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a b s t r a c t

A class of Riemann–Hilbert problems on the real axis is formulated for solving the
multicomponent AKNS integrable hierarchies associated with a kind of bock matrix
spectral problems. Through special Riemann–Hilbert problems where a jump matrix
is taken to be the identity matrix, soliton solutions to all integrable equations in
each hierarchy are explicitly computed. A class of specific reductions of the presented
integrable hierarchies is also made, together with its reduced Lax pairs and soliton
solutions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse scattering transformation and the Riemann–Hilbert approach are among powerful approaches
for studying integrable equations in soliton theory. The first approach gives a generalized Fourier method,
which attempts Cauchy problems of integrable equations [1], and the second approach provides an equivalent
but more direct technique to solve integrable equations, which particularly generates soliton solutions [2].

The Riemann–Hilbert approach starts from a kind of matrix spectral problems possessing bounded
eigenfunctions analytically expendable to the upper or lower half-plane. The normalization conditions at
infinity on the real axis in determining the scattering coefficients is used in solving the associated Riemann–
Hilbert problems [2]. Once taking a jump matrix to be the identity matrix, reduced Riemann–Hilbert
problems engender soliton solutions, whose special limits can yield lump solutions, periodic solutions and
complexiton solutions. Quite a few integrable equations, including the multiple wave interaction equations [2],
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the general coupled nonlinear Schrödinger equations [3], the Harry Dym equation [4], the generalized Sasa–
Satsuma equation [5], the Dullin–Gottwald–Holm equation [6] and a coupled mKdV system [7], have been
attempted by solving the associated Riemann–Hilbert problems. Based on Riemann–Hilbert problems, a
dressing method has also been developed to get soliton solutions through gauge transformations [8–10], and
it has been generalized for Lax operators in the orthogonal and symplectic Lie algebras [11] and further
developed in numerous publications (see, for example, [12,13]). Moreover, the long time asymptotics and
the small dispersion limit of integrable equations can be explored through analyzing the asymptotics of
related Riemann–Hilbert problems [14,15]. The technique developed in [14] is nowadays called the nonlinear
steepest descent method for integrable equations.

The standard procedure for presenting Riemann–Hilbert problems on the real axis is as follows. We begin
with a hierarchy of matrix spectral problems of the following form:

−iϕx = Uϕ, −iϕtr = V [r]ϕ, U = A(λ) + P (u, λ), V [r] = B[r](λ) +Q[r](u, λ), r ≥ 0,

where i is the unit imaginary number, λ is a spectral parameter, u is a potential, ϕ is an m × m matrix
eigenfunction, A,B[r] are constant commuting m × m matrices, and P,Q[r] are trace-less m × m matrices.
The compatibility condition of each pair in the hierarchy of matrix spectral problems is the zero curvature
equation

Utr − V [r]
x + i[U, V [r]] = 0,

where [·, ·] is the matrix commutator. To establish a class of Riemann–Hilbert problems for this zero curvature
equation, we adopt the following pair of equivalent matrix spectral problems

ψx = i[A(λ), ψ] + P̌ (u, λ)ψ,ψtr = i[B[r](λ), ψ] + Q̌[r](u, λ)ψ,

where ψ is an m × m matrix eigenfunction, P̌ = iP and Q̌[r] = iQ[r]. The commutativity of A and
B[r] guarantees the required equivalence. The relation between the two matrix eigenfunctions ϕ and ψ

is determined by
ϕ = ψEg, Eg = eiA(λ)x+iB[r](λ)tr .

For the second class of matrix spectral problems above, we can find two bounded analytical matrix
eigenfunctions with the canonical asymptotic conditions

ψ±(x, tr, λ) → Im, when x, tr → ±∞.

We assume throughout the paper that Im stands for the identity matrix of size m, and that C+ denotes the
upper half-plane: C+ = {z ∈ C| Im(z) > 0}, and C−, the lower half-plane: C− = {z ∈ C| Im(z) < 0}; and
C±

0 are the closures of C±, respectively. Based on those two matrix eigenfunctions ψ±(x, tr, λ), we can now
determine two analytical matrix functions P±(x, tr, λ), which are analytical in λ ∈ C± and continuous in
λ ∈ C±

0 , respectively, to formulate a class of Riemann–Hilbert problems on the real axis:

G+(x, tr, λ) = G−(x, tr, λ)G(x, tr, λ), λ ∈ R,

where

G+(x, tr, λ) = lim
µ∈C+

0 , µ→λ

P+(x, tr, µ), (G−)−1(x, tr, λ) = lim
µ∈C−

0 , µ→λ
P−(x, tr, µ), λ ∈ R,

and
G(x, tr, λ) = P−(x, tr, λ)P+(x, tr, λ), λ ∈ R.

Upon taking the jump matrix G to be the identity matrix Im, the resulting Riemann–Hilbert problems
can be normally solved to generate soliton solutions, by observing asymptotic behaviors of the matrix
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functions P± at infinity of λ, which also provide the canonical normalization conditions for the presented
Riemann–Hilbert problems. In practice, we only need to take the Riemann–Hilbert problems with the space
variable into consideration, and determine the time dependence of soliton solutions through exploring the
time dependence of vectors in the kernels of P±(x, λ) generated from the Riemann–Hilbert problems with
the variable x.

In this paper, we aim to present an application of the Riemann–Hilbert approach to the multicomponent
Ablowitz–Kaup–Newell–Segur (AKNS) integrable hierarchies. A practical procedure for obtaining soliton
solutions consists of two steps: Step 1 is to formulate a kind of Riemann–Hilbert problems with the space
variable from a spatial matrix spectral problem generating an integrable hierarchy, and Step 2 is to compute
soliton solutions to each system in the integrable hierarchy explicitly by solving special associated Riemann–
Hilbert problems. This is a similar study on integrable hierarchies to the algebro-geometric solutions to
integrable hierarchies [16,17], but higher-order matrix problems bring huge difficulty in presenting exact
solutions explicitly and we only did algebro-geometric solutions associated with lower-order matrix spectral
problems. Instead of algebraic curves, we would like to use the Riemann–Hilbert technique to present soliton
solutions in this paper.

The rest of the paper is organized as follows. In Section 2, within the zero-curvature formulation, we
rederive the multicomponent AKNS integrable hierarchies and represent their bi-Hamiltonian structures for
ease of reference, based on a kind of new arbitrary order matrix spectral problems suited for the Riemann–
Hilbert theory. In Section 3, for all multicomponent systems in each resulting AKNS integrable hierarchy,
we analyze analytical properties of matrix eigenfunctions for equivalent spatial matrix spectral problems,
and build a class of Riemann–Hilbert problems associated with the newly introduced spatial matrix spectral
problems. In Section 4, we compute soliton solutions to the multicomponent AKNS systems from special
associated Riemann–Hilbert problems on the real axis, in which a jump matrix is taken to be the identity
matrix. In Section 5, we consider a class of specific reductions, and generate soliton solutions to the reduced
multicomponent AKNS integrable hierarchies by the reduced Riemann–Hilbert problems with the identity
jump matrix. In the last section, we give concluding remarks, along with some further questions.

2. Multi-component AKNS hierarchies revisited

2.1. Zero curvature formulation

The zero curvature formulation to build integrable hierarchies is outlined as follows [18–20]. Let u

be a vector potential and λ, a spectral parameter. Choose a square matrix spectral matrix U = U(u, λ)
from a given matrix loop algebra, whose underlying Lie algebra could be either semisimple [18,19] or non-
semisimple [20]. Assume that there is a formal series solution

W = W (u, λ) =
∞∑

m=0
Wmλ

−m =
∞∑

m=0
Wm(u)λ−m (2.1)

to the corresponding stationary zero curvature equation

Wx = i[U,W ]. (2.2)

Often W is uniquely determined as long as the initial matrix W0 is fixed. Using this solution W , we define
a series of Lax matrices

V [r] = V [r](u, λ) = (λrW )+ + ∆r, r ≥ 0, (2.3)
where the subscript + stands for the operation of taking a polynomial part in λ, and ∆r, r ≥ 0, are some
well-selected modification terms. The appropriateness of selecting ∆r is required to generate an integrable
hierarchy

utr = Kr(u) = Kr(x, t, u, ux, . . .), r ≥ 0, (2.4)
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from a series of zero curvature equations

Utr − V [r]
x + i[U, V [r]] = 0, r ≥ 0, (2.5)

successfully. The two matrices U and V [r] are called a Lax pair [21] of the rth evolution equation in the
hierarchy (2.4). Clearly, the zero curvature equations in (2.5) are the compatibility conditions of the spatial
and temporal matrix spectral problems

− iϕx = Uϕ = U(u, λ)ϕ, −iϕtr = V [r]ϕ = V [r](u, λ)ϕ, r ≥ 0, (2.6)

where ϕ is the matrix eigenfunction.
In order to explore the Liouville integrability of the hierarchy (2.4), we normally furnish a bi-Hamiltonian

structure [22]:

utr = Kr = J1
δH̃r+1

δu
= J2

δH̃r

δu
, r ≥ 1, (2.7)

where J1 and J2 form a Hamiltonian pair and δ
δu denotes the variational derivative (see, e.g., [23]). Such

Hamiltonian structures can be usually furnished under the help of the trace identity [18]:

δ

δu

∫
tr(W ∂U

∂λ
)dx = λ−γ ∂

∂λ

[
λγtr(W ∂U

∂u
)
]
, γ = −λ

2
d

dλ
ln |tr(W 2)|,

or more generally, the variational identity [20]:

δ

δu

∫
⟨W, ∂U

∂λ
⟩dx = λ−γ ∂

∂λ

[
λγ⟨W, ∂U

∂u
⟩
]
, γ = −λ

2
d

dλ
ln |⟨W,W ⟩|,

where ⟨·, ·⟩ is a non-degenerate, symmetric and ad-invariant bilinear form on the underlying matrix
loop algebra [24]. The bi-Hamiltonian structure ensures that there exist infinitely many commuting Lie
symmetries {Kr}∞

r=0 and conserved quantities {H̃r}∞
r=0:

[Kr1 ,Kr2 ] = K ′
r1 [Kr2 ] −K ′

r2 [Kr1 ] = 0, (2.8)

{H̃r1 , H̃r2}J =
∫ (δH̃r1

δu

)
TJ

δH̃r2

δu
dx = 0, (2.9)

where r1, r2 ≥ 0, J = J1 or J2, and K ′ denotes the Gateaux derivative of K with respect to u:
K ′(u)[S] = ∂

∂ε

⏐⏐
ε=0K(u+ εS, ux + εSx, . . .).

It is known that for an evolution equation with a vector potential u, H̃ =
∫
H dx is a conserved functional

iff δH̃
δu is an adjoint symmetry [25,26], and thus, a Hamiltonian structure links conserved functionals to

adjoint symmetries and further symmetries. The existence of an adjoint symmetry is necessary for a totally
nondegenerate system of differential equations to admit a conservation law, and a pair of a symmetry and an
adjoint symmetry leads to a conservation law for whatever systems of differential equations [26,27]. We point
out that when the underlying matrix loop algebra in the zero curvature formulation is simple, the associated
zero curvature equations engender typical integrable hierarchies [28,10]; when semisimple, the associated
zero curvature equations generate a collection of different integrable hierarchies; and when non-semisimple,
we get hierarchies of integrable couplings [29], which require extra care in presenting Hamiltonian structures.

2.2. AKNS hierarchies with multiple potentials

We would like to show the process of generating multicomponent AKNS integrable hierarchies below to
see how one presents the Lax pairs and bi-Hamiltonian structures of integrable hierarchies for later use in
establishing Riemann–Hilbert problems.
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Let n be an arbitrary natural number. We consider the following matrix spectral problem of n+ 1 order:

− iϕx = Uϕ = U(u, λ)ϕ, U = (Ujl)(n+1)×(n+1) =
[
α1λ p
q α2λIn

]
, (2.10)

where α1 and α2 are real constants, λ is a spectral parameter and u is a 2n-dimensional potential

u = (p, qT )T , p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn)T . (2.11)

A special case of pj = qj = 0, 2 ≤ j ≤ n, transforms (2.10) into the standard AKNS matrix spectral problem
[30], and therefore (2.10) is called a multicomponent AKNS matrix spectral problem and its associated
hierarchy, a multicomponent AKNS integrable hierarchy. A difference from the matrix spectral problem
discussed in [31] is an introduction of the unit imaginary number i in (2.10). Because of the existence of a
multiple eigenvalue of Λ = diag(α1, α2In), the matrix spectral problem (2.10) is degenerate.

To rederive the associated multicomponent AKNS integrable hierarchies, we first solve the stationary zero
curvature equation (2.2) corresponding to (2.10), as suggested in the general zero curvature formulation. We
seek a solution W of the form

W =
[
a b
c d

]
, (2.12)

where a is a scalar, bT and c are n-dimensional columns, and d is an n × n matrix. It is direct to see that
the stationary zero curvature equation (2.2) becomes⎡⎢⎢⎣

ax = i(pc− bq),
bx = i(αλb+ pd− ap),
cx = i(−αλc+ qa− dq),
dx = i(qb− cp),

(2.13)

where α = α1 − α2. We expand W as a formal series:

W =
[
a b
c d

]
=

∞∑
m=0

Wmλ
−m, Wm = Wm(u) =

[
a[m] b[m]

c[m] d[m]

]
, m ≥ 0, (2.14)

where b[m], c[m] and d[m] are expressed as

b[m] = (b[m]
1 , b

[m]
2 , . . . , b[m]

n ), c[m] = (c[m]
1 , c

[m]
2 , . . . , c[m]

n )T , d[m] = (d[m]
jl )n×n, m ≥ 0. (2.15)

Then, the system (2.13) equivalently generates the following recursion relations:

b[0] = 0, c[0] = 0, a[0]
x = 0, d[0]

x = 0, (2.16a)

b[m+1] = 1
α

(−ib[m]
x − pd[m] + a[m]p), m ≥ 0, (2.16b)

c[m+1] = 1
α

(ic[m]
x + qa[m] − d[m]q), m ≥ 0, (2.16c)

a[m]
x = i(pc[m] − b[m]q), d[m]

x = i(qb[m] − c[m]p), m ≥ 1. (2.16d)

Next we take the initial values:
a[0] = β1, d

[0] = β2In, (2.17)

where β1, β2 are arbitrary real constants, and set constants of integration in (2.16d) to zero, that is, demand

Wm|u=0 = 0, m ≥ 1. (2.18)
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This way, with a[0] and d[0] being given by (2.17), all matrices Wm, m ≥ 1, are uniquely determined. For
example, a direct calculation, based on (2.16), presents that

b
[1]
j = β

α
pj , c

[1]
j = β

α
qj , a

[1] = 0, d[1]
jl = 0; (2.19a)

b
[2]
j = − β

α2 ipj,x, c
[2]
j = β

α2 iqj,x, a
[2] = − β

α2 pq, d
[2]
jl = β

α2 plqj ; (2.19b)

b
[3]
j = − β

α3 [pj,xx + 2pqpj ], c[3]
j = − β

α3 [qj,xx + 2pqqj ], (2.19c)

a[3] = − β

α3 i(pqx − pxq), d[3]
jl = − β

α3 i(pl,xqj − plqj,x); (2.19d)

b
[4]
j = β

α4 i[pj,xxx + 3pqpj,x + 3pxqpj ], (2.19e)

c
[4]
j = − β

α4 i[qj,xxx + 3pqqj,x + 3pqxqj ], (2.19f)

a[4] = β

α4 [3(pq)2 + pqxx − pxqx + pxxq], (2.19g)

d
[4]
jl = − β

α4 [3plpqqj + pl,xxqj − pl,xqj,x + plqj,xx]; (2.19h)

where β = β1 − β2 and 1 ≤ j, l ≤ n. Based on (2.16d), we can get, from (2.16b) and (2.16c), a recursion
relation for b[m] and c[m]: [

c[m+1]

b[m+1]T

]
= Ψ

[
c[m]

b[m]T

]
, m ≥ 1, (2.20)

where Ψ is a 2n× 2n matrix integro-differential operator

Ψ = i

α

⎡⎢⎢⎢⎢⎣
(∂ +

n∑
j=1

qj∂
−1pj)In + q∂−1p −q∂−1qT − (q∂−1qT )T

pT∂−1p+ (pT∂−1p)T −(∂ +
n∑

j=1
pj∂

−1qj)In − pT∂−1qT

⎤⎥⎥⎥⎥⎦. (2.21)

To derive the multicomponent AKNS integrable hierarchies, we take the following Lax matrices

V [r] = V [r](u, λ) = (V [r]
jl )(n+1)×(n+1) = (λrW )+ =

r∑
m=0

Wmλ
r−m, r ≥ 0, (2.22)

where the modification terms are all set to zero and each Wm is defined in (2.14). The compatibility conditions
of (2.6), i.e., the zero curvature equations (2.5), engender the so-called multicomponent AKNS integrable
hierarchies:

utr =
[
pT

q

]
tr

= Kr = i

[
αb[r+1]T

−αc[r+1]

]
, r ≥ 0. (2.23)

The first two nonlinear integrable systems in the above hierarchies (2.23) are as follows:

pj,t2 = − β

α2 i[pj,xx + 2(
n∑

l=1
plql)pj ], 1 ≤ j ≤ n, (2.24a)

qj,t2 = β

α2 i[qj,xx + 2(
n∑

l=1
plql)qj ], 1 ≤ j ≤ n, (2.24b)

and

pj,t3 = − β

α3 [pj,xxx + 3(
n∑

l=1
plql)pj,x + 3(

n∑
l=1

pl,xql)pj ], 1 ≤ j ≤ n, (2.25a)

qj,t3 = − β

α3 [qj,xxx + 3(
n∑

l=1
plql)qj,x + 3(

n∑
l=1

plql,x)qj ], 1 ≤ j ≤ n, (2.25b)
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where n ≥ 1. These are the multicomponent versions of the AKNS systems of coupled nonlinear Schrödinger
(NLS) equations and coupled modified Korteweg–de Vries (mKdV) equations, respectively. When n = 2,
under a special kind of symmetric reductions, the multicomponent AKNS systems (2.24) can be reduced to
the Manakov system [32], for which a decomposition into finite-dimensional integrable Hamiltonian systems
was made in [33], whileas the multicomponent AKNS systems (2.25) contain various systems of mKdV
equations, for which there exist different kinds of integrable decompositions originated from symmetry
constraints (see, e.g., [34,35]). A relation between the multicomponent NLS systems (2.24) and symmetric
spaces has been noticed for the first time in [36], and further, more general multicomponent NLS systems
have been studied, on the basis of symmetric spaces (see, for example, [37,38]).

The multicomponent AKNS integrable hierarchies (2.23) possess bi-Hamiltonian structures [25,31], which
can be presented through applying the trace identity [18], or more generally, the variational identity [20].
Actually, we have

−i tr(W ∂U

∂λ
) = α1a+ α2tr(d) =

∞∑
m=0

(α1a
[m] + α2

n∑
j=1

d
[m]
jj )λ−m,

and
−i tr(W ∂U

∂u
) =

[
c
bT

]
=

∑
m≥0

Gm−1λ
−m.

Plugging these into the trace identity and checking the case of m = 2 tells γ = 0 in the trace identity, and
thus, we have

δH̃m

δu
= iGm−1, H̃m = − i

m

∫
(α1a

[m+1] + α2

n∑
j=1

d
[m+1]
jj ) dx, Gm−1 =

[
c[m]

b[m]T

]
, m ≥ 1. (2.26)

This tells the following bi-Hamiltonian structures for the multicomponent AKNS systems in (2.23):

utr = Kr = J1Gr = J1
δH̃r+1

δu
= J2

δH̃r

δu
, r ≥ 1, (2.27)

where each Hamiltonian pair (J1, J2 = J1Ψ) is given by

J1 =
[

0 αIn

−αIn 0

]
, (2.28a)

J2 = i

⎡⎢⎢⎢⎢⎣
pT∂−1p+ (pT∂−1p)T −(∂ +

n∑
j=1

pj∂
−1qj)In − pT∂−1qT

−(∂ +
n∑

j=1
pj∂

−1qj)In − q∂−1p q∂−1qT + (q∂−1qT )T

⎤⎥⎥⎥⎥⎦. (2.28b)

Thus, each of the operators Φ = Ψ † = J2J
−1
1 presents a recursion operator [39] for every hierarchy

with a fixed integer n ≥ 1 in (2.23). Adjoint symmetry constraints (or equivalently symmetry constraints)
decompose each multicomponent AKNS system into two commuting finite-dimensional Liouville integrable
Hamiltonian systems [31].

3. Associated Riemann–Hilbert problems

Let us fix the integer n ≥ 1 and begin with the matrix spectral problems of the rth multicomponent
AKNS system (2.23):

− iϕx = Uϕ = U(u, λ)ϕ, (3.1)

− iϕtr = V [r]ϕ = V [r](u, λ)ϕ, (3.2)
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where the Lax pair reads
U = λΛ + P, V [r] = λrΩ +Q[r], (3.3)

with Λ = diag(α1, α2In), Ω = diag(β1, β2In), and

P =
[

0 p
q 0

]
, Q[r] =

r∑
m=1

Wmλ
r−m =

r∑
m=1

[
a[m] b[m]

c[m] d[m]

]
λr−m. (3.4)

Here u, p, q are defined by (2.11), and a[m], b[m], c[m], d[m], 1 ≤ m ≤ r, are determined in (2.19).
In what follows, we discuss the scattering and inverse scattering for the multicomponent AKNS system

(2.23) using the Riemann–Hilbert approach [2] (see also [9,10,38]). The resulting results will lay the
groundwork for soliton solutions in the next section. Assume that all the potentials rapidly vanish when
x → ±∞ or tr → ±∞ and satisfy the integrable conditions:∫ ∞

−∞

∫ ∞

−∞
|x|m1 |tr|m2

n∑
j=1

(|pj | + |qj |) dxdtr < ∞, m1,m2 = 0, 1. (3.5)

In order to facilitate the expression, we also assume that

α = α1 − α2 < 0, β = β1 − β2 < 0. (3.6)

For the matrix spectral problems (3.1) and (3.2), we note, under (3.5), that when x, tr → ±∞, we have the
asymptotic behavior: ϕ ∼ eiλΛx+iλrΩtr . Therefore, upon making the variable transformation

ϕ = ψEg, Eg = eiλΛx+iλrΩtr , (3.7)

we can have the canonical normalization ψ → In+1, when x, tr → ±∞. Similarly as suggested in the
introduction, set P̌ = iP and Q̌[r] = iQ[r], and the equivalent pair of matrix spectral problems to (3.1) and
(3.2) reads

ψx = iλ[Λ, ψ] + P̌ψ, (3.8)

ψtr = iλr[Ω , ψ] + Q̌[r]ψ, (3.9)

Applying a generalized Liouville’s formula [40] leads to

detψ = 1, (3.10)

due to tr(P̌ ) = tr(Q̌) = 0.
Let us now present a class of associated Riemann–Hilbert problems with the variable x. In the scattering

problem, we first take two matrix solutions ψ±(x, λ) of (3.8) with the asymptotic conditions

ψ± → In+1, when x → ±∞, (3.11)

respectively. The above superscripts refer to which end of the x-axis the boundary conditions are required
for. By (3.10), we find that detψ± = 1 for all x ∈ R. Since

ϕ± = ψ±E, E = eiλΛx, (3.12)

are both matrix solutions of (3.1), they are linearly dependent, and hence, we have

ψ−E = ψ+ES(λ), λ ∈ R, (3.13)

where S(λ) = (sjl)(n+1)×(n+1) is the scattering matrix. Note that det S(λ) = 1 because of detψ± = 1.
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Then applying the method of variation of parameters, we can transform the matrix spectral problem (3.8)
into the following Volterra integral equations for ψ± [2]:

ψ−(λ, x) = In+1 +
∫ x

−∞
eiλΛ(x−y)P̌ (y)ψ−(λ, y)eiλΛ(y−x) dy, (3.14)

ψ+(λ, x) = In+1 −
∫ ∞

x

eiλΛ(x−y)P̌ (y)ψ+(λ, y)eiλΛ(y−x) dy, (3.15)

where the boundary condition (3.11) has been used. Thus, ψ± allows analytical continuations off the real
axis λ ∈ R provided that the integrals on their right hand sides converge. Based on the diagonal form of Λ
and the first assumption α < 0 in (3.6), we can readily see that the integral equation for the first column of
ψ− involves only the exponential factor e−iαλ(x−y), which decays because of y < x in the integral, when λ is
in the closed upper half-plane C+

0 , and the integral equation for the last n columns of ψ+ involves only the
exponential factor eiαλ(x−y), which also decays because of y > x in the integral, when λ is in the closed upper
half-plane C+

0 . Therefore, those n+ 1 columns can be analytically continued to the closed upper half-plane
C+

0 . Similarly, we can see that the last n columns of ψ− and the first column of ψ+ can be analytically
continued to the closed lower half-plane C−

0 .
Below we would like to determine two matrix eigenfunctions P±(x, λ), which are analytically continued

to the upper and lower half-planes, respectively. First, let us express

ψ± = (ψ±
1 , ψ

±
2 , . . . , ψ

±
n+1), (3.16)

namely, ψ±
j denotes the jth column of ϕ± (1 ≤ j ≤ n+ 1), and then the matrix solution

P+ = P+(x, λ) = (ψ−
1 , ψ

+
2 , . . . , ψ

+
n+1) = ψ−H1 + ψ+H2 (3.17)

is analytic in λ ∈ C+ and continuous in λ ∈ C+
0 , and the matrix solution

(ψ+
1 , ψ

−
2 , . . . , ψ

−
n+1) = ψ+H1 + ψ−H2 (3.18)

is analytic in λ ∈ C− and continuous in λ ∈ C−
0 , where H1 and H2 are defined by

H1 = diag(1, 0, . . . , 0  
n

), H2 = diag(0, 1, . . . , 1  
n

). (3.19)

Moreover, from the Volterra integral equations (3.14) and (3.15), we can find that

P+(x, λ) → In+1, when λ ∈ C+
0 → ∞, (3.20)

and
(ψ+

1 , ψ
−
2 , . . . , ψ

−
n+1) → In+1, when λ ∈ C−

0 → ∞. (3.21)

Secondly, we construct the analytic counterpart of P+ defined in the lower half-plane C− from the adjoint
matrix spectral problems. The adjoint equations of (3.1) and (3.8) are defined by

iϕ̃x = ϕ̃U, (3.22)

and
iψ̃x = λ[ψ̃,Λ] + ψ̃P, (3.23)

respectively. Since ϕ± and ψ± are solutions to (3.1) and (3.8), the inverse matrices ϕ̃± = (ϕ±)−1 and
ψ̃± = (ψ±)−1 solve the above two adjoint equations, respectively. Upon expressing ψ̃± as follows:

ψ̃± = (ψ̃±,1, ψ̃±,2, . . . , ψ̃±,n+1)T , (3.24)
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namely, ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ n + 1), we can show in an analogous manner that the
adjoint matrix solution

P− = (ψ̃−,1, ψ̃+,2, . . . , ψ̃+,n+1)T = H1ψ̃
− +H2ψ̃

+ = H1(ψ−)−1 +H2(ψ+)−1 (3.25)

is analytic in λ ∈ C− and continuous in λ ∈ C−
0 , and the other matrix solution

(ψ̃+,1, ψ̃−,2, . . . , ψ̃−,n+1)T = H1ψ̃
+ +H2ψ̃

− = H1(ψ+)−1 +H2(ψ−)−1 (3.26)

is analytic in λ ∈ C+ and continuous in λ ∈ C+
0 . Similarly, we can determine that

P−(x, λ) → In+1, when λ ∈ C−
0 → ∞, (3.27)

and
(ψ̃+,1, ψ̃−,2, . . . , ψ̃−,n+1)T → In+1, when λ ∈ C+

0 → ∞. (3.28)

Now we have constructed the two matrix functions, P+(x, λ) and P−(x, λ), which, as functions of λ, are
analytic in C+ and C−, and continuous in C+

0 and C−
0 , respectively. Further defining

G+(x, λ) = lim
µ∈C+

0 , µ→λ

P+(x, µ), (G−)−1(x, λ) = lim
µ∈C−

0 , µ→λ
P−(x, µ), λ ∈ R, (3.29)

we can directly verify that on the real line, the two matrix functions G+ and G− are related to each other
as follows:

G+(x, λ) = G−(x, λ)G(x, λ), λ ∈ R, (3.30)

where by (3.13), the jump matrix G can be computed as follows:

G(x, λ) = E(H1 +H2S(λ))(H1 + S−1(λ)H2)E−1

= E

⎡⎢⎢⎢⎢⎢⎢⎣

1 ŝ12 ŝ13 · · · ŝ1,n+1
s21 1 0 · · · 0

s31 0 1
. . .

...
...

...
. . . . . . 0

sn+1,1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎦E
−1 (3.31)

with S−1(λ) = (S(λ))−1 = (ŝjl)(n+1)×(n+1). The two equations in (3.30) and (3.31) exactly present the
class of associated matrix Riemann–Hilbert problems we would like to build for the multicomponent AKNS
systems in (2.23). The asymptotic properties

P±(x, λ) → In+1, when λ ∈ C±
0 → ∞, (3.32)

generate the canonical normalization conditions

G±(x, λ) → In+1, when λ ∈ C±
0 → ∞, (3.33)

for the above presented Riemann–Hilbert problems.
To complete the direct scattering transform, let us evaluate the derivative of (3.13) with time tr and use

the vanishing conditions of the potentials at infinity of tr. Clearly, we can prove that the scattering matrix
S has to satisfy

Str = iλr[Ω , S], (3.34)

which tells that the time evolution of the time-dependent scattering coefficients are given by

s1,j = s1,j(λ, 0)eiβλrtr , sj,1 = sj,1(λ, 0)e−iβλrtr , 2 ≤ j ≤ n+ 1, (3.35)

and all other scattering coefficients are independent of the time variable tr.
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4. Soliton solutions by the Riemann–Hilbert problems

The Riemann–Hilbert problems with zeros yield soliton solutions and can be solved by turning into the
ones without zeros [2]. The uniqueness of solutions to each associated Riemann–Hilbert problem, defined by
(3.30) and (3.31), does not hold unless the zeros of detP± in the upper and lower half-planes are specified
and the structures of kerP± at those zeros are determined [41–43].

Thanks to detψ± = 1, it follows from the definitions of P± in (3.17) and (3.25), and the scattering
relation between ψ+ and ψ− in (3.13) that

detP+(x, λ) = s11(λ), detP−(x, λ) = ŝ11(λ), (4.1)

where, because of detS = 1, we have

ŝ11 = (S−1)11 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
s22 s23 · · · s2,n+1
s32 s33 · · · s3,n+1
...

...
. . .

...
sn+1,2 sn+1,3 · · · sn+1,n+1

⏐⏐⏐⏐⏐⏐⏐⏐⏐ . (4.2)

Let N be another arbitrary natural number and assume that the function s11 has N zeros {λk ∈ C+, 1 ≤
k ≤ N}, and the function ŝ11 has N zeros {λ̂k ∈ C−, 1 ≤ k ≤ N}. To compute N -soliton solutions, we also
assume that all those zeros, λk and λ̂k, 1 ≤ k ≤ N, are simple. Therefore, each of kerP+(x, λk), 1 ≤ k ≤ N ,
contains only a single basis column vector, denoted by vk, 1 ≤ k ≤ N ; and each of kerP−(x, λ̂k), 1 ≤ k ≤ N ,
a single basis row vector, denoted by v̂k, 1 ≤ k ≤ N . So, we have

P+(x, λk)vk = 0, v̂kP
−(x, λ̂k) = 0, 1 ≤ k ≤ N. (4.3)

It is known that the Riemann–Hilbert problems, determined by (3.30) and (3.31), with the canonical
normalization conditions in (3.33) and the zero structures in (4.3) can be solved explicitly [2,44]. To compute
N -soliton solutions, we take G = In+1 in each above Riemann–Hilbert problem. This can be realized if we
take that sj,1 = ŝ1,j = 0, 2 ≤ j ≤ n+1, which equivalently requires that no reflection exists in the scattering
problem. This resulting special Riemann–Hilbert problem has the solutions (see, e.g., [2,44] for details):

P+(x, λ) = In+1 −
N∑

k,l=1

vk(M−1)klv̂l

λ− λ̂l

, P−(x, λ) = In+1 +
N∑

k,l=1

vk(M−1)klv̂l

λ− λl
, (4.4)

where M is a square matrix with entries being defined by

M = (mkl)N×N , mkl = v̂kvl

λl − λ̂k

, 1 ≤ k, l ≤ N. (4.5)

Because the zeros λk and λ̂k, 1 ≤ k ≤ N , are constants, i.e., space and time independent, we can easily
determine the spatial and temporal evolutions for the vectors, vk(x, tr) and v̂k(x, tr), 1 ≤ k ≤ N , in the
kernels kerP±. For example, let us compute the x-derivative of both sides of the first set of equations in
(4.3). By using (3.8) first and then again the first set of equations in (4.3), we can derive

P+(x, λk)
(dvk

dx
− iλkΛvk

)
= 0, 1 ≤ k ≤ N. (4.6)

It then follows that for each 1 ≤ k ≤ N , the vector dvk
dx − iλkΛvk must be in the kernel of P+(x, λk) and so

a constant multiple of the vector vk. Without loss of generality, we consider the simplest case and assume

dvk

dx
= iλkΛvk, 1 ≤ k ≤ N. (4.7)
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The time dependence of vk:
dvk

dtr
= iλr

kΩvk, 1 ≤ k ≤ N, (4.8)

can be worked out similarly by applying the temporal matrix spectral problem (3.9). To sum up, we can
have

vk(x, tr) = eiλkΛx+iλr
kΩtrwk, 1 ≤ k ≤ N, (4.9)

v̂k(x, tr) = ŵke−iλ̂kΛx−iλ̂r
kΩtr , 1 ≤ k ≤ N, (4.10)

where wk and ŵk, 1 ≤ k ≤ N , are arbitrary constant column and row vectors, respectively.
Finally, we can work out the potential matrix P from P+(x, λ) as follows. Note that P+ is a solution to

the matrix spectral problem (3.8). Therefore, once we expand P+ at large λ as

P+(x, λ) = In+1 + 1
λ
P+

1 (x) + O( 1
λ2 ), λ → ∞, (4.11)

plugging this series expansion into (3.8) and balancing O(1) terms generate

P̌ = −i[Λ, P+
1 ]. (4.12)

This equivalently tells that the potential matrix reads:

P = −[Λ, P+
1 ] =

⎡⎢⎢⎢⎢⎢⎣
0 −α(P+

1 )12 −α(P+
1 )13 · · · −α(P+

1 )1,n+1
α(P+

1 )21 0 0 · · · 0
α(P+

1 )31 0 0 · · · 0
...

...
...

. . .
...

α(P+
1 )n+1,1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , (4.13)

where P+
1 = ((P+

1 )jl)(n+1)×(n+1). In other words, the 2n potentials pj and qj , 1 ≤ j ≤ n, can be evaluated
as follows:

pj = −α(P+
1 )1,j+1, qj = α(P+

1 )j+1,1, 1 ≤ j ≤ n. (4.14)

Now from the λ-dependence of the solutions in (4.4), we have

P+
1 = −

N∑
k,l=1

vk(M−1)klv̂l, (4.15)

and thus further through the solution expressions in (4.14), obtain the N -soliton solution to the
multicomponent AKNS system in (2.23):

pj = α
N∑

k,l=1
vk,1(M−1)klv̂l,j+1, qj = −α

N∑
k,l=1

vk,j+1(M−1)klv̂l,1, 1 ≤ j ≤ n, (4.16)

where the matrix M is defined by (4.5), and vk = (vk,1, vk,2, . . . , vk,n+1)T and v̂k = (v̂k,1, v̂k,2, . . . , v̂k,n+1),
1 ≤ k ≤ N , are defined by (4.9) and (4.10), respectively.

5. Specific reductions

Let us take a class of specific reductions for the potential matrix P :

P † = CPC−1, C =
[

1 0
0 Σ

]
, (5.1)
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where † stands for the Hermitian transpose of a matrix and Σ is a constant invertible n × n Hermitian
symmetric matrix: Σ † = Σ and Σ−1 exists (see [45] for a general reduction problem). In what follows,
we assume that z̄ denotes the complex conjugate of a complex quantity z, and A†(λ̄) = (A(λ))† and
A−1(λ̄) = (A(λ̄))−1 for a matrix A(λ) depending on the spectral parameter λ.

If ψ(λ) is a matrix eigenfunction of (3.8), then in addition to a known matrix adjoint eigenfunction
Cψ−1(λ̄), we have another matrix adjoint eigenfunction

ψ̃(λ̄) = ψ†(λ̄)C, (5.2)

associated with an eigenvalue λ̄, i.e., ψ†(λ̄)C solves the adjoint equation (3.23) with λ̄ replacing λ. Therefore,
upon observing the asymptotic properties for ψ± at infinity of λ (see, e.g., (3.32)), the uniqueness of solutions
determines

(ψ±)†(λ̄) = C(ψ±)−1(λ̄)C−1. (5.3)

Further from the definitions of P± in (3.17) and (3.25), we find that the two matrix solutions P± have
the involution property

(P+)†(λ̄) = CP−(λ̄)C−1. (5.4)

and from the definition of the scattering matrix S(λ) in (3.13), we find that the scattering matrix S(λ)
satisfies the involution relation

S†(λ̄) = CS−1(λ̄)C−1. (5.5)

Due to (5.4), we have s11(λ̄) = ŝ11(λ) by (4.1), and so, the zeros of detP± satisfy the involution relation:

λ̂k = λ̄k, 1 ≤ k ≤ N. (5.6)

To obtain involution eigenvectors vk and v̂k, 1 ≤ k ≤ N , we evaluate the Hermitian transpose of the first
set of equations in (4.3):

0 = v†
k(P+(λk))† = v†

kCP
−(λ̂k)C−1, 1 ≤ k ≤ N,

where (5.4) and (5.6) have been used. This way, we can take

v̂k = v†
kC, 1 ≤ k ≤ N, (5.7)

as the solutions to the second set of equations in (4.3). It then follows that we have the following involution
eigenvectors:

vk(x, tr) = eiλkΛx+iλr
kΩtrwk, v̂k(x, tr) = w†

ke−iλ̄kΛx−iλ̄r
kΩtrC, 1 ≤ k ≤ N, (5.8)

where wk are arbitrary constant column vectors as before and the matrix C is defined in (5.1).
The reduction relation (5.1) implies

p = q†Σ , (5.9)

which provides many interesting specific reductions depending on the selection of Σ . Based on the recursion
relation (2.16), it also follows from (5.1) that

W †
m = CWmC

−1, m ≥ 0, (5.10)

where each Wm is defined by (2.14). This further implies that

(V [r])†(λ̄) = CV [r](λ̄)C−1, (5.11)

i.e.,
(Q[r])†(λ̄) = CQ[r](λ̄)C−1, (5.12)
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where V [r] and Q[r] are defined in (3.3) (or (2.22)) and (3.4), respectively. Thus, we see that the reductions
in (5.1) work for both of the spatial and temporal matrix spectral problems (3.1) and (3.2). Under (5.1),
the multicomponent NLS system (2.24) and the multicomponent mKdV system (2.25) are reduced to

qj,t2 = β

α2 i[qj,xx + 2(
n∑

k,l=1
q̄kσklql)qj ], 1 ≤ j ≤ n. (5.13)

and
qj,t3 = − β

α3 [qj,xxx + 3(
n∑

k,l=1
q̄kσklql)qj,x + 3(

n∑
k,l=1

q̄kσklql,x)qj ], 1 ≤ j ≤ n, (5.14)

where Σ = (σjl)n×n. More specifically, we have the reduced multicomponent NLS system and mKdV system:

qj,t2 = β

α2 i[qj,xx + 2σ(
n∑

l=1
|ql|2)qj ], 1 ≤ j ≤ n, (5.15)

and
qj,t3 = − β

α3 [qj,xxx + 3σ(
n∑

l=1
|ql|2)qj,x + 3σ(

n∑
l=1

q̄lql,x)qj ], 1 ≤ j ≤ n, (5.16)

respectively, if Σ = σIn, σ ∈ R, is taken.
In order to compute the N -soliton solutions to the reduced multicomponent AKNS systems, we check the

involution property for P+
1 determined in (4.15). By using (5.6) and (5.7), a direct computation can really

show that
(P+

1 )† = −CP+
1 C

−1, (5.17)

where P+
1 is defined by (4.15). Thus, the potential matrix P determined through (4.13) satisfies the reduction

relation (5.1). Finally, the reduced N -soliton solution of (2.23) presents the N -soliton solution to the reduced
multicomponent AKNS system, including (5.13) and (5.14):

qj = −α
N∑

k,l=1
vk,j+1(M−1)klv̂l,1, 1 ≤ j ≤ n, (5.18)

where the matrix M is defined by (4.5), and vk = (vk,1, vk,2, . . . , vk,n+1)T and v̂k = (v̂k,1, v̂k,2, . . . , v̂k,n+1),
1 ≤ k ≤ N , are given by (5.8).

6. Concluding remarks

This study aims to formulate Riemann–Hilbert problems associated with matrix spectral problems to
compute soliton solutions of integrable hierarchies. One of the important steps is to introduce a kind
of equivalent matrix spectral problems so that bounded analytical eigenfunctions in the upper or lower
half-plane can be guaranteed to exist. We considered a kind of high-order degenerate AKNS spatial
matrix spectral problems and regenerated the corresponding integrable hierarchies possessing bi-Hamiltonian
structures. For all multicomponent AKNS systems, we built their Riemann–Hilbert problems and presented
an explicit formula for jump matrices in the resulting Riemann–Hilbert problems. Upon taking the identity
jump matrix, we computed soliton solutions to all considered multicomponent AKNS systems in each
resulting integrable hierarchy. A class of specific reductions was successfully made for each hierarchy and
the corresponding N -soliton solutions were generated for all reduced multicomponent AKNS systems.

The Riemann–Hilbert approach is very powerful in constructing soliton solutions, indeed (see also, e.g.,
[3–7]). The approach has been recently generalized to solve initial–boundary value problems of integrable
equations on the half-line and the finite interval [46–49]. Many other approaches to soliton solutions are also
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available in the field of integrable equations, among which are the Hirota direct method [50], the generalized
bilinear technique [51,52], the Wronskian technique [53,54] and the Darboux transformation [55]. It would
be important to explore relations among those different approaches.

We also remark that it would be interesting to find other kinds of exact solutions to integrable
equations, including positon and complexiton solutions [56,57], lump solutions [58–61], and algebro-geometric
solutions [16,17,62,63], based on Riemann–Hilbert problems. Particular lump solutions to the (2 + 1)-
dimensional KP and BKP equations have been computed by symbolic computations [64,65]. Can such
solutions be generated from Riemann–Hilbert problems or generalized Riemann–Hilbert problems, called ∂̄

problems (see, e.g., [1,66])?
There are many other different studies on coupled mKdV equations, which include integrable couplings

[67,68], super hierarchies [69,70] and fractional analogous equations [71]. Therefore, another important
question for further study is how to formulate Riemann–Hilbert problems for solving those generalized
integrable counterparts. It is hoped that our results could be helpful in recognizing exact solutions to
generalized integrable equations or hierarchies, from the perspective of the Riemann–Hilbert technique.
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