerged IoT botnets such as Mirai [13], Hajime [17], brickerbot [18] and IoTroop [19] use
techniques and characteristics similar to scan-based worms. However, a topology-based worm
locates new host targets by using information in the victim’s machine. Examples are email
worms [52, 53] and social network [54] worms such as Koobface [55]. Scan-based techniques
can be further classified into random scanning (which consists of methods such as uniform
scanning, hit-list scanning [56], routable scanning [57]) and localized scanning. Among all the
proposed methodologies to increase the spreading speed and effectiveness, there exist several
methods which concentrate on the early scanning stage with the aim of increasing the number
of initially infected hosts prior to starting the large-scale probing stage. Hit-list scanning is an
example that works by infecting all vulnerable hosts on the hit-list before initiating the scanning
events. Clearly, there exists many challenges to this process of building such a hit-list, including
accuracy and timeliness. Further, such process might alarm the deployed detection system about
an incoming worm attack, especially when they are targeting the entire Internet space.

In this research, we present a novel orchestrated and stealthy scan-based early infection
scheme. In this stage, scanners probe the entire network IP address space once (in an orchestrated
fashion) and immediately infect identified vulnerable hosts without being detected by detection
systems (as elaborated an analyzed in Section 3). This aids such an attacker to spread more ef-
ficiently in their early stage to increase the number of infected hosts. Subsequently, when their
population is sufficient, they can employ any orchestrated stealthy probing technique, such as
those noted in [27], or execute any other misdemeanors.

3. Formal Modeling and Stochastic Analysis

The purpose of this section is to formalize and define various kinds of probing detection
method with the aim of finding relations between different parameters, such as minimum number
of required darknet IP addresses, minimum detection time and the probability of detection for
different scanning rates. Given a subnet S , consisting of |S | IP addresses, we notate the set of
darknet IP addresses, distributed within S and utilized in the detection process, as DIP. In this
paper, following the natural behavior of large-scale probing events [15], we consider that the
attacker intends to scan all IP addresses in S.

Indeed, there exists various scanning patterns such as sequential and uniform probing, which
are typically employed for scanning Internet networks. In this context, we note the average
scanning rate r and the average inter-probe delay 1

r .
It is noteworthy to mention that as long as we assume that the darknet IP addresses are dis-

tributed uniformly in the intended network (or the attacker probes uniformly which is a common
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practice [16]), the final relations and outcomes will continue to hold true. Thus, we consider
the uniformity of the scans, which indicates that, on average, every 1

r , the scanner would send a
packet to an IP address in the analyzed network.

Performing the stochastic modeling of the detection methods would be the first required step
for comprehending and analyzing the detection probability and the relations between various
passive measurement parameters. For the sake of this work, we focus on three different detection
strategies based on well-known, highly-deployed IDS.

Definition 1: ρ(τ) is the probability of detecting a probing activity X in less than τ time units
from the start of the scan.

ρ(τ) =

∫ τ

0
Pr(alarm(t) = TRUE)dt (1)

Definition 2: For a probing activity X with an average scanning rate r over a subnet S and given
a certain Detection System (DS), the minimum detection time τεmin is the minimum required time
for DS to detect the scan with probability more than 1 − ε.

τεmin = in f {t ≥ 0 : ρ(t) ≥ 1 − ε} (2)

1 − ε represents how confident the detection system should be to raise the alarm. A higher ε
refers to a more relax condition on detection and consequently a larger false alarm rate.

3.1. FH Detection System

The first considered detection method is the First-Hit (FH) algorithm, which raises an alarm
on the detection of the very first darknet packet. Indeed, this represents the simplest detection
system that we analyze here to specify some bounds on the parameters. After the first hit, this
DS raises the alarm. This method intuitively uses the lowest amount of memory and processing
requirements for detection. While this approach might be effective, it undoubtedly could lead
to a high false positive rate; it might identify received darknet packets, caused by backscattered
activities or misconfiguration, as probing activities. Thus, we consider this technique and its
detection time/probability as a reference model rather than a DS that can actually be operated in
practice.

Recall that there exists |DIP| darknet IP addresses in the subnet S . Thus, the probability of one
of these darknet IP addresses being hit by probing packets is q =

|DIP|
|S | . Therefore, the effective

rate λ, the scanning rate that would actually be sensed by the darknet, would be λ = qr. Now,
given an average scanning rate r, we can write ρ(τ) as in

ρ(τ) = 1 − e−λτ (3)

Based on (2) and some mathematical operations, we can easily derive τεmin from equation (3), as
in

τεmin =
log(ε)
−λ

(4)

Further, we can infer the minimum required darknet IP addresses for specific τεmin and ε, as
follows.

min |DIP| =
|S | ln(ε)
−rτεmin

(5)
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3.2. Detection System I (DSI)

The second detection method is a window-based detection technique that is based on the
widely-deployed, open source Snort [58] IDS. We refer to this detection system as DSI and
subsequently describe its operations. Consider a counter Ci(t) = 0 for each observed source
IP address i. After its reset (at time t), it starts counting received packets in a time window
[t, t + ∆DS I]. During this time window, if the counter hits the threshold αDS I, DSI raises an
alarm, otherwise, the counter and the time window will be re-initiated. This algorithm is clearly
more complex than the FH algorithm because it requires a timer to check the window’s timeout,
and thus memory is required for storing Ci(t) for all packets arriving from different source IP
addresses i. The operation of DSI is summarized in Algorithm 1.

Algorithm 1: DSI detection algorithm

1 Ci(0) = 0;
2 alarm = FALS E;
3 t reset = 0;
4 while do
5 if t ≤ t reset + ∆DS I then
6 if A packet from source i is received then
7 Ci(t) = Ci(t) + 1;
8 if Ci(t) ≥ αDS I then
9 alarm = TRUE;

10 end
11 end
12 else
13 t reset = t reset + ∆DS I;
14 Ci(t) = 0;
15 end
16 end

The DSI is defined with the parameter pair (∆DS I, αDS I). Letting τ = p∆DS I + ν where 0 ≤ ν ≤
∆DS I, we can then compute ρ(τ), as follows.

ρ(τ) = 1 −W p
0 W1 (6)

where

W0 = e−λ∆

α−1∑
k=0

(λ∆)k

k!
=

Γ(α, λ∆)
(α − 1)!

= Q(α, λ∆) (7)

and

W1 = e−λν
α−1∑
k=0

(λν)k

k!
=

Γ(α, λν)
(α − 1)!

= Q(α, λν) (8)

where Γ(α, x) is the upper incomplete gamma function and Q(α, x) is the regularized upper
incomplete gamma function. We use the probability of events for a Poisson distribution, which
is a typical distribution observed for malicious packets targeting the darknet IP space [59], to
derive W0 and W1. W0 can be interpreted as the probability of alarm = False at the end of the
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Figure 1: Validating the accuracy of the relation derived in (6) against simulation results (marked with asterisks) for DSI.

time window ∆, therefore, W p
0 W1 is the probability of alarm not being raised from the beginning

until time τ. The default values of (∆DS I, αDS I) for the Snort IDS are (60, 5).
We validate the accuracy of the formulation in Figure 1, which shows the derived relation

in (6) against executed simulation results for DSI. For different values of λ, we can note a
near-perfect accuracy, which corroborates the soundness of the derived relation.

For DSI, based on (6) and Definition 2, we have ρ(τ) = 1−W p
0 W1 = 1−ε. Therefore, knowing

that W0 ≤ W1 ≤ 1 leads to 1 − W p+1
0 ≥ 1 − W p

0 W1 ≥ 1 − W p
0 . For this purpose, we can write

(p + 1) ln(Q(α, λ∆)) ≤ ln(ε) ≤ p ln(Q(α, λ∆)) =⇒ b τ
∆
c ≤

ln(ε)
ln(Q(α,λ∆)) ≤ b

τ
∆
c + 1. Thus,

τεmin(λ, ε) ≈
∆ ln(ε)

ln(Q(α, λ∆))
. (9)

Equivalently, we can derive λ = 1
∆

Q−1(α, ε
∆

τmin ), where Q−1(α, z) is the inverse regularized
gamma function. If Q(α, x) = z, then the inverse regularized gamma function Q−1(α, z) is equal
to x. Applying this results and recalling that λ =

|DIP|
|S | r, we will obtain

min |DIP| ≈
|S |
r

Q−1(α, ε
∆

τmin )
∆

(10)

3.3. Detection System II (DSII)

The third inference method is also a window-based DS, based on TRW [23] and related to
the well-known Paxon’s Bro IDS [60]. We use DSII to refer to this detection method. In such
an IDS, for each source IP address i, a counter Ci(t) is created. After receiving a packet from
source host i at time t, the technique will wait ∆DS II time units to receive another packet. In case
a packet hit the detection system during [t, t + ∆DS II], the IDS will increment Ci(t); otherwise, it

9



will reset Ci(t). Algorithm 2 summarizes the modus operandi embedded within DSII.

Algorithm 2: DSII detection algorithm

1 Ci(0) = 0;
2 alarm = FALS E;
3 t reset = 0;
4 while do
5 if t ≤ t reset + ∆DS II then
6 if A packet from source i is received then
7 Ci(t) = Ci(t) + 1;
8 t reset = t;
9 if Ci(t) ≥ αDS II then

10 alarm = TRUE;
11 end
12 end
13 else
14 t reset = t;
15 Ci(t) = 0;
16 end
17 end

ρ(τ) for DSII can be calculated based on (11), where pα(t) is the probability of Pr(Alarm(t) =

True) for DSII with threshold α. To this end, we compute the Probability Distribution Function
(PDF) of DSII with parameter α, recursively, based on the PDF of DSII with threshold α − 1.
Consequently, we can derive the CDF, which in fact refers to ρ(τ).

pα(t) =

 1
A

∫ ∆DS II

x=0 pα−1(x)λe−λ(t−x)dx, if t ≥ ∆DS II
1
A

∫ t
x=0 pα−1(x)λe−λ(t−x)dx, if t < ∆DS II

(11)

where A = (1 − e−λ∆DS II ). Equation (11) can be shown with the convolution operator, as in (12).
We employ Laplace Transform for calculating these recursive convolutions.

pα(t) = pα−1(t) ∗
1
A

g(t) = pα−1(t) ∗
1
A
λe−λt(u(t) − u(t − ∆)) (12)

Therefore, p1(t) = λe−λtu(t)
S Trans f orm
−−−−−−−−−−→ P1(s) = λ

s+λ and g(t) = λe−λt(u(t)−u(t−∆))
S Trans f orm
−−−−−−−−−−→

G(s) = λ
s+λ (1 − e−∆(s+λ)). We know that in S-Transform, we have the relation f (t) ∗ g(t) ↔

F(s)G(s). Thus, we can rewrite (12), as in (13).

Pα(s) =
1
A

Pα−1(s)G(s) =
1

Aα−1 P1(s)Gα−1(s)

=
1

Aα−1 (
λ

s + λ
)α(1 − e−∆(s+λ))α−1

=
1

Aα−1 (
λ

s + λ
)α(

α−1∑
k=0

(−1)k
(
α − 1

k

)
e−k∆(s+λ))

(13)

10



Inverse Laplace Transform of (13) can be calculated, and the result of (14) would be the PDF of
the detection at time t. Now, we transfer the equation to the time domain, as in:

pα(t) =
λαe−λt

Aα−1(α − 1)!

α−1∑
k=0

(−1)k
(
α − 1

k

)
(t − k∆)α−1u(t − k∆) (14)

If we define the integral of the first term of (14) as in Xτ
0(t) = 1

Aα−1

∫ τ

0
λα

(α−1)! t
αe−λtu(t)dt, then

ρ(τ) =

∫ τ

0
pα(t)dt =

α−1∑
k=0

(−1)k
(
α − 1

k

)
e−kλ∆Xτ−k∆

0 (t)

= Xτ
0(t) − e−λ∆

(
α − 1

1

)
Xτ−∆

0 (t) + . . .

(15)

Therefore, based on (15) for τ ≤ ∆, only the first term is nonzero, and for ∆ < τ ≤ 2∆, only the
first and second terms are nonzero and so forth. Further, because the ∆ values are usually large
(the default values of (∆DS II, αDS II) for Bro are (600, 20)), the coefficient e−kλ∆ for k ≥ 1 is very
small (for λ = 0.1 and ∆ = 600, e−60 ≈ 8.75e−27). Thus, we can solely consider the first term
in our formulation. Additionally, the value of 1

Aα−1 is approximately equal to 1 for λ ≥ 0.01 and
∆ = 600. After some mathematical manipulations, we can derive the probability of detection for
DSII as in (16).

ρ(τ) = Xτ
0(t) =

∫ τ

0

λα

(α − 1)!
tα−1e−λtu(t)dt

= −

α−1∑
j=0

[
(λt) je−λt

j!
]
∣∣∣∣∣τ
t=0

= 1 − e−λτ(1 + λτ +
(λτ)2

2!
+ · · · +

(λτ)α−1

(α − 1)!
)

= 1 −
Γ(α, λτ)
(α − 1)!

= 1 − Q(α, λτ)

(16)

Numerical results reveal that for λ ≥ 0.001, the exact formulation in (15) and the approxi-
mation in (16) have similar values, demonstrating high accuracy. Additionally, Figure 2 clearly
depicts that the derived equation in (16) is quite accurate in comparison with generated simula-
tion results.

For DSII, based on (16) and Definition 2, we can derive ρ(τ) = 1 − Q(α, λτ) = 1 − ε =⇒

Q(α, λτ) = ε, and therefore,
λτ = Q−1(α, ε) (17)

τεmin(λ) ≈
Q−1(α, ε)

λ
(18)

min |DIP| ≈
|S |
r

Q−1(α, ε)
τmin

(19)

In addition, (17) and (18) imply that for DSII with specific threshold α and a chosen ε, the
λτεmin(λ) is always constant.
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Figure 2: Validating the accuracy of the relation derived in (16) against simulation results (marked with asterisks) for
DSII.

4. Experimentation and Results

In this section, we execute several experimentations to comprehend (i) the impact of the prob-
ing rate on the minimum detection time related to various employed IDS operated on the darknet
IP space and (ii) the implication of the width of the darknet IP space on detection time. Further,
motivated by real deployments of darknets, we analyze two case studies to shed light on the im-
plications of the discussed detection systems in contrast with their detection promptness when
operated on those specific darknet IP spaces.
Figure 3 shows various values of effective rate λ in contrast with the minimum detection time for
DSI and DSII. Recall that λ = qr =

|DIP|
|S | r, and therefore, λ is clearly dependent on the scanning

rate r and the ratio of number of darknet IP addresses to the subnet size |S |. It is revealed from
Figure 3 that for λ > 0.1, DSI outperforms DSII with respect to the minimum detection time, and
for λ ≤ 0.1, DSII outperforms DSI. From such results, one can extract that for stealthy, low-rate
probing events, the detection strategy employed by the Bro IDS is more suited to perform the
detection when operated on the darknet IP space. Please note that the result for the FH detection
technique is solely depicted to show the lower bound for the minimum detection time; a DS can
not reach a lower detection time than the minimum detection time of the FH algorithm for a
specific λ.

We proceed by illustrating Figure 4, which shows the minimum required portion of deployed
darknet IP addresses in the intended subnet in order to achieve a specific minimum detection
time. We notate /x, which refers to the number of darknet IP addresses; 1

2x of all the subnet
address space. Therefore, x = log2( |S |

|DIP| ), with a larger value for x indicating a lower portion
of allocated darknet IP addresses. We compare DSI and DSII with their default parameters for
Snort and Bro, respectively, given a fixed scanning rate r = 100. Figure 4 demonstrates that
for r = 100 and τmin < 300sec, DSI requires less darknet IP addresses (thus reducing cost and
management/monitoring resources) in comparison with DSII. Therefore, by employing the Snort
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Figure 3: Minimum detection time τmin versus effective rate λ for ε = 0.0001

IDS, one can achieve the same minimum detection time by utilizing less darknet IP addresses.
On the other hand, for τmin ≥ 300sec, the minimum required darknet IP addresses is far lower
for DSII. For instance, when τmin = 10000, the required darknet IP space would be a /11 for
DSI and about /15 for DSII. This indicates that 232−11 = 221 darknet IP addresses are required to
detect a large-scale probing activity targeting the entire IPv4 address space with a probability of
more than 0.9999 in 10000 seconds if one employs the Snort IDS, and only 232−15 = 217 darknet
IP addresses would be needed if one employs the Bro IDS to achieve the same objective.

We now consider two various darknet deployments representing two practical darknet setups
that are currently deployed “in the wild”. One refers to a /8 darknet, which resembles a large
network telescope that is operated by the Center for Applied Internet Data Analysis (CAIDA)1,
while the other represents a /13 darknet operated by Farsight Security Information Exchange
(SIE)2. On one hand, Figure 5 shows that for the /13 darknet, the execution of DSII on passive
measurements leads to a lower minimum detection time in comparison with DSI (for a practical
range of probing rate 1 ≤ r ≤ 1000). Therefore, for a /13 darknet, the Bro IDS seems to be a
more effective detection system, resulting in a lower detection time. On the other hand, Figure
6 shows comparative results for the /8 darknet. We can deduce that for this darknet setup, DSI
(employed by the Snort IDS) appears to be a more suitable choice for detection, given an average
probing rate 30 ≤ r ≤ 10000. In the sequel, we propose an early infection methodology based
on the derived relations, where stealthy botnets can leverage.

1http://www.caida.org/data/passive/telescope-near-real-time_dataset.xml
2https://archive.farsightsecurity.com/SIE_Channel_14/
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Figure 4: Portion of darknet IP addresses deployed within a certain subnet versus minimum detection time (τmin ) for
scanning rate r = 100; ε = 0.0001
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Figure 5: A /13 Network Telescope; ε = 0.0001
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Figure 6: A /8 Network Telescope; ε = 0.0001

5. Stealthy Botnet Early Infection Methodology

Distributing a probing activity among several bots that individually scan with intensely low
rates tremendously increases the minimum detection time, and thus avoids passive measurement
detection schemes. To this end, obtaining stealthiness using a large-scale probing botnet is
relatively straightforward and typically involves scanning with very low rates in conjunction with
using a divide-and-conquer technique or employing more sophisticated scanning methodologies
[27]. To put things in perspective, to obtain optimal stealthiness, the rates for each bot in
the context of the proposed stealth-optimal scanner in [27] for Snort and Bro are respectively
4 packet/min and 1.9 packet/min. Thus, these techniques require a large number of bots, and
therefore, they would not be effective at the beginning of the botnet life-cycle when there is
only a handful of bots. Consequently, the botnet has no choice but to scan the Internet intensely
(which will trigger detection methods operated on network telescopes) or use methods (at the
early infection stage) to increase its initial size, before initializing the actual large-scale stealthy
scan stage.

Therefore, the stealthy botnet goal herein is to (1) without raising any warning alarm of scan
detection systems operated on the dark IP space, reach the intended population and (2) minimize
the duration of this early infection stage to be less than several days. Thus, we focus here on the
early infection stage of scan-based botnets; the stage where the botmaster, with a low number
of bots, starts to scan the entire network IP address space (each IP address probed once in this
stage) and immediately infects (in a negligible time compared to scanning time) any vulnerable
hosts to join its scanning campaign. Subsequently, when the number of infected hosts reaches
a level which permits the botnet to perform stealthy scans, it can resume the typical stealthy
botnet probing (to infer other vulnerable hosts that will join the campaign) or execute its intended
malicious activities such as DDoS, phishing, etc.

While we deem that this approach related to the early infection stage is generic to all scan-
15



based botnets, we believe that evolving IoT botnets might particularly take advantage of this
scheme; indeed, there are different monitoring capabilities and resources in a deployed network,
such as large distributed honeypots and darknets, as well as aggregated alarms from firewalls and
IDS systems, which security experts exploit to gather information about Internet-wide botnet
populations and evolutions to alarm the community as early as possible. Therefore, stealthy
botnets typically intend to hide their activities from these sources. Firewalls and IDS systems
are often not very effective when dealing with stealthy botnets, which can avoid alarms by
methods such as random scanning. In this context, IoT devices being highly heterogeneous are
quite hard to mimic using honeypots. Additionally, IoT devices typically have limited resources
and consequently lack a sophisticated security measures. Therefore, it would be rational for a
stealthy IoT botnet to focus more on methods that hide its track from darknets. Moreover, IoT
devices are numerous in number, where a simple vulnerability in a specific model can lead to
a large number of infected devices. For instance, the Mirai botnet compromised more than 1
million IoT devices just by brute forcing default credentials. Another example is the IoTroop
[19] botnet which compromised a massive number of IoT devices by leveraging a small set of
known attack vectors and vulnerabilities, rather than only compromising devices that use default
credentials.

To this end, we propose a stealthy botnet probing methodology for the early infection stage
with the aim of alerting about the possibility of leveraging this technique by future botnets. In
this methodology, instead of randomly probing with the highest possible rate, we formulate the
scanning bots in a divide-and-conquer manner as an optimization problem to find the best rate
for each bot at each step to minimize the total early infection stage duration. We start with the
most general state of an (IoT) botnet;

minimize T =

n∑
i=1

τi = τ1 + τ2 + · · · + τn

subject to
n∑

i=1

(τi

n∑
j=1

r j) = |S |,

n∑
i

τi ≤ τ
ε
min(
|DIP|
|S |

ri), i ∈ {1, . . . , n},

τi

i∑
j=1

r j ≥ ζ, i ∈ {1, . . . , n}

τi ≥ 0, i ∈ {1, . . . , n}
ri ≥ 0, i ∈ {1, . . . , n}

(20)

Here, T is the total scanning time to scan all addresses in S , and τεmin( |DIP|
|S | ri) = τεmin(λi) is the

darknet minimum scan detection time with probability 1 − ε, if the scanner scanned with rate ri.
ζ =

|S |
expected #vulnerable hosts is the expected value of IP addresses that should be scanned to find a

vulnerable host. This value can be estimated based on published empirical security research [61]
or estimated on the fly after scanning some portion of S . In this formulation, we assume that the
botnet is initiated with a bot scanning rate r1, and after τ1 time units, it will find a new vulnerable
IoT device, which turns it into a new bot. Subsequently, the first bot continues scanning with rate
r1, and the new bot starts scanning with rate r2; therefore, both of the bots will scan with overall
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rate r1 + r2 for τ2 to find a new vulnerable host and so forth untill they scan all the addresses in S
and infect all vulnerable bots. Particularly, in the ith step, i infected hosts will scan with overall
rate

∑i
j=1 r j for τi time units to find the next vulnerable host.

In this problem set, n is equal to the total number of expected vulnerable hosts. If we assume
that every bot starts scanning with a specific constant rate from the time it has joined the
scanning campaign until T , the total scanning time of a bot which joined later is less than the
bots that have joined the botnet earlier on. In other words, the total scan duration of the ith bot is
T −

∑i−1
1 τ j, and for the (i + 1)th bot, it is T −

∑i
1 τ j = T −

∑i−1
1 τ j − τi. Further, it is clear that the

minimum detection time function τεmin(λ) will be descending with respect to λ. This means that
the (i + 1)th bot can adopt a higher probing rate ri+1 than that of the ith bot ri with the constraint
of limiting its total scan duration T −

∑i
1 τ j to less than the corresponding minimum detection

time τεmin(λi). Thus, the main idea here is that the new bots will scan with higher rates without
being detected.

However, parameter n, the expected number of vulnerable hosts, are usually very high which
render the optimization problem quite complex. Hence, we simplify it by dividing all the pro-
cesses into m = log2 n steps. In this new simplified scenario, we assume that the botnet starts
with a single bot and scans the network with rate r1 for τ1 to find two vulnerable hosts to infect.
Additionally, it continues scanning with rate r1, and two new bots will join the scanning cam-
paign with rate r2 for τ2. These three bots will scan with overall rate r1 + 2r2 to find four new
vulnerable hosts. Likewise, at step i,

∑i
k=1 2k bots will scan with overall rate

∑i
k=1 2krk to find

2i+1 vulnerable hosts and continue until they scan all the addresses in S . Thus, we obtain the
following optimization problem, where m = log2 n:

minimize T =

m∑
i=1

τi = τ1 + τ2 + · · · + τm

subject to
m∑

i=1

2i−1ri(
m∑
j=i

τ j)

 = |S |,

m∑
i

τi ≤ τ
ε
min(
|DIP|
|S |

ri), i ∈ {1, . . . ,m},

(
i∑

j=1

2 j−1r j)τi ≥ 2iζ, i ∈ {1, . . . ,m}

τi ≥ 0, i ∈ {1, . . . , n}
ri ≥ 0, i ∈ {1, . . . , n}

(21)

5.1. Case Study
In this section, given the lack of viable literature methodologies which we can use to directly

perform comparisons against the proposed early botnet propagation approach, we analyze and
assess the effectiveness of the proposed methodology for different scenarios under various
employed detection systems, to find the probing rates of the bots and their duration at each
step, to obtain a stealthy early infection stage. For practical reasons, we consider the following
assumptions: (1) the botnet starts with only one bot, (2) scanning and spreading is done over the
entire IPv4 IP space (|S | = 232), and (3) the expected number of vulnerable IoT devices is 213
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Table 1: Rates and the duration at each step of the stealthy early infection stage with the assumption that Snort is
employed on the /13 darknet

Steps 1 2 3 4 5 6 7 8 9 10 11 12 13
Rates (pps) 193.3 206.5 220.5 230.4 237.6 243.9 251.2 260.4 272.6 288.3 308.5 334.0 366.1

Duration (min) 613.4 475.1 371.0 314.6 281.0 255.0 229.3 201.3 171.2 140.7 111.7 85.7 63.8 3314

[61]; thus, m = 13 and ζ =
|S |

expected #vulnerable IoTs = 232

213 = 219.

For implementation purposes, we employed MATLAB optimization toolbox [62] to find the
set of rates that satisfy all the conditions of the problem set (21). However, because of the high
number of nonlinear constraints, converging to the optimal solution is not simple. Nonetheless,
we uncovered a set of rates that, while they are not exactly optimal, satisfy all the conditions.
In the case where Snort’s probing detection method is deployed on a /13 darknet IP space, the
rates (with ε = 0.0001), the duration at each step and the total early infection stage duration are
summarized in Table 1. Based on these values, we can note that new bots joining the botnet
in each step adopt higher rates, from 193.3 pps (first step) to 366.1 pps (last step), while the
duration of each step decreases from 36809 seconds (first step) to 3830 seconds (last step). The
total duration of the early infection stage will be 198863 sec = 55.24 hours which demonstrates
that the rates and total duration time are viable in practice.

However, for the case when Bro’s probing detection method is employed on the same darknet
IP space, there is no solution to satisfy the problem set. The maximum probed cyber space
in a stealthy manner (i.e., without raising an IDS scan alert) is equal to ri ∗ τ

ε
min(λi), which

is the rate multiplied by the minimum detection time corresponding to that rate. Regarding
Eq. (17) and Figure 3 (on page 13), we can derive that for DSII with specific threshold α
and a chosen ε, the λτεmin(λ) is always constant (it is a linear line in the log(τεmin(λ))-log(λ)
plane). This means that the maximum probed cyber space without raising a scan alarm for
DSII is always constant. For instance, in this case, this value is independent of the rate r and is
rτεmin(λ) = 213λτεmin(λ) = 213Q−1(α, ε) = 336127 ≈ 218 which is less than 2ζ = 220; this means
that there is no solution that can meet the noted constraints. On the other hand, DSI shows a
completely different behavior; reducing λ (equivalently r) leads to an increase in the maximum
probed cyber space λτεmin(λ) without raising the scan alarm for DSI. Therefore, a stealthy
scanner can decrease its rate in exchange for probing larger portions of the targeted IP space.

In contrast, we consider the same assumptions, but when the size of the darknet is a /8.
The results are reported in Table 2. Similarly to the /13 use case, there is no solution for the
case when Bro is deployed. For the case when Snort is operated, the rates are from 2.4 pps to
3.8 pps, and the total duration of the early infection stage hugely surges towards the impractical
value of 3225.5 hours = 134.4 days.

From the aforementioned analysis, we can infer that DSI (i.e., Snort) is more susceptible to
stealthy botnet propagation schemes, similar to the proposed methodology; as opposed to DSII
(i.e., Bro). We observed that in both cases with the /8 and /13 darknet IP spaces, by employing the
Bro IDS, we can mitigate the proposed propagation methodology. Further, in the case when the
Snort IDS is employed, raising the darknet vantage width from /13 to /8 tremendously increases
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Table 2: Rates and the duration at each step of the stealthy early infection stage with the assumption that Snort is
employed on the /8 darknet

Steps 1 2 3 4 5 6 7 8 9 10 11 12 13
Rates (pps) 2.421 2.506 2.627 2.712 2.765 2.803 2.844 2.900 2.981 3.102 3.275 3.522 3.868

Duration (hours) 501.1 428.1 346.1 300.3 275.3 258.8 242.7 222.6 196.7 165.2 130.1 94.8 63.3 3225.5

the total duration of the (stealthy) infection stage from 55.24 hours to 134.4 days.

6. Discussion

The outcomes of the proposed darknet formalization scheme can be discussed in the context
of three topics. First, with the continuous transition from IPv4 to IPv6, the IP address space
has intensively increased from 232 to 2128. This larger cyber space indeed requires much more
efforts and resources to be monitored, measured and assessed. The darknet IP space, being
one of the main sources of Internet measurements for cyber threat intelligence, should also be
adapted. Although the exhaustive and large-scale scanning of the entire IPv6 address space is
still infeasible (due to its extremely large address space), there have been some contributions to
find sub-spaces of IPv6 to probe, with the help of passive sources and specific target generation
algorithms [63]. Indeed, the derived darknet formalized relations is helpful in selecting the best
scan detection algorithm and efficient darknet size to deploy on the entire IPv6s space or any
sub-space S of IPv6 based on the attacker’s scope. In the following, we discuss the effect of
scan detection algorithms on the minimum required daknet size within the context of IPv6 (as
the target scope of the attackers).

As deduced from Section 4, in case of r = 100 pps, ε = 0.0001 and τεmin = 10000 sec, the
minimum required portion of darknet IP addresses for DSI is /15 and for DSII is /11. Recall that
this indicates that at least 232−11 = 221 darknet IP addresses will be required to detect a probing
activity targeting the entire IPv4 address space using the Snort IDS and 232−15 = 217 using
the Bro IDS, respectively. In contrast, when dealing with IPv6, these numbers are orders of
magnitude larger and the implications are even more imperative; for the Snort IDS, one requires
2128−11 = 2117 darknet IP addresses and for the Bro IDS, 2128−15 = 2113 darknet IP addresses
are needed, to infer a complete scan of the IPv6 address space. Thus, for IPv4, the difference in
terms of required darknet IP addresses related to various IDS types is 15 × 217 while for IPv6, it
is a momentous 15 × 2113. One can hence note that the choice of the probing detection method
deployed on passive measurements can severely affect (and amplify) the cost of the resources as
well as the darknet management efforts.

Second, we ought to consider highly-distributed scans, similar to the large-scale event
reported in [15]. With distributed scans, the probing activity is divided among a large number
of bots and as a result, the effective scanning rate that is sensed by the darknet is divided by the
number of bots participating in the probing campaign. This phenomena can significantly reduce
the effective rate λ. Hence, as observed in Figure 3, as λ continues to decrease, the gap between
DSI and DSII increases vastly, pinpointing the importance of selecting a suitable detection
methodology for combating such ever-evolving events. Nevertheless, one has to note that as
seen in Figure 3, related to the minimum detection time, none of the investigated detection
system is ideal for inferring such large-scale, orchestrated and distributed probing events, paving
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the way for more tailored detection methodologies to be researched, designed and implemented
in the near future.

Last but not least, considering the proposed technique for the botnet early infection stage, bot-
masters can take advantage of DSI weaknesses to circumvent detection. In DSII, the maximum
probed cyber space without raising an alarm, λτεmin(λ), independent of the scanning rate, is al-
ways constant. On the contrary, for DSI, the maximum probed cyber space without raising a scan
alarm λτεmin(λ) will increase as the scanning rate continues to decrease. For DSI (i.e., the Snort
IDS) deployed on the darknet, this feature provides an alarming weakness that can be adopted by
stealthy botnets (including ever-evolving IoT bots) to practically spread without leaving a trace
in the logs of deployed detection systems.

7. Considerations and Limitations

In this section, we discuss several noteworthy points related to the proposed work. Initially,
we have to note that Snort and Bro, which are both widely used on various vantage points in
Internet and organizational networks, are primarily designed to operate on two-way traffic and
thus are not optimized to specifically be deployed on darknet vantage points. However, we
have to mention that their corresponding scan detection algorithms are widely considered as the
primary steps for inferring unsolicited activities from darknet traffic. We hope that the presented
formal schemes and outcomes of this paper are enlightening and could potentially be employed
as building blocks for further investigation related to deployed scan detection algorithms and
stealthy activities, in the context of darknet deployments and usages. Additionally, in this work,
we assumed a constant probing rate for a scanner (i.e., for each bot) throughout the duration of its
scan to avoid unnecessary complexity, which indeed might not be a completely valid assumption
in the real world. For instance, in a more general form, for a multi-rate scanner, it would be
challenging to determine the probability of detection and minimum detection time in the case
when probing is executed with rate r1 for τ1, then when the rate is modified to r2 for τ2 and
so forth. This interesting task and its implications on the formalized scheme is left for future
work. Moreover, in this work, we solely considered a horizontal scan while in practice, the
scanner might probe using strobe or vertical scanning. Nevertheless, given the proliferation of
horizontal scans on the Internet (at least from the darknet perspective), which is confirmed by
our recent empirical observations, we deem that exploring horizontal scans is a significant first
step, especially in the context of formal approaches and the analysis of darknet-centric notions.
Furthermore, in Section 5, providing an estimation of the expected number of vulnerable hosts
(or IoT devices) might not always be feasible. However, apart from the empirical research which
can assist with this task, there exists a number of fast scanning tools like Masscan [64] and
Zmap [39] that can provide supplementary information to provide a lower bound on the expected
number of vulnerable hosts with some level of accuracy. We also assumed that the duration of
the infection process (such as the time for downloading and executing malware on a vulnerable
host) is negligible. Further, the total early infection stage duration T is strongly dependent on
the darknet vantage width and the number of vulnerable hosts, which might limit the practicality
of the proposed early infection stage. Finally, the optimization problem set of Eq. (21), given its
high number of nonlinear constraints, is hard to converge to its global optimum; therefore, we
had to apply some simplification assumptions for the case study to obtain the sub-optimal values.
Indeed, future work will explore auxiliary mathematical techniques in an attempt to address this
limitation.
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8. Concluding Remarks

Motivated by the fact that passive measurements by way of exploiting darknet IP spaces are
significantly effective in generating various cyber threat intelligence in addition to the lack of for-
mal modeling of darknet parameters, this article is among the first to present a formal perspective
in such contexts. Several detection systems based on highly-employed methods were formalized
and a number of derivations were computed and validated to shed light on the relations between
detection probability/time, scanners’ rates and the size of darknet. Some of the outcomes sug-
gested the practical usage of the Bro IDS for inferring low-rate probing, its effective application
in smaller darknet IP spaces given a setup that somehow tolerates a delay in detection, and its
cost-reduction characteristics when implemented in IPv6 darknet deployment settings. Another
outcome confirmed that the Bro IDS, by employing DSII, is resilient against stealthy botnet
spreading, while the detection strategy employed by Snort IDS is susceptible to such methodol-
ogy. Broadly, the outcomes pinpointed the lack of effective passive detection methodologies that
are capable of inferring large-scale, distributed probes in a timely and practical manner.
As for future work, apart from addressing a number of current limitations as discussed in Section
7, we are also conducting various experimentations to find the optimal pair (∆, α) with respect
to the required scan detection precision in addition to using real darknet data to better situate
the formalization scheme. Further, we are in the process of formally investigating the impact of
contemporary IoT attacks in the context of passive measurements.
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