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Abstract

We assessed the neural substrates mediating a recently
demonstrated preference for environments with high levels of
instrumental divergence — a formal index of flexible operant
control. Across choice scenarios, participants chose between
gambling environments that differed in terms of both
instrumental divergence and expected monetary pay-offs.
Using model-based fMRI, we found that activity in the
ventromedial prefrontal cortex scaled with a divergence-
based measure of expected utility that reflected the value of
both divergence and monetary reward. Implications for a
neural common currency for information theoretic and
economic variables are discussed.
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Introduction

A series of recent studies (Mistry & Liljeholm, 2016;
Liljeholm et al., 2018) have demonstrated that individuals
strongly prefer environments in which instrumental
divergence — the degree to which alternative actions differ
with respect to their outcome probability distributions — is
relatively high. A high level of instrumental divergence is a
necessary feature of flexible control: If all available action
alternatives have identical, or very similar, outcome
distributions, such that selecting one action over another
does not significantly alter the probability of any given
outcome state, an agent’s ability to exert flexible control
over its environment is considerably impaired. Conversely,
when available action alternatives produce distinct
outcomes, discrimination and selection between actions
allow an agent to flexibly obtain the currently most desired
outcome. Since subjective outcome utilities often change
from one moment to the next, flexible instrumental control
is essential for reward maximization and, as such, may have
intrinsic value, serving to reinforce and motivate decisions
that guide the organism towards high-agency environments
(Liljeholm, 2018). In the current study, we investigate the
neural substrates mediating the apparent preference for high
instrumental divergence.

Previous work suggests that the ventromedial prefrontal
cortex (vmPFC) retrieves and ranks the values of decision
outcomes, and that these value signals are subsequently used
to compute decision values (see O’doherty, 2011 for
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review). Intriguingly, activity in the vimPFC scales with the
values of a wide variety of goods, including food, money,
books DVDs, and clothes, suggesting a common neural
value-scale for distinct stimulus categories (Chib et al.,
2009; McNamee et al., 2013). It is unknown, however,
whether this common value-scale might also extend to more
abstract, cognitive, commodities, such as instrumental
divergence. Here, using a task in which participants choose
between gambling environments based on differences in
both instrumental divergence and monetary pay-offs, we
combine computational cognitive modeling with functional
MRI to investigate neural representations of the utility of
instrumental divergence.

Method

Participants

Twenty undergraduates at the University of California,
Irvine (11 females; mean age = 21.2 £+ 4.65) participated in
the study for monetary compensation. The sample size was
determined based on an a priori power analysis of data from
a previously published study (Mistry & Liljeholm, 2016),
indicating that 18 subjects were required to demonstrate a
clear behavioral preference for high instrumental divergence
at a power of 90% given a 0.05 threshold for statistical
significance. All participants gave informed consent and the
Institutional Review Board of the University of California,
Irvine, approved the study.

Task & Procedure

The task is illustrated in Figure 1. At the start of the
experiment, participants were instructed that they would
assume the role of a gambler in a casino, playing a set of
four slot machines (i.e., actions, respectively labeled Al,
A2, A3, and A4) that yielded three different colored tokens
(blue, green and red), each worth a particular amount of
money, with different probabilities. They were further told
that, in each of several blocks, they would be required to
first select a room in which only two slot-machines were
available, and that they could only choose between the two
machines in the selected room on subsequent trials in that
block. Finally, participants were instructed that, while the
outcome probabilities would remain constant throughout the



study, the values of the tokens would change at various
times, and these changes might occur after the participant
had already committed to a particular pair of machines in a
given block. Consequently, although changes in value were
explicitly announced, and the current values of tokens were
always printed on their surface, a participant might find
themselves in a room in which the values of the two
available actions had suddenly been altered.

Press € to select Press = to select
Room 2: A1v. A3 OR Room 6:Alv. A4

Self-play Auto-play

AL A3
e 0
2]

A3
2

Figure 1: Task illustration showing the room-
choice screen at the beginning of a block (top), and
the choice (middle) and feedback (bottom) screens
on a trial in the selected room.

Two distinct probability distributions over the three
possible token outcomes were used and the assignment of
outcome distributions to slot machines was such that two of
the machines (either Al and A2 or Al and A3,
counterbalanced across subjects) always shared one
distribution, while the other two machines shared the other
distribution. This yielded a low (zero) divergence for rooms
in which the two available slot machines shared the same
probability distribution, and a relatively high divergence for
rooms in which slot machines had different outcome
probability distribution. The unpredictability (i.e., Shannon
entropy) of outcomes given a particular machine was held
constant for all machines. Three token-reward distributions
were used, changing intermittently across blocks, such that
expected monetary pay-offs were either the same across
rooms, or differed across rooms in either the same or
opposite direction of instrumental divergence. In addition to
mimicking dynamic changes in the utilities of natural
rewards, the sporadic changes in token reward values across
blocks allowed us to pit the value of instrumental
divergence against that of monetary reward.

Given a constant outcome entropy level, increases in
instrumental divergence are accompanied by increases in the
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perceptual diversity of obtainable outcomes — a variable
previously shown to elicit preferences in economic tasks
(Ayal & Zakay, 2009). To rule out perceptual diversity as
an explanation for any effects of instrumental divergence,
gambling rooms differed in terms of whether the participant
was allowed to chose freely between slot machines in the
room (self-play) or a computer algorithm alternated between
machines across trials in that room (auto-play). In auto-play
rooms, participants were still required to press a key
corresponding to the slot machine indicated by the
computer, to control for movement execution. Critically, in
the absence of voluntary choice, high-divergence no longer
yields flexible instrumental control. However, the
alternating computer algorithm still yields greater perceptual
diversity in high- than in low-divergence rooms.
Consequently, if choices were driven by a desire to
maximize perceptual diversity, rather than instrumental
divergence, they should not differ depending on whether the
participant or an alternating computer algorithm choose
between the slot machines in a room. In addition to
controlling for perceptual diversity, this self- vs. auto-play
manipulation relates the preference for instrumental
divergence to a well-established preference for free over
forced choice (e.g., Leotti & Delgado, 2011).

There were a total of 44 blocks, with participants
choosing between two gambling rooms at the start of each
block (the decision of interest), followed by 3-5 gambling
trials within the selected room. The order different reward
distributions, and of room choice scenarios, was
counterbalanced across subjects. Before starting the
gambling task participants were given a practice session in
order to learn the probabilities with which each slot machine
produced the different colored tokens. If a participants’
estimate of any given probability deviated by more than 0.2
from the programmed probability, they were returned to the
beginning of the practice phase, and this continued until all
rated probabilities were within 0.2 points of programmed
probabilities. At the end of the study, participants again
provided estimates of the action-token probabilities.

Computational Models

Instrumental divergence is formalized as the Jensen-
Shannon divergence of instrumental sensory-specific
outcome probability distributions (Liljeholm et al., 2013).
Let P; and P, be the respective outcome probability
distributions for two available actions, let O be the set of
possible outcomes, and P(o) the probability of a particular
outcome, o. The instrumental divergence (ID) is:

1 P (o) 1 Py(0)
D=~ > 1og(g(0))ﬁ(o)+ 5 Elog(ﬂ(()))ﬂ(o),

0€E0 0€E0

where



1
r=l(per)

We defined the expected value (EV) of each slot machine
as the sum over the products of its transition probabilities
and token utilities. In turn, the expected monetary value of
a gambling room is simply the mean of the EVs of slot
machines in that room. To model the utility of instrumental
divergence, a second variant of EV was specified by adding
the term w*ID to the expected monetary value of a room,
where the free parameter w represents the subjective utility
of instrumental divergence and /D is the divergence of the
particular room. Thus, in this variant, the EV of a room
reflects both the monetary pay-off and the instrumental
divergence associated with that room. For both models, a
softmax distribution with a noise parameter, 7, was used to
translate expected room values into choice probabilities, and
free parameters were fit to behavioral data by minimizing
the negative log likelihood of observed choices. Choice
scenarios in which at least one room option was both high
divergence and self-play (HDSP), yielding high
instrumental divergence, and those in which the high-
divergence room option was auto-play, or both rooms had
zero divergence (HDAP), were modeled separately. The
corrected Akaike Information Criterion (AICc) was used for
behavioral model comparisons.

Neuroimaging Acquisition & Analyses

All MR images were obtained in a 3T Siemens Prisma
Scanner, fitted with a 32-channel RF receiver head coil,
padded to minimize head motion, at the facility for imaging
and brain research (FIBRE) at the University of California,
Irvine. Functional images covered the whole brain with 48
continuous 3-mm thick axial slices with T2*-weighted
gradient echoplanar imaging (TR=2.65s, TE=28ms, 3-mm?’
in-plane voxel size, 64 x 64 matrix). All participants had a
high-resolution structural image taken before functional
scanning commenced (T1-weighted FSPGR sequence: 208
continuous 0.8-mm axial slices 0.4-mm? in-plane voxel size;
640 x 640 matrix). All stimulus materials were presented,
and all responses recorded, using MATLAB. All imaging

data was preprocessed with MATLAB and SPMI12.
Functional images were preprocessed with standard
parameters, including slice timing correction, spatial

realignment, coregistration of the high-resolution structural
image to functional images, segmentation of the structural
image into tissue types, spatial normalization of functional
images into MNI space, and spatial smoothing with an 8mm
FWHM kernel.

All imaging data was analyzed using MATLAB and
SPM12. At the first level, two general linear models
(GLMs) were specified for each participant. In both GLMs,
two regressors respectively specified the onsets of room
choice screens for HDSP and HDAP choice scenarios. In
the first GLM, these onsets were parametrically modulated
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by the absolute difference between rooms in their expected
monetary pay-offs; in the second GLM these onsets were
parametrically modulated by the absolute difference
between rooms in their divergence-based utility, which
reflected both the monetary pay-off and the level of
divergence associated with each room. In addition, in both
GLMs, two regressors indicated the onsets of choice screens
on each trial within a selected room, for self-play and auto-
play rooms respectively, and each of these were
parametrically modulated by the expected monetary value of
the chosen slot machine. Finally, both GLMs included a
single regressor indicating the onsets of trial feedback
screens, modulated by the monetary reward obtained on
each trial, as well as regressors indicating separate scanning
runs and accounting for the residual effects of head motion.

Fixed effects models were estimated using restricted
maximum likelihood and an AR(1) model for temporal
autocorrelation. Group-level statistics were generated by
entering contrasts of first level parameter estimates into
between-subject analyses. All effects are reported at a
whole brain corrected p < 0.05 level, using cluster size
thresholding (CST) to adjust for multiple comparisons.
AlphaSim, a Monte Carlo simulation, was used to determine
cluster size and significance. For an individual voxel
probability threshold of p=0.005, a minimum cluster size of
148 MNI transformed voxels resulted in an overall
significance of p < 0.05.

Results

Behavioral Results

Participants required on average 2.1 (SD=0.3) cycles of
practice on the action-token probabilities. Mean probability
ratings, obtained right before and right after the gambling
phase, are shown in Table 1.

Table 1: Mean probability ratings with standard
deviations. Programmed probabilities are shown in
the top row. Mean ratings, obtained before and
after the gambling task, are averaged across
identical objective probabilities, yielding three
unique values.

0.7 0.0 0.3
Before 0.69 +0.06 0.00+0.00 0.31 +£0.05
After 0.67+0.10 0.00+0.00 0.32 £ 0.05

The decision of interest was that at the beginning of each
block, when participants choose between rooms that
differed in terms of their divergence, expected monetary
pay-offs and self- vs. auto-play. Model-derived choice
probabilities and AICc scores for these decisions are listed
in Table 2.



Table 2: Mean room-choice probabilities derived
using the divergence-based and conventional
models of expected value (EV), and associated
AICc scores, for HDSP and HDAP choice
scenarios, with standard deviations.

Choice Probabilities AICc Scores
HDSP HDAP HDSP HDAP
0.65+0.13 0.58+0.07 19.5+£2.7 383+74
0.55+0.05 0.57+0.07 21.6+5.6 36.8+7.5

Divergence EV

Conventional EV

A repeated measures analysis of variance (ANOVA)
revealed that the model-derived probabilities of observed
behavioral choice preferences were significantly greater for
the divergence-based utility algorithm than for the
conventional utility model, and this difference was
significantly greater for HDSP choice scenarios than for
HDAP choice scenarios, yielding a significant main effect
of EV model, F(1,19)=12.40, p<0.005, as well as a model
by choice scenario interaction, F(1,19)=9.52, p<0.01.
Accordingly, there was also a significant interaction for the
AlCc scores, F(1,19)=7.71, p<0.05, such that scores were
significantly lower, indicating a better fit, for the
conventional than for the divergence-based utility model in
HDAP blocks (t(19)=5.2, p<0.001) while being lower for
the divergence-based utility model, albeit with only
marginal significance (p=0.14) in HDSP blocks.

Neuroimaging Results

As with the behavioral data, the period of interest was the
choice made at the beginning of each block, between two
gambling rooms that differed in terms of divergence,
monetary pay-offs and free choice. As illustrated in Figure
2, neural activity in the ventromedial prefrontal cortex
(vmPFC) was parametrically modulated by the absolute
difference in divergence-based EV between rooms, when at
least one room option was both high-divergence and self-
play (HDSP) but not when the high divergence room was
auto-play, or both room options had zero divergence
(HDAP). No significant effects of the difference between
room options in expected monetary pay-offs emerged in this
region. A similar pattern of results, with activity scaling
selectively with the absolute difference in divergence-based
EV between rooms options in HDSP choice scenarios, was
found in the middle frontal gyrus, as well as the premotor
cortex. Once a room had been selected, activity in a more
dorsal aspect of the vmPFC, extending into the dorsal
medial prefrontal cortex scaled with the expected monetary
pay-off of the chosen slot machine, in self-play but not in
auto-play rooms, as did activity in the lateral orbitofrontal
cortex, posterior right middle temporal gyrus and right
dorsolateral prefrontal cortex.
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Effect size (a.u.)

diveV SEV

divEv SEV
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Figure 3: Map of the t-statistics for a test of
differential  parametric modulation by the
difference across rooms in divergence-based
expected value (divEV) for choice scenarios in
which at least one high-divergence room option
was self-play (HDSP) versus those in which the
high-divergence room option was auto-play, or
both options had zero-divergence (HDAP),
showing significant effects in the vmPFC. Bar
plots show effect sizes (y-axis) extracted from 4
mm spheres centered on the peak coordinate (X, y,
z = -4, 34, -4), for small and large differences in
divEV and monetary expected values ($EV), in
HDSP and HDAP choice scenarios. Error
bars=SEM.

Discussion

Countless studies on motivated behavior have investigated
the neural representation of primary and monetary rewards
(Abe & Lee, 2011; Abler et al., 2009; Belova et al., 2007;
Cador e al., 1989). Here, having previously demonstrated a
behavioral preference for instrumental divergence — a
formal index of flexible operant control — we explored
neural substrates mediating the influence of this information
theoretic variable on economic choice.  Specifically,
participants were scanned with fMRI as they chose between
gambling rooms that differed with respect to both
instrumental divergence and expected monetary pay-offs.
Using a model-based analysis, we found that activity in the
ventromedial prefrontal cortex (vmPFC) scaled with a
divergence-based measure of expected utility that reflected
both instrumental divergence and monetary pay-offs.
Considerable evidence from neurophysiological and
neuroimaging studies suggest that the vmPFC encodes the
subjective values of primary rewards, such as tastes and
odors (Rolls et al., 2003; Anderson et al., 2003; Small et al.,
2003), as well as visual stimuli, including the attractiveness
of faces or pictorial scenes (O’Doherty et al., 2003; Kirk et
al., 2009), and more abstract goods, like social praise (Elliot
et al., 1997) and monetary gain (O’Doherty et al., 2001).



Two notable features of the vmPFC shed important light on
the current results: First, value encoding in the vmPFC
appears to be relative, such that the value signal for a
particular stimulus depends on the values of other, proximal,
stimuli (O’Doherty, 2011). One might expect, thus, that the
vmPFC signal would respond most clearly to a difference in
value between concurrently available stimuli. Second,
recent findings suggest that the vmPFC encodes stimulus
values that are independent of the particular stimulus
category, essentially implementing a common neural value
scale for different types of goods (Chib et al., 2009;
McNamee et al., 2013). The currently demonstrated value
signal in the vimPFC, corresponding to a difference between
options in divergence-based utility, suggest that this
common value scale can be extended to a relative analysis
of exceedingly abstract concepts.

Our previous work has implicated the right supramarginal
gyrus (rSMG) of the inferior parietal lobule in encoding
instrumental divergence. Specifically, using a simple value-
based decision-making task, Liljeholm et al. (2013) found
that activity in the rfSMG scaled parametrically with trial-
by-trial estimates of instrumental divergence, and that this
signal was dissociable from other information theoretic and
motivational variables, including outcome entropy and
expected utility. In a subsequent task, aimed at assessing
neural substrates mediating the acquisition of goal-directed
vs. habitual instrumental behavior, Liljeholm et al., (2015)
found that activity in the rSMG increased across blocks of
instrumental acquisition in a high-divergence, but not in a
zero-divergence, condition. In contrast, we did not find any
effects of instrumental divergence in the rSMG in the
current study. There are several possible reasons for this
discrepancy: First, none of the previous studies assessed the
motivational significance of instrumental divergence, in
terms of a behavioral preference for environments with
relatively high divergence. Second, in the current study,
outcome probability distributions were trained to criterion
prior to scanning (eliminating acquisition effects), and
instrumental divergence remained constant within a room
(eliminating responses to trial-by-trial fluctuations in
divergence). Further work is needed to determine how these
differences may account for a differential engagement of the
rSMG.

A fundamental property of stimuli that possess intrinsic
value is their ability to transfer that valence to neutral
stimuli with which they are paired — a phenomenon termed
conditioned reinforcement, that has been studied extensively
using a wide range of stimuli, species and procedures (e.g.,
Arroyo et al., 1998; Williams, 1994). This large body of
research has demonstrated that conditioned reinforcers are
powerful behavioral determinants, maintaining instrumental
responding in the absence of primary rewards, such as food
and sex, and even serving as goals in themselves.
Moreover, once established, previously neutral conditioned
reinforcers can pass on their motivational significance to
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other neutral stimuli; For example, casino chips maintain
gambling based on their association with monetary reward,
which in turn obtains valence from its usefulness in
acquiring primary rewards. One might expect, therefore,
that any sufficiently valuable stimulus, no matter how
abstract, should be able to induce conditioned reinforcement
in associated arbitrary, and initially neutral, stimuli. Another
important question, thus, is whether the affective properties
of instrumental divergence may transfer to concomitant
stimuli, and what brain regions might mediate such a
processes.

Formal theories of goal-directed decisions postulate that
the agent generates a “cognitive map” of stochastic
relationships between actions and states such that, for each
action in a given state, a probability distribution is specified
over possible outcome states. These transition probabilities
are then combined with current estimates of outcome
utilities in order to generate action values — the basis of
goal-directed choice (Doya et al, 2002).  Although
computationally expensive (Otto et al., 2013), the dynamic
binding of outcome probabilities with utilities offers
adaptive advantage over more automatic action selection,
which uses cached values based on reinforcement history.
However, when instrumental divergence is zero, or very
low, the processing cost of goal-directed computations does
not yield the return of flexible control, suggesting that a less
resource-intense automatic decision strategy might be
optimal. As noted, in a previous study we found evidence
implicating instrumental divergence in the deployment of
goal-directed and habitual behavior, and this is an important
avenue for future work.

In summary, we have used model-based fMRI to
investigate the neural computations mediating a behavioral
preference for instrumental divergence. We found that
activity in the vmPFC was significantly modulated by a
variant of expected value that reflected both instrumental
divergence an monetary pay-offs, but not by a conventional
model of expected value, based solely on monetary gain.
Our results complement previous work on the role of the
vmPFC in value-based choice.
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