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Abstract—A binary neural network (BNN) is a com-
pact form of neural network. Both the weights and acti-
vations in BNNs can be binary values, which leads to a
significant reduction in both parameter size and compu-
tational complexity compared to their full-precision coun-
terparts. Such reductions can directly translate into re-
duced memory footprint and computation cost in hard-
ware, making BNNs highly suitable for a wide range of
hardware accelerators. However, it is unclear whether and
how a BNN can be further pruned for ultimate compact-
ness. As both 0s and 1s are non-trivial in BNNs, it is
not proper to adopt any existing pruning method of full-
precision networks that interprets 0s as trivial. In this pa-
per, we present a pruning method tailored to BNNs and
illustrate that BNNs can be further pruned by using weight
flipping frequency as an indicator of sensitivity to accuracy.
The experiments performed on the binary versions of a 9-
layer Network-in-Network (NIN) and the AlexNet with the
CIFAR-10 dataset show that the proposed BNN-pruning
method can achieve 20-40% reduction in binary operations
with 0.5-1.0% accuracy drop, which leads to a 15-40% run-
time speedup on a TitanX GPU.
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I. Introduction

In the rapid evolution of deep learning, neural network
models have been growing from several to over a hundred
layers for handling more complex tasks. Network models
are often trained with powerful GPUs in the cloud or on
stand-alone servers, and the trained models are then de-
ployed to certain hardware platforms for performing infer-
ence. For cloud applications where neural network models
are both trained and deployed in the cloud, computational
complexity is typically a secondary concern as there is lit-
tle gap in computing resources between the training and
the inference stages. However, in many emerging Internet-
of-things (IoT) applications where neural network models
must be deployed onto resource-constrained edge devices
[2] for performing real-time inference, the computational
complexity of neural network models has become a major
concern. Therefore, it is important to not only investigate
how to build more compact neural network models that are
friendly to hardware implementations but also rethink how
to further compress compact neural network models for the
efficient hardware implementations on resource-constrained
edge devices.

The most compact form of deep neural networks are bi-
nary neural networks (BNNs) [3, 7, 18, 21]. BNNs are an

extreme case of a quantized neural network, which adopts
binarized representations of weights and exclusive NOR
(XNOR) operations as binary convolution. By applying
binary constraints on deep neural networks, the existing
studies have shown up to 12x, 5x, 16x speedup on a CPU,
GPU, and field-programmable gate array (FPGA) imple-
mentation [6, 7, 11], respectively, compared with its 16/32-
bit floating-point counterpart. Another popular method
to compress neural networks is pruning. Pruning methods
help to remove insensitive weights and/or connections of
a network. Since quantization and pruning are indepen-
dent on each other, they could be jointly applied. Existing
work has already shown promising results of combining a
4-bit quantization with pruning for a deep compression [5].
However, there has been no study that explores the prun-
ing of BNNs. The major challenges of pruning BNNs are
twofold. First, as both 0s and 1s are non-trivial in BNNs, it
is not proper to adopt any existing pruning method of full-
precision networks that interprets 0s as trivial. A new in-
dicator is needed to identify the weights insensitive to net-
work accuracy. Second, unstructured pruning can hardly
result in any saving for BNNs as one has to introduce mem-
ory overhead to label the prunable weights that only have 1
bit. Therefore, we need a solution that avoids unstructured
pruning.

In this paper, we propose a BNN-pruning method that
uses the weight flipping frequency as an indicator to an-
alyze the sensitivity of the binary weights to accuracy.
Through experiments, we validate that the weights with
a high weight flipping frequency, when the training is
sufficiently close to convergence, are less sensitive to ac-
curacy. To avoid unstructured pruning, we propose to
shrink the number of channel in each layer by the same
percentage of the insensitive weights to reduce the effec-
tive size of the BNN for further fine tuning. The ex-
periments performed on the binary versions of a 9-layer
Network-in-Network (NIN) [12] and the AlexNet [10] with
the CIFAR-10 dataset [9] show that the proposed BNN-
pruning method can achieve 20-40% reduction in binary
operations with 0.5-1.0% accuracy drop, which leads to a
15-40% runtime speedup on a TitanX GPU. The source
code is available on GitHub 1.

The key contributions of this paper are summarized as
follows:

• To the best of our knowledge, this is the first work
that demonstrates the flexibility of and propose a generic
method for pruning BNNs.

1https://github.com/PSCLab-ASU/BNNPruning



• We draw the insight that weight flipping frequency
is an effective indicator of the sensitivity to accuracy in
BNNs and validate its effectiveness to guide the binary
weight pruning.

II. Related work

In this session, we discuss the related work of BNNs and
pruning methods. In addition, we explain why the exist-
ing pruning methods of full-precision networks cannot be
applied to BNNs.

A. Binary neural networks (BNNs)

Quantization is one of the most popular techniques that
can be directly applied to compress a full-precision neu-
ral network model. Existing work has shown that with
learned quantization, the precision of convolutional neural
networks (CNNs) can be reduced to the level of 4-16 bits
with merely no accuracy drop [20, 8]. Furthermore, [15]
shows the feasibility of using a half-precision (FP16) data
format to perform training, which can also accelerate the
training process.

In the extreme case of reduced-precision neural networks,
the weights and activations can be reduced to two states
(1 bit), referred to as BNNs [3, 7, 18, 21]. The values of
weights and activations in BNNs are constrained to (0, 1)
or (-1, 1) depending on the preferred encoding scheme. In
binary CNNs, a convolution operation can be simplified to
the Boolean operation of XNOR and bit-count operations.
As a result, BNNs have two direct impacts on hardware
implementation. First, the use of extremely low-precision
weights and activations enables the significant reduction of
memory footprint for storing model parameters and inter-
mediate results. Second, the use of Boolean operations sig-
nificantly reduces the computational complexity, as well as
the hardware implementation cost, thus greatly improves
the energy efficiency of inference. These benefits are ideal
for FPGA or application-specific integrated circuit (ASIC)
implementations of BNNs, where customized hardware can
be designed to perform the 1-bit operations efficiently [11].
On the other hand, CPUs and GPUs can also perform
batches of binary convolutions in a bit-wise fashion with
much improved efficiency [7, 6]. Overall, BNNs are highly
suitable for efficient hardware mapping on CPUs, GPUs,
FPGAs, or ASICs, which can bring significant savings in
both memory and computation resources on edge devices.

BinaryConnect [3] is a partially binarized network
with binarized weights but non-binarized activations. Bi-
narized weights alleviate the memory bandwidth issue and
allow BinaryConnect to substitute full-precision multiply-
accumulate operations with full-precision additions only.

BinarizedNN [7] is a fully-binarized CNN with both
with binarized weights and activations. The binarized
weights and activations of BinarizedNN enable XNOR-
based binary convolution operations. As a result, Bina-
rizedNN is highly efficient to be mapped on CPUs, GPUs,
FPGAs, and ASICs for inference.

XNOR-Net [18] is a more relaxed version of BNN. In

addition to its binarized weights and activations, XNOR-
Net also introduces full-precision coefficient matrices to en-
hance the capacity of the network, which improves the clas-
sification performance on the ImageNet dataset [4].

DoReFa-Net [21] adopts a mixture of 1-bit weights and
2-bit activations. The binarized weights in DoReFa-Net
can result in the same amount of memory saving as the
other BNNs. However, compared with BinarizedNN and
XNOR-Net, DoReFa-Net doubles the computational com-
plexity of the convolution operations with its 1-bit weights
and 2-bit activations. Although, its convolution can still be
decomposed to 1-bit operations, the total number of opera-
tions almost doubles, which results in a limited acceleration
performance on CPUs and GPUs.

B. Pruning

In this paper, we refer to the pruning methods that
involve multiple rounds of pruning and retraining in a
iterative fashion as iterative pruning. We refer to the
other pruning methods that prune a network based on
optimization techniques without the need of retraining as
optimization-based pruning.

Iterative pruning. The iterative pruning methods for
full-precision neural networks [5, 14, 16] generally follow
a three-step training pipeline, as shown in Fig. 1. If not
starting from a pre-trained floating-point network, training
one is the first step. The second step is to prune out redun-
dant connections determined by certain threshold values.
Intuitively, if the absolute values of weights are sufficiently
small, their influence on the output values is fairly lim-
ited. The third step is to fine-tune the network to re-train
the inherited weights. The second and third steps are re-
peated to further prune and fine-tune the network in an
iterative fashion until satisfactory performance is achieved.
Unfortunately, it is impossible to directly apply the itera-
tive pruning method developed for full-precision networks
to BNNs. Since 0s and 1s are both non-trivial in BNNs,
the absolute values of the binarized weights are no longer
a valid indicator of their sensitivity to accuracy thus can-
not be used to guide the pruning of BNNs. Therefore,
it is improper to adopt any iterative pruning methods for
full-precision networks that interpret 0s as trivial in BNN
pruning.

Optimization-based pruning. For the same rea-
son, the optimization-based pruning methods [17, 19] that
adopt a pruning objective function based upon the exact
values of network weights cannot be applied to pruning
BNNs [17] either. In case that the pruning objective func-
tion is based upon the separated masking arrays of weights
[19], the pruned network models will have unstructured
weights. As a result, their hardware implementations will
require extra memory to store the flags of prunable weights
as well as extra logic for manipulating the memory pointers
to skip the corresponding computation, which creates dif-
ficulty in achieving actual runtime speedup on CPUs and
GPUs.
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Fig. 1. The overview of the general pruning flow.

III. Methodology

To tackle the above-mentioned problems, we propose a
novel BNN-pruning method that adopts weight flip fre-
quency (f) as an indicator of the sensitivity of binary
weights to accuracy to guide the pruning of BNNs. We
empirically validate that a high and low f indicates a low
and high sensitivity of binary weights to accuracy, respec-
tively. Therefore, f is an effective indicator for identifying
the binary weights that have a high criticality to pruning
and can be pruned with a well-bounded accuracy drop.

A. Weight flip frequency (f)

In this paper, we define f as the flipping count of a weight
during a specified last stage of training (from epochstart to
epochend). In BNNs, weight flipping means that a weight
value switches from 0/-1 to 1 or 1 to 0/-1. During the
specified training interval, f is increased by 1 whenever the
weight value flips. We hypothesize that, toward the end of
the training, the last few percents of accuracy gain stems
from the update of the weights with a high weight flipping
frequency, and these weights have little influence on the
accuracy that has already been established. Therefore, f
can be used as the indicator of the sensitivity of binary
weights to accuracy as well as their criticality to pruning .
An f being equal to 0 or 1 means that the weights belong to
this f group remain stable or become stable toward the end
of the training, which implies that, if one flips their values,
it is most likely to hurt the accuracy. On the contrary,
an f being high or hitting the upper bound (the weight
flips in every iteration) means that the values of this group
of “noisy weights” most likely has little influence on the
accuracy gain. Such behavior can be interpreted as that the
training is trying fine-tune these “noisy weights” to further
shape the decision boundary of classification but failed as
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Fig. 3. The overview of the BNN pruning flow.

they turned out to have little impact on the accuracy gain.

We conducted the experiments to validate our hypothe-
sis. The experiments are conducted on the CIFAR-10 [9]
dataset with a 9-layer binarized NIN [12]. We use the same
network architecture as described in [12]. The training in-
terval for f analysis is set as the epoch range that con-
tribute to the last 1% of accuracy gain toward the end of
training. We group the weights into three groups. The
1st and 2nd group of weights satisfies f=0/1 and f=2,
respectively. The 3rd group of weights contain the same
amount of weights as the 1st group, but are randomly se-
lected from the entire weight set. Fig. 2 shows the accuracy
comparison when we randomize different groups of weights
during inference. Note that only weight randomization is
performed in the experiments, and no fine-tuning of the
weights is performed after the randomization. The results
are averaged over ten trials. The experiment results show
a 1.1% gap between the baseline model and the one with
the 1st group of weights randomized. Also, randomizing
the 1st group of weights achieves even lower accuracy than
randomizing the same amount of randomly selected weights
(the 3rd group).

These results indicate that the 1st group of weights,
where f is equal to 0 or 1, is the most sensitive to the
final accuracy rate, while the 2nd group of weights with a
high f has little impact. This validates our hypothesis and
suggests that f ≥ 2 is a viable threshold for identifying the
prunable binary weights.
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Fig. 4. The illustration of training interval for f analysis.



TABLE I

The layer-wise BNN-pruning results of the binarized NIN at each iteration.

p L /% channels p L /% channels p L /% channels p L /% channels

conv2d 5x5 192 N/A 192 N/A 192 N/A 192 N/A 192

binconv2d 1x1 160 5.0 152 5.9 143 0.7 142 3.5 137

binconv2d 1x1 96 5.2 91 5.5 86 1.2 85 4.7 81

binconv2d 5x5 192 1.5 189 1.1 187 0.5 187 1.0 185

binconv2d 1x1 192 9.9 173 5.8 163 3.1 158 6.3 148

binconv2d 1x1 192 3.1 186 2.7 181 0.6 180 2.2 176

binconv2d 3x3 192 1.6 189 1.1 187 0.5 187 1.1 185

binconv2d 1x1 192 4.2 182 4.9 173 1.2 171 3.5 165

conv2d 1x1 10 N/A 10 N/A 10 N/A 10 N/A 10
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B. BNN compression flow.

The overall flow of BNN pruning is shown in Fig. 3,
and Fig. 4 illustrates the training interval during which
f analysis shall be performed. ∆acc is the accuracy drop
tolerance defined by the user. epochend is the final epoch
of the training phase. epochstart is the starting point of
f analysis, where the accuracy at epochstart is ∆acc lower
than the final accuracy at epochend.

The first step in the BNN-pruning method is to train a
BNN from scratch. In the case of a pre-trained BNN model
is available, the last stage of training (from epochstart to
epochend) needs to be performed again for the purpose of
f analysis.

The second step to analyze the weight flip frequency
– f . One shall log the statistics of f for each weight
during the training interval from epochstart to epochend.
Subsequently, one shall calculate the portion of insensitive
weights (pL%) in the Lth layer that satisfy f ≥ 2 for each
layer.

The third step is to reduce the size of the BNN by shrink-
ing the number of channels in the Lth layer by pL%, and
the forth step is to retrain the network at the reduced size.
One shall repeat the second, third, fourth steps in a iter-
ative fashion until the maximum percentage of insensitive
weights (pL%) is close to 0, which indicates that there is
no room for further compression.

Preserving the pruned architecture and fine-tune the in-
herited weights in BNN pruning is not recommended for
two main reasons. First, the insensitive weights are found
to be sparsely distributed and unstructured in our experi-
ments. Unstructured pruning can hardly result in any sav-
ing for BNNs as one has to introduce memory overhead
to label the prunable weights that only have 1 bit as well
as extra logic for manipulating the memory points to skip
the corresponding computation. Second, prior work shows
that retraining inherited weights in conventional pruning
methods typically does not produce better performance
than simply training a smaller model from scratch [13].
Therefore, we recommend reducing the size of the BNN

network at each layer guided by the f analysis and pL%
and retraining the smaller BNN model in BNN pruning.
Comparing to the intuitive approach of exploring the ap-
propriate network size through binary search, the proposed
BNN-pruning method can quantitatively analyze the layer-
wise redundancy to effectively reduce the BNN size, which
greatly reduces the search space and time.

IV. Experiment

We tested the proposed BNN-pruning method with the
CIFAR-10 [9] dataset on two BNNs: the binary versions
of a 9-layer binarized NIN [12] and the AlexNet[10]. The
binarization method used in this paper is introduced by the
XNOR-net [18]. The source code we build is based on [1].

The first set of experiments is conducted on the binarized
NIN. The network architecture used in our experiment is
shown in Table I. Table I also shows the layer-wise pruning
results in four iterations of BNN pruning. Note that the 1st

and the last layer are floating-point layers, and we do not
apply any pruning on them. In each iteration, our target
∆acc is set to 0.5%. After four iterations of BNN prun-
ing, the final network model has a 20% reduction in GOPs
(Giga operations). The accuracy of the baseline model is
86.5%, and the accuracy of the final network model is sub-
ject to the target accuracy drop of 0.5%. Compared with
directly performing a binary search for the appropriate net-
work size, the proposed BNN-pruning method can provide
a layer-wise, quantitative guideline to effectively shrink the
BNN size. For the runtime evaluation, we tested the layer-
wise runtime of the binarized NIN using an optimized bi-
nary kernel on an NVIDIA TitanX GPU. The final network
model after BNN pruning leads to a 15% runtime speedup
as comparing to the baseline model.

TABLE II

Experiment results of BNN pruning.

Arch. GOPs reduction Speedup ∆acc
NIN 20% 15% 0.5%

AlexNet 40% 25% 1.0%



In addition, we tested the proposed BNN-pruning
method on the binarized AlexNet with the CIFAR-10
dataset [9]. In this set of experiments, we set the target
∆acc to 1.0%. After three iterations of BNN pruning, the
final network model results in a 40% GOPs reduction and a
25% runtime speedup on an NVIDIA TitanX GPU, subject
to the 1.0% target accuracy drop. The BNN pruning re-
sults and their impact on runtime speedup are summarized
in Table II. Overall, the experiment results show that us-
ing the weight flipping frequency as the indicator of weight
sensitivity to guide BNN pruning can lead to 20-40% GOPs
reduction and 15-25% runtime speedup at the limited cost
of 0.5-1.0% accuracy drop.

V. Conclusion

In this paper, we present a study that explores the weight
redundancy in BNNs and propose a generic solution for
BNN pruning. The weight flipping frequency f is an effec-
tive indicator of the sensitivity of binary weights to accu-
racy and their criticality to pruning. Reducing the BNN
size by shrinking the number of channels in the Lth layer
by a factor of pL% is the key to effectively removing redun-
dancy in BNN pruning.
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