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Abstract A (2 + 1)-dimensional coupled nonlinear
partial equation which possesses a Hirota bilinear form
is introduced. Based on the Hirota bilinear form, two
solitary waves are constructed. In the meanwhile, lump
waves are derived by using a positive quadratic func-
tion. By combining an exponential function with a
quadratic function, interaction solutions between a
lump and a one-kink soliton, and between a bi-lump

B. Ren (B) · J. Yu
Institute of Nonlinear Science, Shaoxing University,
Shaoxing 312000, China
e-mail: renbosemail@163.com

W.-X. Ma
Department of Mathematics and Statistics,
University of South Florida, Tampa, FL 33620-5700, USA

W.-X. Ma
Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, China

W.-X. Ma
Department of Mathematics, King Abdulaziz University,
Jeddah, Saudi Arabia

W.-X. Ma
College of Mathematics and Systems Science,
Shandong University of Science and Technology, Qingdao
266590, Shandong, China

W.-X. Ma
International Institute for Symmetry Analysis and Mathematical
Modelling, Department of Mathematical Sciences, North-West
University, Mafikeng Campus, Private Bag X2046, Mmabatho
2735, South Africa

and a one-soliton solution are generated. Some special
concrete interaction solutions are depicted in both ana-
lytical and graphical ways.
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1 Introduction

Nonlinear partial differential equations are applied to
solving some complex problems in a variety of science
and engineering [1–9]. Finding exact solutions plays
an important role in nonlinear science. Among these
exact solutions, solitary waves and lump solutions can
be used to study natural phenomena appeared in flu-
ids, engineering and nonlinear optics [10–14]. Lump
waves which have attracted much attention are local-
ized in all directions of spaces [12]. The study of this
field is mainly by means of the Darboux transforma-
tion [15–18] and theHirota bilinearmethod [19–28]. To
describe complex physical phenomena, hybrid interac-
tion solutions arewidely investigated by combiningdif-
ferent variable functions [29–39]. Interaction solutions
among multi-soliton and other complicated waves are
discussed by the localization procedure related to the
nonlocal symmetry and the consistent tanh expansion
method [29–32]. Interaction solutions between lump
waves andmulti-soliton are studied by using the Hirota
bilinear method [33–40].
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In this paper, we consider a (2 + 1)-dimensional cou-
pled nonlinear partial differential equation (cNPDE)

uxt + 3

2
uxuxx + 1

4
uxxxx + δ1wx + δ2uxy

+ δ3uxx + δ4

4
(uxxxy + 3uxuxy

+ 3uxxuy) + δ5

4
(wxxy + 3uxyw + 3uywx )

+ δ6

(
3wwx + 1

2
wxyy

)
= 0,

uyy − wx = 0, (1)

where δi (i = 1, 2, . . . , 6) are arbitrary constants.
Equation (1) reduces to a (2 + 1)-dimensional potential
Kadomtsev–Petviashvili (pKP) equation by choosing
δ2 = δ3 = δ4 = δ5 = δ6 = 0, which describes the
dynamics of a wave with a small amplitude. The peri-
odic kink wave and the group-invariant solutions of the
pKP equation have been derived [41,42]. The nonlocal
symmetry and interaction solutions of the pKPequation
have been given by the localization procedure related
to nonlocal symmetries [43].

This paper is organized as follows: in Sect. 2, we
construct the Hirota bilinear form of Eq. (1) by using
the Painlevé–Bäcklund transformation. In Sect. 3, we
obtain two solitary waves by introducing a perturba-
tion expansion. Lump waves are presented by solving
the corresponding Hirota bilinear form in Sect. 4. In
Sect. 5, interaction solutions between a lump and a
one-kink soliton, and between a bi-lump and a one-
soliton solution are derived by adding an exponential
function to a quadratic function. The last section is a
simple summary and discussion.

2 A bilinear form of a coupled nonlinear partial
differential equation

Based on the Painlevé analysis [44], a Painlevé–
Bäcklund transformation of Eq. (1) reads

u = u0
φ

+ u1, w = w0

φ2 + w1

φ
+ w2, (2)

where φ is an auxiliary function of the variables x, y
and t . The functions of u1 and w2 are arbitrary seed
solution of Eq. (1). Substituting (2) into (1) and bal-
ancing the coefficients φ−5 and φ−3, we get

u0 = 2φx , w0 = −2φ2
y . (3)

Balancing the coefficient φ−4 gives

w1 = 2φyy . (4)

Substituting (3), (4) and the seed solutionu1 = 0, w2 =
0 into (2), we get

u = 2φx

φ
, w = −2φ2

y

φ2 + 2φyy

φ
. (5)

A bilinear form of (1) is yielded

2φφxt − 2φtφx + 1

2
φφxxxx − 2φxφxxx

+ 3

2
φ2
xx + 2δ1(φφyy − φ2

y)

+ 2δ2(φφxy − φxφy) + 2δ3(φφxx − φ2
x )

+ δ4(φφxxxy − φxxxφy − 3φxφxxy + 3φxxφxy)

+ δ5(φφxyyy − φxφyyy − 3φyφxyy + 3φxyφyy)

+ δ6(φφyyyy − 4φyφyyy + 3φ2
yy) = 0. (6)

The bilinear equation (6) has the following equivalent
formula:

Dt Dx + 1

4
D4
x + δ1D

2
y + δ2Dx Dy + δ3D

2
x

+ δ4

2
D3
x Dy + δ5

2
Dx D

3
y + δ6

2
D4

y = 0, (7)

with the D-operators defined by

Dl
x D

n
y D

m
t f (x, y, t) · g(x ′, y′, t ′)

=
( ∂

∂x
− ∂

∂x ′
)l( ∂

∂y
− ∂

∂y′
)n( ∂

∂t
− ∂

∂t ′
)m

f (x, y, t) · g(x ′, y′, t ′)|x=x ′,y=y′,t=t ′ . (8)

3 Solitary waves of a coupled nonlinear partial
differential equation

The Hirota bilinear method has been widely used to
solve a class of nonlinear evolution equations [45].
Based on the Hirota bilinear method, we assume that a
two-front wave for φ has a perturbation expansion

φ = 1 + exp(θ1) + exp(θ2), (9)

where θ1 = a1x + b1y + c1t , θ2 = a2x + b2y +
c2t , and a1, b1, c1, a2, b2 and c2 are arbitrary constants.
Inserting (9) into (6) and solving the coefficients of
different powers of the exponent functions, a relation
among the arbitrary constants reads
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c1 = −a31
4

− δ1
b21
a1

− δ2b1 − δ3a1 − δ4
a21b1
4

− δ5
b31
4

− δ6
b41
2a1

,

c2 = −a32
4

− δ1
b22
a2

− δ2b2 − δ3a2 − δ4
a22b2
4

− δ5
b32
4

− δ6
b42
2a2

, (10)

where δ6 satisfies

δ6 =
(3
2
a21a

2
2(a1 − a2)

2 − 2δ1(a1b2 − a2b1)
2

+ 1

2
δ4a1a2(a1 − a2)(a

2
1b2+2a1a2(b1−b2) − a22b1)

+ 3

2
δ5a1a2b1b2(a1 − a2)(b1 − b2)

)
/
(
a21b

4
2

− 2a1a2b1b2(2b
2
1 − 3b1b2 + 2b22) + a22b

4
1
)
. (11)

Substituting (9) into (5) yields a two-front wave

u = 2(a1 exp(θ1) + a2 exp(θ2))

1 + exp(θ1) + exp(θ2)
,

w = −2(b1 exp(θ1) + b2 exp(θ2))2

(1 + exp(θ1) + exp(θ2))2

+ 2(b21 exp(θ1) + b22 exp(θ2))

1 + exp(θ1) + exp(θ2)
, (12)

where c1, c2 and δ6 satisfy (10) and (11). We show
a two-front wave for u and w with specific param-
eters a1 = − 1

2 , a2 = 1
2 , b1 = 1

2 , b2 = 1
2 , δ1 =

−1, δ2 = 1, δ3 = 2, δ4 = 1, δ5 = 2 in Fig. 1, and
another kind of a two-front wave with specific param-
eters a1 = − 1

3 , a2 = − 1
2 , b1 = 1, b2 = 1

2 , δ1 =
−1, δ2 = 1, δ3 = 2, δ4 = 1, δ5 = 2 in Fig. 2. The
solution of w is shown as “U”-shaped and “Y”-shaped
in Figs. 1b and 2b, respectively. Characteristics of two
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Fig. 1 Profile of a two-front wave (12): a 3-dimensional plot of u with t = 0, b 3-dimensional plot of w with t = 0

(a)

–30
–20

–10
0

10
20

30

x

–30–20–100102030

y

–1

–0.8

–0.6

–0.4

–0.2

0

u

(b)

–30 –20
–10

0
10

20
30

x
–20

–10
0

10
20

30

y

0

0.1

0.2

0.3

0.4

0.5

w

Fig. 2 Profile of a two-front wave (12): a 3-dimensional plot of u with t = 0, b 3-dimensional plot of w with t = 0
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Fig. 3 Profile of two-soliton solution (16): a 3-dimensional plot of u with t = 0, b 3-dimensional plot of w with t = 0

front waves are thus different by selecting different
parameters.

For a two-soliton solution, we assume

φ = 1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2), (13)

where a1, b1, c1, a2, b2, c2 and a12 are arbitrary param-
eters to be determined. Substituting (13) into (6) and
solving the coefficients of different powers of the expo-
nent functions, a relation among the arbitrary constants
is

c1 = −a31
4

− δ1
b21
a1

− δ2b1 − δ3a1 − δ4
a21b1
4

− δ5
b31
4

− δ6
b41
2a1

,

c2 = −a32
4

− δ1
b22
a2

− δ2b2 − δ3a2

− δ4
a22b2
4

− δ5
b32
4

− δ6
b42
2a2

, (14)

where δ5 and δ6 satisfy

δ5 = 1

A

(2a21a22
b1b2

(
b1a2(b

2
1 + 3b22) − a1b2(3b

2
1 + b22)

)

+ δ4
a1a2
b1b2

(
a22b1(b

2
1 + 2b22)

+ 2a1a2b1b2(b
2
2 − b21) − a21b

2
2(2b

2
1 + b22)

)
+ 8δ1b1b2(a1b2 − a2b1)

)
,

δ6 = 1

A

(3
2
a21a

2
2(a

2
1 − a22) − 2δ1(a

2
1b

2
2 − a22b

2
1)

+ δ4

2
a1a2(a

2
1 − a22)(a1b2 + a2b1)

)
,

A = a21b
4
2 + 2a1a2b1b2(b

2
1 − b22) − a22b

4
1. (15)

Substituting (13) into (5) yields a two-soliton solution

u = 2(a1 exp(θ1)+a2 exp(θ2)+a12(a1+a2) exp(θ1+θ2))

1+exp(θ1)+exp(θ2)+a12 exp(θ1+θ2)
,

w = −2(b1 exp(θ1)+b2 exp(θ2)+a12(b1+b2) exp(θ1+θ2))
2

(1+exp(θ1)+exp(θ2)+a12(a1+a2) exp(θ1+θ2))2

+2(b21 exp(θ1)+b22 exp(θ2)+a12(b1+b2)2 exp(θ1+θ2))

1+exp(θ1)+exp(θ2)+a12(a1+a2) exp(θ1+θ2)
.

(16)

To illustrate this two-soliton solution (16), we select the
parameters a1 = 1, a2 = 1

4 , b1 = 1
2 , b2 = 1

2 , a12 =
2, δ1 = −1, δ2 = 2, δ3 = 1, δ4 = 3, δ5 = 2. The
interactions between two kink solitons and two solitons
are shown in Fig. 3a, b, respectively.

4 Lump waves of a coupled nonlinear partial
differential equation

To get lump waves of Eq. (1), we take a quadratic func-
tion φ as

φ = g2 + h2 + a9,

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8. (17)

where ai (i = 1, 2, . . . , 9) are arbitrary parameters.
By substituting (17) into (7) and balancing different
powers of x, y and t , we get the solutions of ai ’s

a3 = −δ1(a1a22 + 2a2a5a6 − a1a26)

a21 + a25
− δ2a2 − δ3a1,

a9 = −3δ4(a21 + a25)
2(a1a2 + a5a6)

4δ1(a1a6 − a2a5)2
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− 3δ5(a21 + a25)(a
2
2 + a26)(a1a2 + a5a6)

4δ1(a1a6 − a2a5)2

− 3δ6(a21 + a25)(a
2
2 + a26)

2

4δ1(a1a6 − a2a5)2

− 3(a21 + a25)
3

4δ1(a1a6 − a2a5)2
,

a7 = −δ1(2a1a2a6 − a22a5 + a5a26)

a21 + a25
− δ2a6 − δ3a5,

(18)

which should satisfy the following constraint condi-
tions:

δ1a5 �= 0, a1a6 − a2a5 �= 0,

δ1

[
(a21 + a25)(a

2
1 + a25 + δ4(a1a2 + a5a6))

+ (a22 + a26)(2δ6(a
2
2 + a26)

+ δ5(a1a2 + a5a6))
]

< 0, (19)

so that the localization of u and w in all directions of
the (x, y)-plane is guaranteed. A class of lump waves
of Eq. (1) is thus generated

u = 4a1g + 4a5h

φ
,

w = −8(a2g + a6h)2

φ2 + 4a22 + 4a26
φ

, (20)

where

φ = g2+h2 − 3δ4(a21+a25)
2(a1a2+a5a6)

4δ1(a1a6 − a2a5)2

− 3δ5(a21+a25)(a
2
2+a26)(a1a2+a5a6)

4δ1(a1a6 − a2a5)2

− 3δ6(a21+a25)(a
2
2+a26)

2

4δ1(a1a6 − a2a5)2
− 3(a21+a25)

3

4δ1(a1a6 − a2a5)2
,

g = a1x+a2y

−
(

δ1(a1a22+2a2a5a6−a1a26)

a21+a25
+ δ2a2+δ3a1

)
t+a4,

h = a5x+a6y

−
(

δ1(2a1a2a6+a22a5+a5a26)

a21+a25
+ δ2a6−δ3a5

)
t+a8.

(21)

To catch the moving path of the lump waves in (20),
the critical point of the lump waves is calculated by
solving φx = φy = 0. The exact moving path of the
lump waves is written as

x = x(t) = (a2a7 − a3a6)t − (a2a8 − a4a6)

a1a6 − a2a5
,

y = y(t) = (a1a7 − a3a5)t − (a1a8 − a4a5)

a1a6 − a2a5
, (22)

which can describe the traveling path of the lumpwaves
along a straight line

y = a3a5 − a1a7
a2a7 − a3a6

x + a3a8 − a4a7
a2a7 − a3a6

, (23)

with a3, a7 and a9 satisfying (18). The parameters are
selected as a1 = −1, a2 = 2, a4 = −3, a5 = 1, a6 =
3, a8 = 2, δ1 = −1, δ2 = 2, δ3 = 3, δ4 = 2, δ5 =
1, δ6 = 1 in Figs. 4 and 5.A lumpwave of u is plotted in
Fig. 4. The spatial structure of a lumpwave is described
in Fig. 4a. From Fig. 4a, we can easily know that the
lump wave has a localized characteristic at t = 0. A bi-
lumpwave ofw is plotted in Fig. 5. The spatial structure
of a bi-lump wave is described in Fig. 5a at t = 0.
Figures 4b and 5b represent the corresponding density
plots of the lump wave. Figure 4c displays the contour
plot of the lump wave at t = −35, t = 0, t = 36.
Figure 5c is the contour plot of the lump wave at t =
−20, t = 0, t = 20. The blue line of Figs. 4c and 5c is
the relevant moving progress (23), i.e., y = 2

19 x + 9
19 .

The wave along x-axis of the lump wave is depicted in
Figs. 4d and 5d.

5 Interaction solution between a lump and a
one-soliton solution

Interaction solutions between lumps and other type
solutions can be constructed by mixing a quadratic
function with other type functions. In order to find
interaction solution between lump waves and a one-
soliton solution, we assume that an interaction solution
is determined by a sum of a quadratic function and an
exponential function

φ = g2 + h2 + a9 + k1 exp(k2x + k3y + k4t + k5),

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8, (24)

with ki (i = 1, 2, . . . , 5) being five undetermined real
parameters. By substituting (24) into (6) and vanish-
ing the different powers of x, y and t , we obtain the
following two cases of constraining relations for the
parameters:
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Fig. 4 Profile of a lump wave (20): a 3-dimensional plot with
t = 0, b the corresponding density plot, c the red line is the con-
tour plot of the lump wave at t = −35, t = 0, t = 36, and the

blue line is the relevant moving progress (23), i.e., y = 2
19 x+ 9

19 ,
d thewavepropagation pattern of thewave along x-axis by select-
ing y = 0 and different time. (Color figure online)

Case I

a3 = − δ1(a1a22 + 2a2a5a6 − a1a26)

a21 + a25
− δ2a2 − δ3a1, (25)

a7 = − δ1(a5a26 − a5a22 + 2a1a2a6)

a21 + a25
− δ2a6 − δ3a5,

k4 = −k32
4

− δ1
k23
k2

− δ2k3 − δ3k2 − δ4
k3k22
4

− δ5
k43
4

− δ6
k43
2k2

,

a9 =
[
3δ1k

2
2 A(k22B − k23 A)

(
(k23 A + k22B)2

+ k22k
2
3(D

2 − 3C2)
)

+ 8k53 A
2C(k3C − 2k2B)

+ 16k32k
2
3BD2(2k3C − k2B)

+ 12k22k
4
3 AB(D2 − C2)

+ 4k32B(k32B
3 − 8k2k

2
3BC

2 + 12k33C
3)

]

/
(
4k22k

4
3δ1D

2E
) − 3k2AC

k33D
2

(k22B − k23 A),

δ4 = −2k2
k3

+ 8δ1(k2B − k3C)(k23 A − k22B)

3k22k3AE
,

δ5 = 2k32
k33

+ 2C

3k23 A
+ k43 A + k22B

2 − 2k22k
2
3D

2

3k2k33 AE
,

δ6 = − k42
2k43

+ 2δ1(k22B − k23 A)(3k23 A − k22B − 2k2k3C)

3k43 AE
,

A = a21 + a25 ,
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Fig. 5 Profile of a bi-lump wave (20): a 3-dimensional plot of
w with the time t = 0, b the corresponding density plot, c the
red line is the contour plot of the lump wave at t = −20, t =
0, t = 20, and the blue line is the relevant moving progress (23),

i.e., y = 2
19 x + 9

19 , d the wave propagation pattern of the wave
along x-axis by selecting y = 0 and different time. (Color figure
online)

B = a22 + a26 , C = a1a2 + a5a6,

D = a1a6 − a2a5, E = k23 A + k22B − 2k2k3C,

which should satisfy the following constraint condi-
tions:

δ1a5k2k3 �= 0, a1a6 − a2a5 �= 0, a9 > 0, (26)

so that the localization of u and w in all directions of
the (x, y)-plane is guaranteed. By substituting (24) into
(5) and combining the parameters relations (25), we get
the following interaction solution of Eq. (1):

u = 4a1g + 4a5h + 2k1k2 exp( f )

φ
,

w = −2(2a2g + 2a6h + k1k3 exp( f ))2

φ2

+ 2(2a22 + 2a26 + k1k23 exp( f ))

φ
, (27)

where

φ = g2 + h2 + a9 + k1 exp( f ),

g = a1x + a2y −
(

δ1(a1a22 + 2a2a5a6 − a1a26)

a21 + a25

+ δ2a2 + δ3a1

)
t + a4,
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Fig. 6 Profile of an interaction solution between a lump and a
one-kink soliton solution (27): a 3-dimensional plot with t = 0,
b the corresponding density plot, c the red line is contour plot at
t = −42, t = 0, t = 42 and the blue line is the relevant moving

progress (23), i.e., y = − 1
15 x − 17

75 , d the wave propagation pat-
tern of the wave along x-axis by selecting y = 0 and different
time t . (Color figure online)

h = a5x + a6y −
(

δ1(a5a26 − a5a22 + 2a1a2a6)

a21 + a25

+ δ2a6 + δ3a5

)
t + a8,

f = k2x + k3y −
(k32
4

+ δ1
k23
k2

+ δ2k3 + δ3k2

+ δ4
k3k22
4

+ δ5
k43
4

+ δ6
k43
2k2

)
t + k5. (28)

The parameters are selected as a1 = 1, a2 = 3, a4 =
1, a5 = 5, a6 = 5, a8 = 3, k1 = 1, k2 = 1

3 , k3 =
1
2 , k5 = 1, δ1 = −1, δ2 = 2, δ3 = 1 in Figs. 6 and 7.
The interaction solution between a lump and a one-kink

soliton of u is presented in Fig. 6a at t = 0. Figure 5b
displays the corresponding density plot of the lump–
kink wave. Figure 6c represents the homologous con-
tour plot at time t = −42, t = 0, t = 42. The inter-
action solution between a bi-lump and a one-soliton
solution of w is presented in Fig. 7a at t = 0. The
corresponding density is plotted in Fig. 7b. Figure 7c
is the homologous contour plot at time t = −52, t =
0, t = 46. The blue line shown in Figs. 6c and 7c is
the relevant moving progress of the lump wave (23),
i.e., y = − 1

15 x − 17
75 . The wave along x-axis of the

corresponding interaction solution is shown in Figs. 6d
and 7d.
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Fig. 7 Profile of an interaction solution between a bi-lump and
a one-soliton solution (27): a 3-dimensional plot with t = 0, b
the corresponding density plot, c the red line is contour plot at
t = −52, t = 0, t = 46 and the blue line is the relevant moving

progress (23), i.e., y = − 1
15 x − 17

75 , d the wave propagation pat-
tern of the wave along x-axis by selecting y = 0 and different
time t

Case II

a1 = 2a2δ
√

δ1

k2
,

a3 = −
√

δ1a2k2(2a25k
2
2 + 4δδ1a22 − δk22a

2
5)

2(a25k
2
2 + 4δ1a22)

−2δ
√

δ1δ3a2
k2

− δ2a2,

a6 = a5k2
2δ

√
δ1

, a7 = −a5k22(a
2
5k

2
2 − 4δ1a22 + 8δδ1a22)

4(a25k
2
2 + 4δ1a22)

− δ2k2a5
2
√

δ1
− δ3a5,

k4 = −k32
4

− δ1
k23
k2

− δ2k3 − δ3k2 − δ4
k3k22
4

− δ5
k43
4

− δ6
k43
2k2

,

δ4 = − 4δ1
δ
√

δ1k2
, δ5 = −8δ21 − δ6k42

δ
√

δ1k32
, (29)

which δ2 = 1 and should satisfy the following con-
straint conditions:

δ1a5k2 �= 0, a9 > 0, (30)

so that localization of u and w in all directions of the
(x, y)-plane is guaranteed. By substituting (24) into (5)
and combining the parameters relations (29), we get the
following interaction solution of Eq. (1):
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u = 4a1g + 4a5h + 2k1k2 exp( f )

φ
,

w = −2(2a2g + 2a6h + k1k3 exp( f ))2

φ2

+ 2(2a22 + 2a26 + k1k23 exp( f ))

φ
, (31)

where

φ = g2 + h2 + a9 + k1 exp( f ),

g = a1x + a2y

−
(√

δ1a2k2(2a25k
2
2 + 4δδ1a22 − δk22a

2
5)

2(a25k
2
2 + 4δ1a22)

+ 2δ
√

δ1δ3a2
k2

+ δ2a2

)
t + a4,

h = a5x + a6y −
(
a5k22(a

2
5k

2
2 − 4δ1a22 + 8δδ1a22)

4(a25k
2
2 + 4δ1a22)

+ δ2k2a5
2
√

δ1
+ δ3a5

)
t + a8,

f = k2x + k3y −
(
k32
4

+ δ1
k23
k2

+ δ2k3 + δ3k2

+ δ4
k3k22
4

+ δ5
k43
4

+ δ6
k43
2k2

)
t + k5. (32)

Similarly to the Case I, we can get interaction solutions
between a lump and a one-kink soliton, and between a
bi-lump and a one-soliton solution by using (31).

6 Conclusion

In this work, the Hirota bilinear form of Eq. (1) was
derived by the truncatedPainlevé analysis. Based on the
obtained bilinear form, solitary waves were firstly con-
structed via a perturbative expansion (shown in Figs. 1,
2, 3). Then, some lump waves were found by using
a positive quadratic function. Finally, the interaction
solutions, between a lump wave and a one-kink soli-
ton, and between a bi-lump wave and a one-soliton
solution, were proposed by adding an additional expo-
nential function to a positive quadratic function (shown
in Figs. 4, 5, 6, 7).

In addition, we could also construct some new inte-
grable systems by using the generalized bilinear oper-
ators [46], which are given by

Dp,t Dp,x+ 1

4
D4

p,x+δ1D
2
p,y+δ2Dp,x Dp,y+δ3D

2
p,x

+δ4

2
D3

p,x Dp,y+ δ5

2
Dp,x D

3
p,y+

δ6

2
D4

p,y =0, (33)

with the prime numbers p = 3, 5, 7, · · · . We are going
to study hybrid solutions and integrable properties of
Eq. (33).
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