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Abstract 

We assessed the neural substrates mediating a recently 
demonstrated preference for environments with high levels of 
instrumental divergence – a formal index of flexible operant 
control.  Across choice scenarios, participants chose between 
gambling environments that differed in terms of both 
instrumental divergence and expected monetary pay-offs. 
Using model-based fMRI, we found that activity in the 
ventromedial prefrontal cortex scaled with a divergence-
based measure of expected utility that reflected the value of 
both divergence and monetary reward. Implications for a 
neural common currency for information theoretic and 
economic variables are discussed.  

Keywords: instrumental divergence; flexible control; utility; 
model-based fMRI 

Introduction 
A series of recent studies (Mistry & Liljeholm, 2016; 

Liljeholm et al., 2018) have demonstrated that individuals 
strongly prefer environments in which instrumental 
divergence – the degree to which alternative actions differ 
with respect to their outcome probability distributions – is 
relatively high. A high level of instrumental divergence is a 
necessary feature of flexible control: If all available action 
alternatives have identical, or very similar, outcome 
distributions, such that selecting one action over another 
does not significantly alter the probability of any given 
outcome state, an agent’s ability to exert flexible control 
over its environment is considerably impaired.  Conversely, 
when available action alternatives produce distinct 
outcomes, discrimination and selection between actions 
allow an agent to flexibly obtain the currently most desired 
outcome.  Since subjective outcome utilities often change 
from one moment to the next, flexible instrumental control 
is essential for reward maximization and, as such, may have 
intrinsic value, serving to reinforce and motivate decisions 
that guide the organism towards high-agency environments 
(Liljeholm, 2018).  In the current study, we investigate the 
neural substrates mediating the apparent preference for high 
instrumental divergence.    

Previous work suggests that the ventromedial prefrontal 
cortex (vmPFC) retrieves and ranks the values of decision 
outcomes, and that these value signals are subsequently used 
to compute decision values (see O’doherty, 2011 for 

review). Intriguingly, activity in the vmPFC scales with the 
values of a wide variety of goods, including food, money, 
books DVDs, and clothes, suggesting a common neural 
value-scale for distinct stimulus categories (Chib et al., 
2009; McNamee et al., 2013).  It is unknown, however, 
whether this common value-scale might also extend to more 
abstract, cognitive, commodities, such as instrumental 
divergence.  Here, using a task in which participants choose 
between gambling environments based on differences in 
both instrumental divergence and monetary pay-offs, we 
combine computational cognitive modeling with functional 
MRI to investigate neural representations of the utility of 
instrumental divergence. 

Method 
Participants  
Twenty undergraduates at the University of California, 
Irvine (11 females; mean age = 21.2 ± 4.65) participated in 
the study for monetary compensation. The sample size was 
determined based on an a priori power analysis of data from 
a previously published study (Mistry & Liljeholm, 2016), 
indicating that 18 subjects were required to demonstrate a 
clear behavioral preference for high instrumental divergence 
at a power of 90% given a 0.05 threshold for statistical 
significance.  All participants gave informed consent and the 
Institutional Review Board of the University of California, 
Irvine, approved the study.  

Task & Procedure  
The task is illustrated in Figure 1.  At the start of the 
experiment, participants were instructed that they would 
assume the role of a gambler in a casino, playing a set of 
four slot machines (i.e., actions, respectively labeled A1, 
A2, A3, and A4) that yielded three different colored tokens 
(blue, green and red), each worth a particular amount of 
money, with different probabilities.  They were further told 
that, in each of several blocks, they would be required to 
first select a room in which only two slot-machines were 
available, and that they could only choose between the two 
machines in the selected room on subsequent trials in that 
block.  Finally, participants were instructed that, while the 
outcome probabilities would remain constant throughout the 
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study, the values of the tokens would change at various 
times, and these changes might occur after the participant 
had already committed to a particular pair of machines in a 
given block.  Consequently, although changes in value were 
explicitly announced, and the current values of tokens were 
always printed on their surface, a participant might find 
themselves in a room in which the values of the two 
available actions had suddenly been altered.    

 

 
Figure 1: Task illustration showing the room-
choice screen at the beginning of a block (top), and 
the choice (middle) and feedback (bottom) screens 
on a trial in the selected room.   

 
Two distinct probability distributions over the three 

possible token outcomes were used and the assignment of 
outcome distributions to slot machines was such that two of 
the machines (either A1 and A2 or A1 and A3, 
counterbalanced across subjects) always shared one 
distribution, while the other two machines shared the other 
distribution.  This yielded a low (zero) divergence for rooms 
in which the two available slot machines shared the same 
probability distribution, and a relatively high divergence for 
rooms in which slot machines had different outcome 
probability distribution. The unpredictability (i.e., Shannon 
entropy) of outcomes given a particular machine was held 
constant for all machines. Three token-reward distributions 
were used, changing intermittently across blocks, such that 
expected monetary pay-offs were either the same across 
rooms, or differed across rooms in either the same or 
opposite direction of instrumental divergence.  In addition to 
mimicking dynamic changes in the utilities of natural 
rewards, the sporadic changes in token reward values across 
blocks allowed us to pit the value of instrumental 
divergence against that of monetary reward. 

Given a constant outcome entropy level, increases in 
instrumental divergence are accompanied by increases in the 

perceptual diversity of obtainable outcomes – a variable 
previously shown to elicit preferences in economic tasks 
(Ayal & Zakay, 2009).  To rule out perceptual diversity as 
an explanation for any effects of instrumental divergence, 
gambling rooms differed in terms of whether the participant 
was allowed to chose freely between slot machines in the 
room (self-play) or a computer algorithm alternated between 
machines across trials in that room (auto-play).  In auto-play 
rooms, participants were still required to press a key 
corresponding to the slot machine indicated by the 
computer, to control for movement execution. Critically, in 
the absence of voluntary choice, high-divergence no longer 
yields flexible instrumental control. However, the 
alternating computer algorithm still yields greater perceptual 
diversity in high- than in low-divergence rooms.  
Consequently, if choices were driven by a desire to 
maximize perceptual diversity, rather than instrumental 
divergence, they should not differ depending on whether the 
participant or an alternating computer algorithm choose 
between the slot machines in a room.  In addition to 
controlling for perceptual diversity, this self- vs. auto-play 
manipulation relates the preference for instrumental 
divergence to a well-established preference for free over 
forced choice (e.g., Leotti & Delgado, 2011).  

There were a total of 44 blocks, with participants 
choosing between two gambling rooms at the start of each 
block (the decision of interest), followed by 3-5 gambling 
trials within the selected room. The order different reward 
distributions, and of room choice scenarios, was 
counterbalanced across subjects. Before starting the 
gambling task participants were given a practice session in 
order to learn the probabilities with which each slot machine 
produced the different colored tokens. If a participants’ 
estimate of any given probability deviated by more than 0.2 
from the programmed probability, they were returned to the 
beginning of the practice phase, and this continued until all 
rated probabilities were within 0.2 points of programmed 
probabilities.  At the end of the study, participants again 
provided estimates of the action-token probabilities.  

Computational Models  
Instrumental divergence is formalized as the Jensen-
Shannon divergence of instrumental sensory-specific 
outcome probability distributions (Liljeholm et al., 2013).  
Let P1 and P2 be the respective outcome probability 
distributions for two available actions, let O be the set of 
possible outcomes, and P(o) the probability of a particular 
outcome, o.  The instrumental divergence (ID) is:  
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We defined the expected value (EV) of each slot machine 
as the sum over the products of its transition probabilities 
and token utilities.  In turn, the expected monetary value of 
a gambling room is simply the mean of the EVs of slot 
machines in that room.  To model the utility of instrumental 
divergence, a second variant of EV was specified by adding 
the term w*ID to the expected monetary value of a room, 
where the free parameter w represents the subjective utility 
of instrumental divergence and ID is the divergence of the 
particular room.  Thus, in this variant, the EV of a room 
reflects both the monetary pay-off and the instrumental 
divergence associated with that room.  For both models, a 
softmax distribution with a noise parameter, τ, was used to 
translate expected room values into choice probabilities, and 
free parameters were fit to behavioral data by minimizing 
the negative log likelihood of observed choices.  Choice 
scenarios in which at least one room option was both high 
divergence and self-play (HDSP), yielding high 
instrumental divergence, and those in which the high-
divergence room option was auto-play, or both rooms had 
zero divergence  (HDAP), were modeled separately.  The 
corrected Akaike Information Criterion (AICc) was used for 
behavioral model comparisons.   

Neuroimaging Acquisition & Analyses 
All MR images were obtained in a 3T Siemens Prisma 
Scanner, fitted with a 32-channel RF receiver head coil, 
padded to minimize head motion, at the facility for imaging 
and brain research (FIBRE) at the University of California, 
Irvine. Functional images covered the whole brain with 48 
continuous 3-mm thick axial slices with T2*-weighted 
gradient echoplanar imaging (TR=2.65s, TE=28ms, 3-mm2 
in-plane voxel size, 64 x 64 matrix). All participants had a 
high-resolution structural image taken before functional 
scanning commenced (T1-weighted FSPGR sequence: 208 
continuous 0.8-mm axial slices 0.4-mm2 in-plane voxel size; 
640 x 640 matrix).  All stimulus materials were presented, 
and all responses recorded, using MATLAB.  All imaging 
data was preprocessed with MATLAB and SPM12.  
Functional images were preprocessed with standard 
parameters, including slice timing correction, spatial 
realignment, coregistration of the high-resolution structural 
image to functional images, segmentation of the structural 
image into tissue types, spatial normalization of functional 
images into MNI space, and spatial smoothing with an 8mm 
FWHM kernel. 

All imaging data was analyzed using MATLAB and 
SPM12. At the first level, two general linear models 
(GLMs) were specified for each participant.  In both GLMs, 
two regressors respectively specified the onsets of room 
choice screens for HDSP and HDAP choice scenarios.  In 
the first GLM, these onsets were parametrically modulated 

by the absolute difference between rooms in their expected 
monetary pay-offs; in the second GLM these onsets were 
parametrically modulated by the absolute difference 
between rooms in their divergence-based utility, which 
reflected both the monetary pay-off and the level of 
divergence associated with each room.  In addition, in both 
GLMs, two regressors indicated the onsets of choice screens 
on each trial within a selected room, for self-play and auto-
play rooms respectively, and each of these were 
parametrically modulated by the expected monetary value of 
the chosen slot machine.  Finally, both GLMs included a 
single regressor indicating the onsets of trial feedback 
screens, modulated by the monetary reward obtained on 
each trial, as well as regressors indicating separate scanning 
runs and accounting for the residual effects of head motion.  

Fixed effects models were estimated using restricted 
maximum likelihood and an AR(1) model for temporal 
autocorrelation. Group-level statistics were generated by 
entering contrasts of first level parameter estimates into 
between-subject analyses.  All effects are reported at a 
whole brain corrected p < 0.05 level, using cluster size 
thresholding (CST) to adjust for multiple comparisons.  
AlphaSim, a Monte Carlo simulation, was used to determine 
cluster size and significance. For an individual voxel 
probability threshold of p=0.005, a minimum cluster size of 
148 MNI transformed voxels resulted in an overall 
significance of p < 0.05.    

 
Results 
Behavioral Results 
Participants required on average 2.1 (SD=0.3) cycles of 
practice on the action-token probabilities.  Mean probability 
ratings, obtained right before and right after the gambling 
phase, are shown in Table 1.   
 

Table 1: Mean probability ratings with standard 
deviations. Programmed probabilities are shown in 
the top row. Mean ratings, obtained before and 
after the gambling task, are averaged across 
identical objective probabilities, yielding three 
unique values. 

 
The decision of interest was that at the beginning of each 

block, when participants choose between rooms that 
differed in terms of their divergence, expected monetary 
pay-offs and self- vs. auto-play.  Model-derived choice 
probabilities and AICc scores for these decisions are listed 
in Table 2.  

 

	
 0.7 0.0 0.3 

Before 0.69 ± 0.06 0.00 ± 0.00 0.31 ± 0.05 

After 0.67 ± 0.10 0.00 ± 0.00 0.32 ± 0.05 
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Table 2: Mean room-choice probabilities derived 
using the divergence-based and conventional 
models of expected value (EV), and associated 
AICc scores, for HDSP and HDAP choice 
scenarios, with standard deviations.  

 
A repeated measures analysis of variance (ANOVA) 

revealed that the model-derived probabilities of observed 
behavioral choice preferences were significantly greater for 
the divergence-based utility algorithm than for the 
conventional utility model, and this difference was 
significantly greater for HDSP choice scenarios than for 
HDAP choice scenarios, yielding a significant main effect 
of EV model, F(1,19)=12.40, p<0.005, as well as a model 
by choice scenario interaction, F(1,19)=9.52, p<0.01. 
Accordingly, there was also a significant interaction for the 
AICc scores, F(1,19)=7.71, p<0.05, such that scores were 
significantly lower, indicating a better fit, for the 
conventional than for the divergence-based utility model in 
HDAP blocks (t(19)=5.2, p<0.001) while being lower for 
the divergence-based utility model, albeit with only 
marginal significance (p=0.14) in HDSP blocks.  

Neuroimaging Results 
As with the behavioral data, the period of interest was the 

choice made at the beginning of each block, between two 
gambling rooms that differed in terms of divergence, 
monetary pay-offs and free choice. As illustrated in Figure 
2, neural activity in the ventromedial prefrontal cortex 
(vmPFC) was parametrically modulated by the absolute 
difference in divergence-based EV between rooms, when at 
least one room option was both high-divergence and self-
play (HDSP) but not when the high divergence room was 
auto-play, or both room options had zero divergence 
(HDAP). No significant effects of the difference between 
room options in expected monetary pay-offs emerged in this 
region.  A similar pattern of results, with activity scaling 
selectively with the absolute difference in divergence-based 
EV between rooms options in HDSP choice scenarios, was 
found in the middle frontal gyrus, as well as the premotor 
cortex.  Once a room had been selected, activity in a more 
dorsal aspect of the vmPFC, extending into the dorsal 
medial prefrontal cortex scaled with the expected monetary 
pay-off of the chosen slot machine, in self-play but not in 
auto-play rooms, as did activity in the lateral orbitofrontal 
cortex, posterior right middle temporal gyrus and right 
dorsolateral prefrontal cortex.  
 

 

 
Figure 3: Map of the t-statistics for a test of 
differential parametric modulation by the 
difference across rooms in divergence-based 
expected value (divEV) for choice scenarios in 
which at least one high-divergence room option 
was self-play (HDSP) versus those in which the 
high-divergence room option was auto-play, or 
both options had zero-divergence (HDAP), 
showing significant effects in the vmPFC.  Bar 
plots show effect sizes (y-axis) extracted from 4 
mm spheres centered on the peak coordinate (x, y, 
z = -4, 34, -4), for small and large differences in 
divEV and monetary expected values ($EV), in 
HDSP and HDAP choice scenarios.  Error 
bars=SEM. 

Discussion 

Countless studies on motivated behavior have investigated 
the neural representation of primary and monetary rewards 
(Abe & Lee, 2011; Abler et al., 2009; Belova et al., 2007; 
Cador e al., 1989).  Here, having previously demonstrated a 
behavioral preference for instrumental divergence – a 
formal index of flexible operant control – we explored 
neural substrates mediating the influence of this information 
theoretic variable on economic choice.  Specifically, 
participants were scanned with fMRI as they chose between 
gambling rooms that differed with respect to both 
instrumental divergence and expected monetary pay-offs. 
Using a model-based analysis, we found that activity in the 
ventromedial prefrontal cortex (vmPFC) scaled with a 
divergence-based measure of expected utility that reflected 
both instrumental divergence and monetary pay-offs.  

Considerable evidence from neurophysiological and 
neuroimaging studies suggest that the vmPFC encodes the 
subjective values of primary rewards, such as tastes and 
odors (Rolls et al., 2003; Anderson et al., 2003; Small et al., 
2003), as well as visual stimuli, including the attractiveness 
of faces or pictorial scenes (O’Doherty et al., 2003; Kirk et 
al., 2009), and more abstract goods, like social praise (Elliot 
et al., 1997) and monetary gain (O’Doherty et al., 2001).  

 Choice Probabilities AICc Scores 

 HDSP HDAP HDSP  HDAP 

Divergence EV 0.65 ± 0.13 0.58 ± 0.07 19.5 ± 2.7 38.3 ± 7.4 

Conventional EV 0.55 ± 0.05 0.57 ± 0.07 21.6 ± 5.6 36.8 ± 7.5 



Two notable features of the vmPFC shed important light on 
the current results: First, value encoding in the vmPFC 
appears to be relative, such that the value signal for a 
particular stimulus depends on the values of other, proximal, 
stimuli (O’Doherty, 2011). One might expect, thus, that the 
vmPFC signal would respond most clearly to a difference in 
value between concurrently available stimuli. Second, 
recent findings suggest that the vmPFC encodes stimulus 
values that are independent of the particular stimulus 
category, essentially implementing a common neural value 
scale for different types of goods (Chib et al., 2009; 
McNamee et al., 2013). The currently demonstrated value 
signal in the vmPFC, corresponding to a difference between 
options in divergence-based utility, suggest that this 
common value scale can be extended to a relative analysis 
of exceedingly abstract concepts.   

Our previous work has implicated the right supramarginal 
gyrus (rSMG) of the inferior parietal lobule in encoding 
instrumental divergence. Specifically, using a simple value-
based decision-making task, Liljeholm et al. (2013) found 
that activity in the rSMG scaled parametrically with trial-
by-trial estimates of instrumental divergence, and that this 
signal was dissociable from other information theoretic and 
motivational variables, including outcome entropy and 
expected utility.  In a subsequent task, aimed at assessing 
neural substrates mediating the acquisition of goal-directed 
vs. habitual instrumental behavior, Liljeholm et al., (2015) 
found that activity in the rSMG increased across blocks of 
instrumental acquisition in a high-divergence, but not in a 
zero-divergence, condition.  In contrast, we did not find any 
effects of instrumental divergence in the rSMG in the 
current study.  There are several possible reasons for this 
discrepancy: First, none of the previous studies assessed the 
motivational significance of instrumental divergence, in 
terms of a behavioral preference for environments with 
relatively high divergence.  Second, in the current study, 
outcome probability distributions were trained to criterion 
prior to scanning (eliminating acquisition effects), and 
instrumental divergence remained constant within a room 
(eliminating responses to trial-by-trial fluctuations in 
divergence).  Further work is needed to determine how these 
differences may account for a differential engagement of the 
rSMG.  

A fundamental property of stimuli that possess intrinsic 
value is their ability to transfer that valence to neutral 
stimuli with which they are paired – a phenomenon termed 
conditioned reinforcement, that has been studied extensively 
using a wide range of stimuli, species and procedures (e.g., 
Arroyo et al., 1998; Williams, 1994).  This large body of 
research has demonstrated that conditioned reinforcers are 
powerful behavioral determinants, maintaining instrumental 
responding in the absence of primary rewards, such as food 
and sex, and even serving as goals in themselves.  
Moreover, once established, previously neutral conditioned 
reinforcers can pass on their motivational significance to 

other neutral stimuli; For example, casino chips maintain 
gambling based on their association with monetary reward, 
which in turn obtains valence from its usefulness in 
acquiring primary rewards.   One might expect, therefore, 
that any sufficiently valuable stimulus, no matter how 
abstract, should be able to induce conditioned reinforcement 
in associated arbitrary, and initially neutral, stimuli. Another 
important question, thus, is whether the affective properties 
of instrumental divergence may transfer to concomitant 
stimuli, and what brain regions might mediate such a 
processes.   

Formal theories of goal-directed decisions postulate that 
the agent generates a “cognitive map” of stochastic 
relationships between actions and states such that, for each 
action in a given state, a probability distribution is specified 
over possible outcome states.  These transition probabilities 
are then combined with current estimates of outcome 
utilities in order to generate action values – the basis of 
goal-directed choice (Doya et al., 2002).  Although 
computationally expensive (Otto et al., 2013), the dynamic 
binding of outcome probabilities with utilities offers 
adaptive advantage over more automatic action selection, 
which uses cached values based on reinforcement history.  
However, when instrumental divergence is zero, or very 
low, the processing cost of goal-directed computations does 
not yield the return of flexible control, suggesting that a less 
resource-intense automatic decision strategy might be 
optimal. As noted, in a previous study we found evidence 
implicating instrumental divergence in the deployment of 
goal-directed and habitual behavior, and this is an important 
avenue for future work.  

In summary, we have used model-based fMRI to 
investigate the neural computations mediating a behavioral 
preference for instrumental divergence.  We found that 
activity in the vmPFC was significantly modulated by a 
variant of expected value that reflected both instrumental 
divergence an monetary pay-offs, but not by a conventional 
model of expected value, based solely on monetary gain. 
Our results complement previous work on the role of the 
vmPFC in value-based choice.  
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