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ABSTRACT

Due to the high computational complexity and memory storage requirement, it is hard to directly
deploy a full-precision Convolutional neural network (CNN) on embedded devices. The hardware-
friendly designs are needed for resource-limited and energy-constrained embedded devices.
Emerging solutions are adopted for the neural network compression, e.g., binary/ternary weight
network, pruned network and quantized network. Among them, binary neural network (BNN)
is believed to be the most hardware-friendly framework due to its small network size and low
computational complexity. No existing work has further shrunk the size of BNN. In this work,
we explore the redundancy in BNN and build a compact BNN (CBNN) based on the bit-level
sensitivity analysis and bit-level data pruning. The input data is converted to a high dimensional
bit-sliced format. In the post-training stage, we analyze the impact of different bit slices to the
accuracy. By pruning the redundant input bit slices and shrinking the network size, we are able to
build a more compact BNN. Our result shows that we can further scale down the network size of
the BNN up to 3.9x with no more than 1% accuracy drop. The actual runtime can be reduced up
to 2x and 9.9x compared with the baseline BNN and its full-precision counterpart, respectively.

1. Introduction
Vision-based applications can be found in many embedded devices for classification, recognition, detection and

tracking tasks [1, 2]. Specifically, convolutional neural network (CNN) has become the core architecture for those
vision-based tasks [3]. Since it can outperform conventional feature selection-based algorithm in terms of accuracy,
it becomes more and more popular. Advanced driver-assistance system (ADAS) can either use CNNs for guiding
autonomous driving or alerting the driver of predicted risk [1]. It is obvious that ADAS depends on a low-latency system
to get a timely reaction. Artificial intelligence (AI) applications also explode in smartphones, such as automatically
tagging the photos, face detection and so on [4, 2]. Apple has announced that the Apple Neural Engine on iPhone
is aiming at partially moving their AI processing module on device [5]. If the users’ requests are processed through
sending them to the data center, there will be much overhead of the latency and power consumption caused by the
commutation. As such, on-device AI processing is the future trend to balance power efficiency and latency. However,
CNNs are known to have high computational complexity, which makes it hard to directly deploy on embedded devices.
Therefore, compressed CNNs are in demand.

In the early stage, research work of hardware-friendly CNNs have focused on reducing the numerical precision
down to 8-16 bits in the post-training stage [6], which either has a limited reduction or suffers from severer accuracy
drop. Lately, in-training techniques have been brought up, achieving much higher compression ratio. BinaryConnect,
BinaryNet, TernaryNet, XNOR-Net and LQ-Net [7, 8, 9, 10, 11] have pushed to reduce the weight to binary or ternary
(-1, 0, +1) values. Network pruning [12] reduces the network size (the memory size for all the parameters) by means
of reducing the number of connections. Regarding the network size, pruned network and TernaryNet can achieve
13x and 16x reduction [9, 12], respectively. While BinaryConnect, BinaryNet, XNOR-Net and LQ-Net can achieve
up to 32x reduction. In terms of computational complexity, BinaryNet and XNOR-Net both have binarized weights
and activations, which can simply replace convolution operation with bitwise XNOR (Exclusive-NOR) and bit count
operation. XNOR-Net has additional scaling factor filters in each layer, which brings overhead to both memory and
computation cost. Overall, BinaryNet is recognized as the most efficient solution for hardware deployment by hardware
community when considering its small network size and low computational complexity [13]. The computational

∗The source code is available at https://github.com/PSCLab-ASU/C-BNN
yixingli@asu.edu (Y. Li); zs@cqu.edu.cn (S. Zhang); zxc@cqu.edu.cn (X. Zhou); renfengbo@asu.edu (F. Ren)
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complexity of LQ-Net [11], which can be configured to have 1-bit weights and 2-bit activations, will rank the 2nd right
after BinaryNet. In the rest of paper, we use the term, Binary Neural Networks (BNNs) specifically to represent the top
two compact binary weight neural networks – BinaryNet and LQ-Net. Although the study is possible to be generalized
to any binarized weight neural nets (NNs), here we just constrain our study to the most two compact form of binary
weight neural networks to show the impact to such compact NNs.

Although, pruning is capable to work with reduced-precision CNNs (typically 4-8 bits) to argument the computational
resource savings, it is not clear how much improvement it can get with BNN. Pruning methods can be categorized
as magnitude-based and optimization-based pruning. For magnitude-based pruning, the key idea is to prune out the
weights that have small numerical value, which contribute less to compute the output. In the case of BNN, the weights
are constrained to +1/-1, so there is no relative small value weights which can’t be applied with magnitude analysis.
For optimization-based pruning, the pruned network can be resulted in a structured or non-structured way [14]. For the
non-structured case, additional “flag bits” are needed for marking each prunable weight, which may even increase the
memory consumption and is not beneficial to the inference speed. The only possible way which can improve runtime
performance is to apply optimization-based structured pruning [15, 16] on BNN, but no existing work has done any
related study. In summary, how much redundancy the BNN still has is still unknown, and no existing solution has been
proved to work effectively on the BNN.

In order to explore how much redundancy the BNN still has, and how much one can further compress a BNN, a
new solution tailored for BNN compression is needed. For a data center based application which run large models,
BNN may not be the best option. On the contrary, for on-device inference on resource constrained embedded system,
further reducing the memory footprint and network size are critical to efficient computing. If there is a smart gate lock
for a company’s building, it probably needs a really large model since the dataset is large. However, if it is a smart door
lock for a single house or apartment, a smaller model will be good enough for such a small dataset. Also, in this case,
the BNN will make the smart lock to be more energy-efficient with speed enhancement.

In the previous work, [17] demonstrates the redundancy in the first layer of BNN and [18] uses approximated binary
filters. The former one reduces the connection only in the first layer and the latter one encodes the original binary filters
into approximated ones without any connection reduction. This work is the first one that explores and proves that there
is still connection redundancy throughout the entire BNN. The proposed flow to reduce the network size is triggered by
conversion and analysis of input data rather than the network body, which is rarely seen in previous work. A novel flow
is proposed to prune out the redundant input bit slices and rebuild a compact BNN through bit-level sensitivity analysis.

Actually, the proposed method shares very similar idea with simplifying combinational logic circuits. In the logic
circuits, all input/output data and intermediate results are all binary (0/1) values. If flip one input node value (change
from 1 to 0 or 0 to 1) but none of the outputs change, it means that this input node is useless for building this system. In
other words, you can remove this redundant input node and the function of the system will not change. By removing
this useless input node, it helps to simplify combinational logic circuits design. Similarly, the binary neural network
can be seen as the body of combinational logic circuits. If we flip the binary inputs of the binary neural network and its
output (accuracy) doesn’t change, we can infer these inputs are redundant, which can be removed. Accordingly, we can
shrink the network size (reduce the number of parameters) since the function we would like to approximate is simplified.
Experiment results show that the compression ratio of the network size is achieving up to 3.9x with no more than 1%
accuracy drop.

The rest of the paper is organized as follows. Section 2 discusses the related work for network compression and
explains why BNN is a more superior solution to be deployed on the hardware. In addition, Section 2 also explains
why existing neural network compression methods cannot be applied on BNN. Section 3 demonstrates the experiments
to validate the hypothesis that BNN has redundancy and proposes a novel flow to build a compact BNN. Experiment
results and discussion are shown in Section 4. Section 5 concludes the paper.

2. Related work
When referring to hardware-friendly oriented designs, it is not fair to only emphasize compressing the network size.

Other than that, the computational complexity is also essential. In this section, we first discuss and evaluate the related
work for network compression by emphasizing both factors. We also present a simple benchmark study to help the
readers better understand the computational complexity in terms of hardware resource utilization of the existing work.
It can reveal why BNN is a more superior solution to be deployed on the hardware.
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2.1 Reduced-precision methods
BinaryConnect [7] is a study in the early stage of exploring the binarizedweight neural network. In the BinaryConnect

network, the weights are binary values while the activations are still non-binary. Arbitrary value multiplies +1/-1
is equivalent to a conditional bitwise NOR operation. Hence, the convolution operations can be decomposed into
conditional bitwise NOR operations and accumulation. It is a big step moving from full-precision multiplication to
much simpler bitwise operations.

BinaryNet [8] is the first one that builds a network with both binary weights and activations. The convolution
operation has been further simplified as bitwise XNOR (Exclusive-NOR) and bit count operations. The hardware
resource cost is minimized for GPU, FPGA and ASIC implementation. For GPU implementation, a 32-bit bitwise
XNOR can be implemented in a single clock cycle with one CUDA core. For FPGA and ASIC implementation, there is
no need to use DSP (Digital Signal Processor) resources anymore, which is relatively costly. Simple logic elements –
LUTs (Look Up Tables) can be used to map bitwise XNOR and bit count operations, which makes it easy to map highly
parallel computing engines to achieve high throughput and low latency.

XNOR-Net [10] also builds the network based on binary weights and activations. However, it introduces a filter
of full-precision scaling factors in each convolutional layer to ensure a better accuracy rate. Additional non-binary
convolution operations are needed in each convolutional layer, which cost extra processing time and computing resources.

TernaryNet [9] holds ternary (-1, 0, +1) weights for its network. By increasing the precision level of the weights, it
enhances the accuracy rate. Since ternary weights have to be encoded in 2 bits, the computational complexity will at
least double, compared with BinaryNet.

LQ-Net [11] studies the bit-width and accuracy tradeoff between different low-precision configurations. The
lower bound of weight and activation precision are constrained to 1 bit and 2 bits, respectively. The bit-width of
weight/activation in LQ-Net can be configured to 1/2, 2/2, 3/3, 2/32, 3/32 or 32/32. In this paper, LQ-Net only refers to
its most compact version – 1-bit weight and 2-bit activation configuration. Its computational complexity will be the
closest one to BinaryNet, while the accuracy is improved, especially for the large networks.

2.2 Reduced-connection methods
Network pruning [12] is revealed as the most popular technique for compressing pre-trained full-precision or

reduced-precision CNNs (weights of the reduced-precision CNN are usually in the range of 8 bit - 16 bit [6]. It
compresses the network by pruning out the useless weights, which gains speedup mainly by reducing the network size.
Unlike all the other technique mentioned above, neither the weights nor activations of a pruned network are binary or
ternary. Still, the computation complexity of the full-precision or reduced-precision multiply-add operation is much
higher than that of the BNN. Overall, different kinds of pruning methods can be categorized as magnitude-based and
optimization-based pruning. We will explain in below why they both are not compatible with further compressing
BNN.

For magnitude-based pruning [12], the key idea is to prune out the weights that have small numerical value, which
contribute less to compute the output. In the case of BNN, the weights are constrained to +1/-1, so there is no relative
small value weights which can’t be applied with magnitude analysis.

For optimization-based [14], the pruned network can be resulted in a non-structured or structured way. For
non-structured ones, the prunable weights randomly distributes in the 4-D weight space. In a full-precision or reduced-
precision CNN, the indexes of non-structured prunable weights can be stored in separated masking arrays. The inference
speed can be benefited from skipping the computation of masked weights. However, in the case of BNN, since the
weights are already in 1-bit data format, the masking array will introduce quite a lot overhead in memory footprint.
Besides, additional logic for skipping the computation of masked weights would ruin the pattern of highly paralleled
XNOR computations in BNN. The only possible way which can improve runtime performance is to apply optimization-
based structured pruning [15, 16] on BNN, but no existing work has done any related study. Usually pruning can be
applied with 4-8 bit low-precision networks. However, how much redundancy the BNN still has is still unknown, and
no existing solution has been proved to work effectively on such compact BNN.

2.3 Other methods
Singular Value Decomposition (SVD) is one method that has been applied to BNN to compress its weight matrices

[18]. The basic idea is to decompose a matrix into lower rank matrices without losing much of the important data.
SVD is able to provide high compression ratio for high rank matrices. However, for low-rank binary weight matrices of
BNN, SVD can only bring 17% memory saving according to [18].
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Figure 1: Resource consumption of W (10,10) × A(10,10) multiplication on a Xilinx Virtex-7 FPGA for different architecture

2.4 Comparison
We implement a W(10,10) × A(10,10) matrix multiplication on a Xilinx Virtex-7 FPGA board for analyzing the

computational complexity of the different architecture that mentioned above. The precision of elements inW and A
are the same as the precision of weights and activations in each architecture. The matrix multiplication is fully mapped
onto the FPGA. In other words, we don’t reuse any hardware resource. So the resource utilization is a good reflection of
computational complexity. Since 16 bits are enough to maintain the same accuracy rate as the full precision network [6],
we set the precision of any full precision weights or activations to be 16 bits. For the pruned network, we set 84% of the
elements inW of the pruned network as zeros for a fair comparison. (Since pruned network can get up to 13x reduction
[12] while BNN can get 32x, the size of the pruned network is 32/13=2.5x larger. With 16-bit weights, the total number
of non-zero weights of the pruned network is 2.5/16=16% of that of the binarized weight cases.) For LQ-Net [11], we
only refer to its most compact configuration in this paper, which has 1-bit weights and 2-bit activations. As shown in
Fig. 1, BinaryNet and LQ-Net apparently consumes the least amount of hardware resource among all these architecture.

In summary, for all the methods mentioned above, pruning can be categorized as connection reduction, while the rest
can be categorized as precision reduction. However, both kinds of methods cannot be applied to the BNN. Regarding to
the incompatibility of pruning, we have explained in Section 2.2. For precision reduction, BNN has already reached the
lower bound.

Since CNNs are believed to have huge redundancy, we hypothesize that the BNN also has redundancy and it is able
to get a more compact BNN. To our best knowledge, there is only one related work pruned the first layer of a BNN with
the observation of barely any accuracy drop [17] . Since they only compress the first layer, the impact on the entire
network is fairly limited. On the contrary, we have analyzed and conducted the experiments to prove reducing the input
precision is a valid method to trigger the compression of the entire BNN.

We are the first to explore the BNN redundancy across the entire network by the bit-level analysis of the input data.
We will validate our hypothesis step by step in the next section.

In the following paragraphs, BNN is referring to non-compressed binarized CNN, which is our baseline model. The
reconstructed BNN and CBNN is referring to the reconstructed model we used for sensitivity analysis and the final
compact BNN with shrunk network size, respectively.

3. Build a Compact BNN
First, we need to reconstruct and train a new model for sensitivity analysis. Section 3.1 demonstrates the model

reconstruction of BNN and shows the redundancy exists in BNN through statistical analysis of the non-binary first layer.
Then, with the reconstructed BNN, Section 3.2 will further prove the redundancy exists throughout the entire BNN and
decide the prunable bit slices through bit-level sensitivity analysis in post-training stage. Finally, Section 3.3 presents
the guide to rebuilding a more compact BNN (CBNN) that triggered by input data pruning.

3.1 BNN reconstruction
In this section, we first illustrates reformatting the input and modifying the first layer for the BNN reconstruction in

Section 3.1.1. Then we shows the redundancy exists in BNN through statistical analysis of the non-binary first layer in
Section 3.1.2. In Section 3.1.3, the training method is presented.
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Figure 2: Conversion from fixed-point input to bit-sliced binary input
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Figure 3: Corresponding relationship between input bit slices and non-binary first layer

3.1.1 Bit-sliced binarized input
A single image in the dataset can be represented as D(W ,H,C), whereW is the width,H is the height, and C is the

number of channels, as shown in Fig. 2. The raw data is usually stored in the format of a non-negative integer with the
maximum value of A. Then a lossless conversion from integer (fixed-point) toN-bit binary format is defined as the
int2b function.

Db
(W ,H,C′)

= int2b(D(W ,H,C), N), (1)

where C ′ = C ×N andN = ceil(log2(A + 1)). After int2b conversion, each channel of an image is expanded to
N channels in binary format.

3.1.2 Non-binary first layer
Experimental observation shows that the bit-sliced input has a negative impact on the accuracy rate. There are two

main reasons. Since the input data is in the bit-sliced format, the data-preprocessing methods, e.g., mean removal,
normalization, ZCA whitening, cannot be applied here, which results in an accuracy drop. In addition, compared with
a standard first layer in BNN, the computational complexity drops, which may hurt the accuracy rate. Therefore, we
assign the first layer with full-precision float-point weights to keep the computational complexity of the first layer the
same as a standard first layer in BNN.

More importantly, non-binary first layer can help to analyze the importance level of different input bit slices. In the
2-D convolutions, theN tℎ slices of first-layer weights are only multiplied withN tℎ input bit slices. In an extreme case,
if all the weights ofN tℎ slices are 0s, no information ofN tℎ input bit slices are propagated into the 2nd layer. When
the constraint is relaxed a little bit, if theN tℎ slices of weights associated withN tℎ input bit slices are all closed to 0s,
the correspondingN tℎ input data bit slices that multiplied by those small values will have trivial contribution to the
computation in the rest of layers. It can also be interpreted as these input features are filtered out. As shown in Fig. 3,
input bit slices and first layer weight slices have one-to-one correlations. Thus, we group the weight associated with
theN tℎ input bits separately for statistical analysis. In Fig. 4, it shows the histograms of first-layer weight magnitude
distributions associated with different input bit slices. For the weights associated 1st-3rd bit slices, the weight magnitude
is very closed to zero. From the weights associated with 4tℎ input bit slice, the weight magnitude spreads out in a wider
range. Therefore, we can hypothesize that the lower bits of input slices can be redundant for the classification task.

Although switch the first layer to non-binary makes the network size increased, the growth is somewhat limited. For
example, in a 9-layer BinaryNet [8], the size of the first layer is only 0.02% of the entire network. It has been proved
that, with 16-bit quantization of the weights, the NNs are still able to preserve the accuracy [6]. With the bit-slice input,
the network size will slightly increase by 3%, which can be negligible.
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Figure 4: Histogram of distributions of weight magnitude associated with different input bits

With the bit-sliced input and non-binary first layer, we reconstruct the BNN model and refer it as the reconstructed
BNN. In our experiments, we simply take the input bit-slices as floating-point 0s and 1s. Thus, the computations
in the 1st layer are standard floating-point operations (multiplications and additions). Although the computational
complexity is the same, the new structure helps to reduce the redundancy in BNN, which will be elaborated in the
following sections.

3.1.3 Binary constrained training
For BinaryNet-based experiment, we adopt the training method proposed by Hubara et al. [8]. The objective

function is shown in Eq. 2, whereW1 represents the weights in the non-binary first layer andWl represents the weights
in all the other binary layers. The loss function L here is a hinge loss. In the training stage, the full-precision reference
weights Wl are used for the backward propagation, and. the binarized weights W b

l = clip(Wl) [8] are used in the
forward propagation. As Tang et al. propose in [19], the reference weights in the binary layersWl(l ≥ 2) should be
punished if they are not close to +1/-1. Also, a L2 regularization term is applied for the non-binary first layer. For
LQ-Net-based experiment, we use exactly the same training method proposed in the original paper [11].

J (Wl,W1, b) = L(W b
l ,W1, b) + avg(||W1||

2
2) + �(avg

L
∑

l=2
(1 − ||W1||

2
2) (2)

3.2 Sensitivity analysis
We use the training method in Section 3.1 to train a reconstructed BNN model with the bit-sliced input and non-

binary first layer. In the post-training stage, we demonstrate the method to show the redundancy throughout the entire
network and evaluate the sensitivity of the bit-sliced input to the accuracy performance.

As shown in Fig. 5, the reconstructed BNN is pre-trained as initial. Then, theN tℎ bit (N tℎ least significant bit)
slices in RGB channels are substituted with binary random bit slices. The reason why we use binary random bit slices
other than pruning is that, pruning will reduce the size of the network. We want to eliminate any other factors that can
influence the accuracy performance. If the difference between the actual inference error ERRinf and the reference
point ERRref (ΔERR = ERRinf − ERRref ) is less than an error-tolerant threshold ERRtℎ, theN tℎ bit slices are
classified as prunable.

Without retraining the network, the error brought by random bit slices will propagate throughout the entire network
as shown in Fig. 5. With this tight constraint, if there can be merely no accuracy drop in the inference stage. it can
be inferred that these bit slices with less sensitivity to the accuracy performance are useless in the training stage and
there are redundant connections throughout the entire network. It also indicates that the existing redundancy in BNN
allows us to further shrink the network size. After evaluating the sensitivity of each bit slice, we can also analyze the
sensitivity of a stack of slices by using the same method. Then we can find a collection of insensitive bit slices which
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Figure 5: Sensitivity analysis of the reconstructed BNN with distorted input.

are prunable in the training stage. If P out ofN slices are categorized as accuracy insensitive, the number of channels
C ′ can be reduced byN∕P times. That is to say, the size of the input array is reduced byN∕P times.

3.3 Rebuild a compact network
In the most popular CNN architectures, such as AlexNet [20], VGG [21] and ResNet [22], the depth incremental

ratio of feature map from one layer to the next layer is either doubled or remaining the same. Intuitively speaking, it is
useful to keep the same depth incremental ratio across the entire network. Thus, a good starting point of rebuilding
a compact BNN (CBNN) is shrinking the depth of all the layers by N∕P times. Since there is a quadratic relation
between depth and the net-work size, the reduction of the network size of the CBNN is expected to be (N∕P )2 times.

Although we haven’t explored how to build an accurate model to optimize the network compression ratio, we
emphasize the entire flow (presented in Section 3) that proves and reduces the redundancy of the entire BNN, and
enables speedup in the inference stage with the CBNN. In Section 4, we will present and discuss the performance results
corresponding to each subsection in Section 3.

4. Result and Discussion
We will first walk through the flow presented in Section 3 with experimental results on the CIFAR-10 classification

task in Section 4.1. Section 4.2 will present additional results on SNVH, Chars74K, GTSRB and ImageNet datasets.
For the experiment setup, we build relative smaller models (AlexNet-scale) based upon Hubara et al.’s BinaryNet in

Theano and test it with CIFAR-10, SNVH, Chars74K and GTSRB dataset. Due to the severe accuracy drop of fully
binarized NNs (such as BinaryNet) in large model, here we test relative larger models (ResNet-scale) based upon a
more relax BNN – LQ-Net with 1-bit weights and 2-bit activations. LQ-Net experiment is conducted in Tensorflow and
it is tested with ImageNet dataset. The description of each dataset is listed as follow.

CIFAR-10 [23]. This is a dataset for a 10-category classification task with 32 × 32 RGB images. The training
dataset contains 50,000 images and the testing dataset contains 20,000.

SVHN (The Street View House Numbers) [24]. This dataset is a real-world house number dataset from Google
Street View images. It has 73,257 digits for training and 26,032 digits for testing, with the image size of 32 × 32.

Char74K [25]. This dataset contain 62 characters (0-9, A-Z and a-z) from both natural images and synthesized
images. 80% of the Char74K images serve as the training set and the rest 20% serve as the testing set, with the image
size of 56 × 56.

GTSRB (The German Traffic Sign Benchmark) [26]. This dataset includes 43-class traffic signs. We resize the
traffic sign images to 32 × 32. It has 39,209 training data and 12,630 testing data.

ImageNet [27]. ImageNet is a large scale dataset which has more than 14 million hand-annotated images. Here, we
use its subset – ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012), which is commonly used for
large scale classification task. The ILSVRC2012 dataset covers 1000 categories. The training and testing data contains
1.2 million and 50,000 images, respectively. Average image resolution is around 450x450 pixels.

4.1 Experiment on CIFAR-10
Subsections of 4.1 show the experimental results corresponding to the methodology in Section 3.1-3.3, respectively.
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Figure 6: Visualization of a horse image in CIFAR-10 with different bit-level distortion in spatial domain and frequency
domain.

4.1.1 BNN reconstruction
Following the input data conversion method in Section 3.1, the raw data of CIFAR-10 dataset can be denoted

as CIFAR(32,32,3). Each pixel value is represented by a non-negative integer with magnitude A = 255. Thus, N =
ceil(log2(255 + 1)) = 8 bits are enough for lossless binary representation. Then, the bit-sliced input can be denoted as
CIFARb(32,32,24).

We have plotted an image in CIFAR-10 dataset with different bit-level distortion shown in Fig. 6. This image
belongs to the “horse” category. In Fig. 6, the left most ones are the same original image without any distortion. The
N tℎ bit indicates theN tℎ least significant bit (LSB). The distortion here is injected by replacing the entire bit slice with
a randomly generated binary bit map. In Fig. 6(a), only one single bit slice get distorted at a time. Since only up to 1/8
elements of CIFARb get distorted, all the distorted image can show a clear boundary of the horse with limited noise,
except the rightmost one with 7tℎ bit slice gets distorted. If we further distort CIFARb in multiple bit slices from the 1st
toN tℎ bit slices, the corresponding images are shown in Fig. 6(b) and (c). The images in Fig. 6(c) are different from
Fig. 6(b) that they don’t maintain 8-bit precision. Instead, we directly prune the 1st toN tℎ bit slices of the images in
Fig. 6(c). From visualization, in both Fig. 6(b) and (c), the turning points is at 5tℎ bit.

Distorted images in Fig. 6(a) and (b) are used for sensitivity analysis in reconstructed BNN (Recon. BNN). Pruned
images in Fig. 6(c) are used for training CBNN.

As illustrated in Section 3.1, the proposed structure of the reconstructed BNN is different from the original BNN in
both input format and the first layer. Table 1 compares the performance results of three network structures with different
numerical precision in their input and 1st layer. The baseline BNN design is the one in [8], with full precision input and
a binarized 1st layer. Here we define a CNN with bit-sliced input, binarized weights and activations as FBNN. FBNN
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Table 1
Performance comparison with different input format and 1st layer configuration

Arch. Input First layer Network size Error rate
BNN full precision binary 1x 11.6%

FBNN bit slices binary 1.01x 14.0%
Reconstructed BNN bit slices non-binary 1.1x 10.1%

Table 2
Sensitivity analysis of single bit slice in each channel with random noise injected

Arch. N th bit ERR/% ∆ERR/% Arch. N th bit ERR/% ∆ERR/%
BNN 0 11.6 0.0 FNN 0 10.4 0.0

0 10.1 -1.5 0 10.4 0.0
1 9.8 -1.9 1 10.4 0.0
2 10.0 -1.6 2 10.4 0.1
3 10.1 -1.6 3 10.4 0.1
4 10.5 -1.2 4 10.9 0.5
5 12.5 0.8 5 13.0 2.6
6 20.9 9.2 6 21.4 11.1
7 40.3 28.6 7 43.8 33.4

Recon. 
BNN FNN

has bit slices input but BNN does not. By training with the method in Section 3.1, FBNN shows 2.4% in the accuracy
drop, compared with BNN. The accuracy here is affected by computational complexity degradation in the 1st layer and
unnormalized input data. It also gives us some insights that the FBNN is hard to get a good accuracy rate, which is in
accord with Tang et al.’s opinion in [19]. By introducing bit slices input and non-binary 1st layer to reconstruct the
BNN (as we proposed in Section 3.1), the accuracy drop can be compensated as shown in Table 1. We can even get a
better error rate than the baseline BNN with a slightly increased network size. It also gives more margin in compressing
the network.

4.1.2 Sensitivity analysis of the reconstructed BNN
With a pre-trained reconstructed BNN presented in the last section, now we can do bit-level sensitivity analysis as

stated in Section 3.2.
First, we analyze the sensitivity of a single bit slice. The results are shown in Table 2. The data shows in Table

2 is the average over 10 trials. In addition to the reconstructed BNN, we also evaluate the bit-level sensitivity of the
input with its full-precision counterpart, which is denoted as FNN. With FNN, we intend to show that the data itself
has redundancy, which can be reflected in both binary domain or fixed-point domain with the same pattern. We take
the architecture in the first row as the reference design. The 1st row of ERR column is the ERRref and the others
are ERRinf . ΔERR = ERRinf − ERRref . BNN is the reference design for the reconstructed BNN. FNN with
non-distorted input is the reference design for the full-precision ones. It is interesting that the 1st, 2nd and 3rd bit slices
are at the same sensitivity level, concluded from the almost unchanged ΔERR. We define the turning point of error in
sensitivity analysis as the point where ΔERR flips the sign or increases abruptly. The turning point here is the 5tℎ bit.

Second, we analyze the sensitivity of bit slices stacks. Each stack contains 1st toN tℎ bit slices in each color channel.
The results are shown in Table 3. For the 1st, 2nd and 3rd bit slices, it makes no difference if distortion is injected in
one of them or all of them. The 4tℎ makes a slight difference of around 0.5% accuracy drop and the 5tℎ bit is also the
turning point with around 3% accuracy drop.

Even when we randomize 50% of the entire input values (1st to 4tℎ bit slices) and the variation propagates through
the entire network, the accuracy doesn’t change much. Therefore, these bits are useless in the training stage. This
validates the hypothesis that the BNN still has redundancy. In Fig. 7, the error rate turning point is circled at the 5tℎ bit
slice. The trend of error rate in the binary domain and full-precision domain (shown in Fig. 7) align well. In order to
make the entire process be automatic, we can simple set an error-tolerant threshold ERRtℎ to determine how many
bits are prunable. Here, ERRtℎ is set to 1%. We can conclude that 1st-4tℎ bit slices here are redundant and prunable
through bit-level sensitivity analysis. Accordingly, the reconstructed BNN can be shrunk to reduce the redundancy and
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Table 3
Sensitivity analysis of 1-N tℎ multiple bit slices in each channel with random noise injected

Arch. 1-N th 

bits
ERR/% ∆ERR/% Arch. 1-N th 

bits
ERR/% ∆ERR/%

BNN 0 11.6 0.0 FNN 0 10.4 0.0
0 10.1 -1.5 0 10.4 0.0
1 9.8 -1.9 1 10.4 0.1

1-2 9.9 -1.7 1-2 10.5 0.2
1-3 9.9 -1.8 1-3 10.5 0.2
1-4 10.7 -0.9 1-4 11.3 1.0
1-5 13.6 1.9 1-5 14.4 4.1
1-6 24.3 12.6 1-6 23.3 13.0
1-7 46.1 34.5 1-7 54.1 43.7

Recon. 
BNN FNN
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Figure 7: Error rate of randomizing one or multiple bit slices in sensitivity analysis.

Table 4
Performance of CBNNs on CIFAR-10

MB CP. ratio # CP. ratio

BNN 0 11.6 0.0 1.75 1x 1.23 1x
1 10.3 -1.3 1.38 1.3x 0.98 1.3x
2 10.6 -1.0 1.02 1.7x 0.72 1.7x
3 10.8 -0.8 0.71 2.5x 0.50 2.5x
4 11.8 0.2 0.45 3.9x 0.32 3.8x
5 14.2 2.6 0.25 7.0x 0.18 6.8x

CBNN

GOPs
Arch. 1-Nth 

bits
ERR 

%
∆ERR 

%

Network size

get a more compact architecture.

4.1.3 Rebuild a compact BNN (CBNN)
Since 4 out of 8 bit slices are prunable, we can rebuild a compact BNN with the depth of each layer shrunk by

half. The performance of CBNN is shown in Table 4. CP. Ratio represents compression ratio and GOPs stands for
Giga operations (one operation is either an addition or a multiplication). Regarding the network size, we use 16 bits
for measuring non-binary weights in the 1st layer, since it has been proved that 16-bit precision is enough to maintain
the same accuracy [6]. We also show the alternatives of pruning 1-N tℎ (N = 1, 2, ..., 5) bit slices and shrink the
layerwise depth by 1/8 to 5/8. The results align with the sensitivity analysis that 1-3rd bit slices have little impact on the
classification performance. The choice of pruning 1-4tℎ bit slices is the optimal one to maximize the compression ratio
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Table 5
Performance results of CBNNs on SVHN, Chars47k, GTSRB and ImageNet datasets

MB CP. 
ratio

# CP. 
ratio

0 4.8 0.0 0.44 1x 0.31 1x
1 4.9 0.1 0.36 1.2x 0.26 1.2x
2 5.1 0.3 0.26 1.7x 0.19 1.6x
3 5.0 0.2 0.18 2.4x 0.13 2.4x
4 6.6 1.8 0.12 3.7x 0.08 3.7x
0 15.4 0.0 0.44 1x 0.31 1x
1 15.3 -0.1 0.36 1.2x 0.26 1.2x
2 15.3 -0.1 0.26 1.7x 0.19 1.6x
3 15.2 -0.2 0.18 2.4x 0.13 2.4x
4 16.3 1.0 0.12 3.7x 0.08 3.7x
0 1.0 0.0 1.81 1x 3.89 1x
1 1.0 0.0 1.39 1.3x 2.98 1.3x
2 1.2 0.2 1.02 1.8x 2.19 1.8x
3 1.6 0.6 0.71 2.5x 1.52 2.6x
4 2.0 1.0 0.46 3.9x 0.97 4.0x
0 37.1 0.0 150 1x 3.0G 1x
1 37.1 0.0 115 1.3x 2.6G 1.3x
2 37.2 0.1 113 1.8x 2.3G 1.8x
3 38.5 1.5 94 2.5x 1.9G 2.6x

GOPs

SVHN

Chars47k

GTSRB

Dataset 1-Nth 

bits
ERR 

%
∆ERR 

%

ImageNet

Binary-
Net

LQ-Net

Arch.
Network size

with <1% accuracy drop. Since the size of the 1st layer is larger than that of BNN, we cannot achieve the ideal network
size compress ratio (4x) regarding the entire network. The actual compression ratio of the network size is 3.9x and the
compression ratio of number of GOPs is 3.8x.

4.2 Experiment on SVHN/Chars74K/GTSRB/ImageNet datasets
In this section, we will skip the sensitivity analysis and just show the result comparison between the baseline and

the final CBNNs we get in the same procedure.
For SVHN and Char74K datasets, we use a baseline architecture that has half of the depth in each layer as the one for

CIFAR-10. For GTSRB, we use a baseline architecture that has the same filter configuration as the one for CIFAR-10.
Since the input size of GTSRB is larger than CIFAR-10, so the network for GTSRB has the same depth but larger width
and height in each layer. For ImageNet dataset, we use the same ResNet-18 architecture as Zhang et al.’s work.

In Table 5, it shows the performance results of CBNNs evaluating on different datasets and network setting. The
baseline for each dataset is shown in the first row of each dataset region. For Chars47k and GTSRB, the CBNNs are
able to maintain no more than 1% accuracy drop, achieving 3.7x and 3.9x network size reduction, respectively. For
SVHN dataset, the accuracy drop between pruning 1-3rd bits and pruning 1-4tℎ bits is large. In order to preserve no
more than 1% accuracy drop, the network size reduction is yield to 2.4x. For ImageNet dataset, the accuracy drop 1.5%,
while gaining 2.5x network size reduction.

4.3 Runtime evaluation
We evaluate the actual runtime performance of CBNNs by Nvidia GPU Titan X. The batch size is fixed as 128 in

all the experiments. We use the same XNOR-based GPU kernel as [8] for CBNN implementation. The computational
time is calculated by averaging over 10 runs.

Fig. 8 illustrates the actual runtime and runtime speedup of 4 CBNNs compared with their baseline BNNs. The
configurations are the same as the highlight ones in Table 4 and Table 5. For the CBNNs processing CIFAR-10, GTSRB,
Char47k and ImageNet datasets, their network size and total GOPs shrink 3.7-4.0x, resulting in the speedup of 1.6-2.0x.
For the CBNN processing the SVHN dataset, its network size and total GOPs shrinks 2.4x, resulting in a speedup of
1.4x. As it is proved in [28], combining pruning, quantization and Huffman coding technique, an FNN can achieve up
to 4x speedup. [8] demonstrate that a multilayer perceptron BNN can get 5x speedup compared with its full-precision
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Figure 8: Runtime comparison of different network compression technique.

counterpart. On top of the BNN, the proposed CBNN can give extra 1.4-2.0x speedup. Therefore, the CBNN can
achieve 7.0-9.9x speedup compared with FNN.

Conclusion
In this paper, we propose a novel flow to explore the redundancy of BNN and remove the redundancy by bit-level

sensitivity analysis and data pruning. In order to build a compact BNN, one should follow these three steps. Specifically,
first reconstruct a BNN with bit-sliced input and non-binary 1st layer. Then, inject randomly binarized bit slices to
analyze the sensitivity level of each bit slice to the classification error rate. After that, prune P accuracy insensitive
bit slices out of totalN slices and rebuild a CBNN with depth shrunk by (N∕P ) times in each layer. The experiment
results show that the error variation trend in sensitivity analysis of the reconstructed BNN is well aligned with that of
CBNN. In addition, the CBNN is able to get 2.4-3.9x network compression ratio and 2.4-4.0x computational complexity
reduction (in terms of GOPs) with no more than 1% accuracy loss compared with BNN. The actual runtime can be
reduced by 1.4-2x and 7.0-9.9x compared with the baseline BNN and its full-precision counterpart, respectively.
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