
On the Upload versus Download Cost for Secure
and Private Matrix Multiplication

Wei-Ting Chang Ravi Tandon
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ, USA
E-mail: {wchang, tandonr}@email.arizona.edu

Abstract—In this paper, we study the problem of secure and
private distributed matrix multiplication. Specifically, we focus
on a scenario where a user wants to compute the product of a
confidential matrix A, with a matrix Bθ , where θ ∈ {1, . . . ,M}.
The set of candidate matrices {B1, . . . , BM} are public, and
available at all the N servers. The goal of the user is to
distributedly compute ABθ , such that (a) no information is
leaked about the matrix A to any server; and (b) the index
θ is kept private from each server. Our goal is to understand
the fundamental tradeoff between the upload vs download cost
for this problem. Our main contribution is to show that the
lower convex hull of following (upload, download) pairs: (U,D) =
(N/(K − 1), (K/(K − 1))(1 + (K/N) + · · · + (K/N)M−1)) for
K = 2, . . . , N is achievable. The scheme improves upon state-
of-the-art existing schemes for this problem, and leverages ideas
from secret sharing and coded private information retrieval.
Keywords – Distributed Matrix Multiplication, Secure Matrix Mul-
tiplication, Private Information Retrieval.

I. INTRODUCTION

Distributed computing aims at speeding up computationally
intensive operations by dividing and outsourcing the compu-
tation to multiple servers. Distributed processing often comes
with additional communication overhead, when compared to
centralized processing. Furthermore, when processing sensi-
tive information in a distributed manner, security and privacy
are also critical concerns. Hence, simultaneously utilizing
distributed processing, while satisfying security/privacy con-
straints are critical and of great interest.

A well known issue in distributed systems is the straggler
effect, where slower machines in the system slow down the
entire computation. Recently, error control codes have been
successfully adopted to carefully add computational redun-
dancy in order to tackle the stragglers problem. For instance,
entangled polynomial codes [1] and PolyDot codes [2] have
been proposed for the stragglers problem, within the context
of distributed matrix multiplication.

Although mitigating stragglers is important, it is crucial to
ensure that the data, if confidential, is not leaked to unautho-
rized servers. Recently, another line of research has focused
on the security aspects for the distributed matrix multiplication
problem. Secure matrix-vector multiplication was considered
in [3]. In [4], the authors considered a variation of the problem
where the matrices are kept secure against the servers as well
as the user. The authors in [5] proposed the idea of Lagrange

This work was supported by NSF Grants CAREER 1651492, and CNS
1715947.

User User...

Z1Server 1

Server 2

Server N ZN

Z2

eA1

eA2

eAN

A

At all servers

Private
Matrix

B1, . . . , BM

AB✓

Fig. 1: System model for secure and private matrix multiplication:
multiply a confidential matrix A with Bθ , while keeping the index θ
private from all N servers.

coded computing that simultaneously deals with straggler,
colluding servers and malicious servers. Later, [6], [7] studied
the problem of secure distributed matrix multiplication. Both
works proposed schemes based on polynomial codes, where
the authors of [7] studied the non-colluding version of the
problem and the authors of [6] studied the colluding version
(also see recent improvements and variants in [8]–[11]).

Another issue that needs to be addressed is privacy of the
user. Consider a scenario where in addition to the confidential
data, the queries sent for computation are also sensitive,
i.e., the queries can leak private information about the user.
The authors of [12] considered both security and privacy for
the problem of distributed matrix multiplication. There are
several other works that have focused primarily on the privacy
aspect. In particular, starting from the work of [13], private
information retrieval (PIR) has been studied extensively within
an information theoretic framework (such as PIR from coded
databses [14] and private computation [15]–[18]).

Main Contributions: In this paper, we focus on the model
where a user wants to compute the product of a confidential
matrix A, with a matrix Bθ, where θ ∈ {1, . . . ,M}. The set
of candidate matrices {B1, . . . , BM} are public, and available
at all the N servers. The goal of the user is to distributedly
compute ABθ, such that (a) no information is leaked about the
matrix A to any server; and (b) the index θ is kept private from
each server. Our main contribution is to show that the lower
convex hull of following (upload, download) pairs: (U,D) =
(N/(K − 1), (K/(K − 1))(1 + (K/N) + · · ·+ (K/N)M−1))
for K = 2, . . . , N is achievable. Our scheme also improves
upon the scheme of [12].



II. PROBLEM FORMULATION

We consider a distributed system with one user and N
non-colluding servers. The user has a confidential matrix
A ∈ Fd1×d2 , and all servers have access to M matrices
Bm ∈ Fd2×d3 , m = 1, . . . ,M , for some integers d1, d2
and d3, and a sufficiently large field F. We assume that the
matrices A,B1, · · · , BM are all independent of each other,
and each with i.i.d. entries from F. The goal of the user
is to compute the product of a confidential matrix A with
Bθ, where the index θ is private. Each server is connected to
the user through a separate link. We assume that all servers
are honest but curious (i.e., all servers correctly follow the
protocols, however, they are interested in learning about A
and θ). To ensure security, the user securely encodes A
using encoding functions f = (f1, . . . , fN ), where fn is the
individual encoding function for server n. We denote the
encoded version of A that is sent to server n by Ãn, i.e.,
Ãn = fn(A). Along with Ãn, the user also sends a query Q(θ)

n

to server n. Without any prior knowledge of the stored data,
the queries sent by the user are independent of all the Bm’s,
i.e., I(Q

(θ)
1 , . . . , Q

(θ)
N ;B1, . . . , BM ) = 0. Each server n uses a

computing function Z(θ)
n : {B1, . . . , BM}×Ãn×Q(θ)

n → Z
(θ)
n

for the assigned task. Once servers finish the requested com-
putations, servers return their answers Z(θ)

n , n = 1, . . . , N, to
the user. Next, to preserve the privacy of the user, the strategy
the user used to download the desired result should not reveal
θ. That is, for any θ and θ′, the query and the answer from
server n should be statistically identical. Upon receiving all the
Z

(θ)
n ’s, the user decodes the desired result by using decoding

function, ABθ = g(Z
(θ)
1 , Q

(θ)
1 , . . . , Z

(θ)
N , Q

(θ)
N ). A scheme

is secure, private and reliable if it satisfies the following
constraints:
Security Constraint:

I(A; Ãn, Q
(θ)
n , B1, . . . , BM ) = 0, n = 1, . . . , N. (1)

Privacy Constraint:

(Ãn, Q
(θ)
n , Z(θ)

n , B[1:M ]) ∼ (Ãn, Q
(θ′)
n , Z(θ′)

n , B[1:M ]), ∀n (2)

Decodability Constraint:

H
(
ABθ|Z(θ)

1 , Q
(θ)
1 , · · · , Z(θ)

N , Q
(θ)
N

)
= 0. (3)

The performance of a scheme is determined by the normal-
ized upload cost (U) and download cost (D), defined as:

U =

N∑
n=1

H(Ãn)

H(ABθ)
, and D =

N∑
n=1

H(Z
(θ)
n )

H(ABθ)
. (4)

Our aim is to understand the tradeoff between the upload and
download costs, i.e., the set of all feasible (U,D) pairs. The
optimal download cost for a fixed upload cost is defined as:

D∗(U) , min{D : (U,D) is feasible}. (5)

The following Lemma shows that the optimal download cost
is a convex function of the upload cost.

Lemma 1. The optimal download cost D∗(U) is a convex
function of the upload cost U .
Proof: To prove this Lemma, we show that for any two
upload costs U1, U2 and their corresponding optimal download
costs D∗(U1), D∗(U2), there is a scheme with upload cost
Ū = αU1 + (1 − α)U2 that achieves a download cost of
D̄ = αD∗(U1) + (1 − α)D∗(U2), 0 ≤ α ≤ 1. This can be
shown by memory sharing argument where we partition A
into two parts, A(α) ∈ Fαd1×d2 and A(1−α) ∈ F(1−α)d1×d2 ,
respectively. A(α) is sent to servers securely using scheme 1
with upload cost U1. The answers are returned to the user using
the optimal scheme that corresponds to U1, hence, achieves the
download cost of D∗(U1). Similarly, A(1−α) is sent to servers
and the answers are returned to the user using scheme 2 that
achieves (U2, D

∗(U2)). The desired results obtained from both
parts are of size αd1×d3 and (1−α)d1×d3. Since these are
per-bit costs, the total upload and download costs are

Utotal = αU1d1d2 + (1− α)U2d1d2 = Ūd1d2, (6)
Dtotal = αD∗(U1)d1d3 + (1− α)D∗(U2)d1d3 = D̄d1d3. (7)

Clearly, the optimal D∗(Ū) is upper bounded by D̄(Ū)
completing the proof of Lemma 1.

In the next proposition, we show that even without any
privacy constraints, the minimum upload cost is N/(N − 1).

Proposition 1. The minimum value of upload cost is Umin =
N/(N − 1).
Proof: We start with the following sequence of inequalities:

N∑

n=1

H(Ãn) ≥ H(Ã1, . . . , ÃN )

(a)
= H(Ã1, . . . , ÃN |B1, . . . , BM )

(b)
= H(ABθ, Ã1, . . . , ÃN |B1, . . . , BM )

= H(ABθ|B1, . . . , BM )

+H(Ã1, . . . , ÃN |ABθ, B1, . . . , BM )

(c)

≥ H(ABθ) +H(Ãn|ABθ, B1, . . . , BM )

(d)
= H(ABθ) +H(Ãn|B1, . . . , BM )

(e)
= H(ABθ) +H(Ãn) (8)

where (a) follows from the fact that Ãn’s are independent of
Bm’s for all m,n; (b) follows from decodability constraint; (c)
is due to the fact that H(ABθ|B1, . . . , BM ) = H(ABθ) by
security constraint; (d) also follows from security constraint
and the fact that A,B1, . . . , BM are all independent of each
other so that ABθ can be removed from the conditioning;
(e) follows due to independence of Ãn and {B1, . . . , BM}.
Summing up (8) for all n, we have N(

∑N
n=1H(Ãn)) ≥

NH(ABθ) +
∑N
n=1H(Ãn). By rearranging, we obtain

U =

∑N
n=1H(Ãn)

H(ABθ)
≥ N

N − 1
, (9)

completing the proof of Proposition 1.



III. MAIN RESULTS AND DISCUSSION

Theorem 1. For the secure and private matrix multiplication
problem with N non-colluding servers, where each server has
access to M public matrices, the lower convex hull of

(U,D) =

(
N

K − 1
,

K

K − 1

(
1 +

K

N
+ · · ·+

(
K

N

)M−1))

for K = 2, . . . , N is achievable.

Remark 1. In Theorem 1, by varying the parameter K, we
can trade off upload cost for download cost. We note that for
minimum upload cost, i.e., when K = N and U = N/(N−1),
and M = 1 (i.e., no privacy constraint), the download cost of
D = N/(N−1) is information-theoretically optimal as shown
in our previous work [6].

Remark 2. We compare our scheme to the scheme in [12].
For any two integers (m1,m2), the scheme in [12] uses N =
(m1 + 1)(m2 + 1) servers to achieve a lower convex hull of
(U,D) = (N/m1, N/m1m2). In the simulation, we let N =
12,M = 6 and K = 2, . . . , 12 for our proposed scheme. We
used (m1,m2) = (1, 5), (2, 3), (3, 2), (5, 1) for the scheme in
[12] to ensure that N = 12. The scheme in [12] essentially
achieves (U,D) = (N/(K − 1), (K/(K − 1))(N/(N −K)))
for K = 2, 3, 4, 6 in this example. In Fig. 2, we compare
the proposed scheme of this paper with that in [12]. We next
make the following observations: for the same upload cost, the
download cost of the proposed scheme is smaller. Furthermore,
there are several (U,D) pairs that the scheme in [12] cannot
achieve, particularly for smaller values of upload cost.

A. Illustrative Example: (N = 4,M = 2,K = 3)

We next demonstrate the proposed achievable scheme
through an example to illustrate the main ideas. Suppose there
are N = 4 non-colluding servers and each server has access to
all M = 2 matrices, namely B1 and B2, whose dimensions are
all d2×d3. Assume that the user wants to compute AB1, and
the index θ = 1 must be kept private. The user first partitions
the matrix A into A = [AT1 AT2 ]T , where each Ai is of size
(d1/2)×d2, i = 1, 2. The desired computation AB1 becomes
AB1 = [(A1B1)T (A2B1)T ]T . To provide security, Ai’s are
encoded using a secure (N,K) = (4, 3) MDS code as follows:

Ãn = A1 +A2xn +Rx2n, n = 1, . . . , 4, (10)

where R ∈ F(d1/2)×d2 is a random matrix (independent of A),
whose entries are i.i.d. uniform random variables, and xn is a
distinct element in F assigned to server n. The user then sends
Ãn to server n and instructs them to multiply their respective
Ãn with all Bm’s. Specifically, each server n computes

ÃnBm = A1Bm +A2Bmxn +RBmx
2
n, m = 1, 2. (11)

To simplify the notation, we let hTnW
(m) , ÃnBm, where

hn =




1
xn
x2n


 , W (m) =



A1Bm
A2Bm
RBm


 . (12)

0 2 4 6 8 10 12
Normalized Upload Cost

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 D
ow

nl
oa

d 
C

os
t

Proposed Scheme
Scheme in [11]

Fig. 2: Comparison between our proposed scheme and the scheme in
[12], with N = 12,M = 6 and K = 2, 3, . . . , 12.

Due to the properties of the (4, 3) MDS code, we need at
least three different hTnW

(m) (viewed as three evaluations
of a polynomial) to decode the desired result W (1) whose
components can then be used to recover AB1 (via polynomial
interpolation). However, only downloading hTnW

(1) from any
three servers will clearly violate the privacy constraint. Thus,
to retrieve the answers while preserving privacy, we adopt a
similar downloading strategy for the PIR problem with coded
databases in [14]. The user asks each server n to divide each
hTnW

(m), m = 1, 2 into NM = 42 = 16 blocks vertically,
i.e.,

hTnW
(m) =




hTnW
(m)
1

...
hTnW

(m)
16


 , ∀n,m. (13)

Note that each block is composed of rows of the results, each
one of which is coded using (4, 3) MDS code.

The privacy preserving download scheme is broken into
repetitions and rounds. Within each repetition, there are
M = 2 rounds, and there are a total of K = 3 rep-
etitions. In Repetition 1, Round 1, the user downloads 3
blocks of the desired computation W (1) from each server,
i.e., hT1W

(1)
[1:3] from server 1, hT2W

(1)
[4:6] from server 2 and

so on. To maintain privacy, the user needs to download
equivalent amount of blocks of the undesired computation
W (2). In order to utilize the undesired blocks, the user needs
to be able to decode the undesired blocks. Hence, the user
downloads hT1W

(2)
1 , hT2W

(2)
1 and hT3W

(2)
1 from server 1, 2

and 3, respectively; downloads hT4W
(2)
2 , hT1W

(2)
2 and hT2W

(2)
2

from server 4, 1 and 2 respectively, and so on, until all W (2)
[1:4]

can be decoded (see Table 3).
In Round 2, we pair up a new block of W (1) and a

undesired block of W (2) decoded from Round 1 and let
the user download the sum of them. Since the user has not
downloaded W (2)

4 from server 1, the user can ask server 1 to
send hT1W

(2)
4 + hT1W

(1)
13 . Similarly, the user can ask server

2 to send hT2W
(2)
3 + hT2W

(1)
14 and so on. Clearly, the user

can use W
(2)
[1:4] from Round 1 as side information to obtain

hT1W
(1)
13 , h

T
2W

(1)
14 , h

T
3W

(1)
15 and hT4W

(1)
16 . In Repetition 1, the

user ends up downloading all the blocks of W (1) once (12



1 2 3 4

Server

R
o
u
n
d
1

R
ou

n
d
1

R
ou

n
d
1

R
o
u
n
d
2

R
o
u
n
d
2

R
ou

n
d
2

R
ep

et
it
io
n
1

R
ep

et
it
io
n
2

R
ep

et
it
io
n
3

h1W
(1)
1

h1W
(1)
2

h1W
(1)
3

h1W
(2)
3

h1W
(2)
2

h1W
(2)
1

h1W
(1)
10

h1W
(1)
11

h1W
(1)
12

h1W
(2)
5

h1W
(2)
6

h1W
(2)
7

h1W
(1)
7

h1W
(1)
8

h1W
(1)
9

h1W
(2)
9

h1W
(2)
10

h1W
(2)
11

h2W
(1)
4

h2W
(1)
5

h2W
(1)
6

h2W
(2)
1

h2W
(2)
2

h2W
(2)
4

h2W
(1)
1

h2W
(1)
2

h2W
(1)
3

h2W
(2)
5

h2W
(2)
6

h2W
(2)
8

h2W
(1)
10

h2W
(1)
11

h2W
(1)
12

h2W
(2)
9

h2W
(2)
10

h2W
(2)
12

h3W
(1)
7

h3W
(1)
8

h3W
(1)
9

h3W
(2)
1

h3W
(2)
3

h3W
(2)
4

h3W
(1)
4

h3W
(1)
5

h3W
(1)
6

h3W
(2)
5

h3W
(2)
7

h3W
(2)
8

h3W
(1)
1

h3W
(1)
2

h3W
(1)
3

h3W
(2)
9

h3W
(2)
11

h3W
(2)
12

h4W
(1)
10

h4W
(1)
11

h4W
(1)
12

h4W
(2)
2

h4W
(2)
3

h4W
(2)
4

h4W
(1)
7

h4W
(1)
8

h4W
(1)
9

h4W
(2)
6

h4W
(2)
7

h4W
(2)
8

h4W
(1)
4

h4W
(1)
5

h4W
(1)
6

h4W
(2)
10

h4W
(2)
11

h4W
(2)
12

+

h1W
(2)
4

h1W
(1)
13

+
h1W

(1)
15

h1W
(2)
12

+
h1W

(1)
16

h1W
(2)
8

+

h2W
(2)
3

h2W
(1)
14

+

h2W
(2)
7

h2W
(1)
13

+

h2W
(2)
11

h2W
(1)
16

+
h3W

(1)
15

h3W
(2)
2

+
h3W

(1)
14

h3W
(2)
6

+
h3W

(1)
13

h3W
(2)
10

+

h4W
(2)
1

h4W
(1)
16

+

h4W
(2)
5

h4W
(1)
15

+

h4W
(2)
9

h4W
(1)
14

Fig. 3: Downloading strategy for (N = 4,M = 2,K = 3).

from Round 1, and 4 from Round 2). In order to decode
W (1), the user needs to download all 16 blocks two more
times with different linear combinations. Thus, the user can
follow the same downloading pattern with a right shift of
indices in Repetition 2 and one more shift in Repetition 3 with
new side information. The normalized upload and download
costs of the scheme are given by U = 4/(3 − 1) = 2 and
D = (3× 28)/(2× 16) = 21/8 per bit. We next describe the
general scheme in the following section.

IV. PROOF OF THEOREM 1

We now present the achievable scheme, which can be
broken into two phases: (1) secure upload; and (2) private
download.
Phase 1 (Secure Upload): Assume that the user wants to
compute ABθ, θ ∈ {1, . . . ,M}. For a given parameter K,
the user first divides the input matrix A into K − 1 partitions
vertically into A = [AT1 . . . ATK−1]T , where each Ai is of
size d1/(K − 1)× d2. The goal can be written as

ABθ =




A1Bθ
...

AK−1Bθ


 . (14)

The confidential matrix A is encoded as follows:

Ãn =
K−1∑

i=1

Aix
i−1
n +RxK−1n (15)

for server n, where R is a random matrix with the same
dimension as any Ai, with uniformly distributed i.i.d. entries,
and xn is a distinct element in F assigned to server n. The user
uploads Ãn to server n and instructs each server to multiply
their respective Ãn with all the Bm’s, i.e.,

ÃnBm =
K−1∑

i=1

AiBmx
i−1
n +RBmx

K−1
n , ∀m, (16)

which can be written as hTnW
(m), where

hn =




1
xn
...

xK−1n


 , W

(m) =




A1Bm
...

AK−1Bm
RBm


 . (17)

It is clear that total normalized upload cost is U = N/(K−1).
Phase 2 (Private Download): We use a similar downloading
technique that was proposed in [14]. Thus, before the user
downloads anything from servers, the user first asks each
server n to partition the results ÃnBm into blocks as follows

hTnW
(m) =




hTnW
(m)
1

...
hTnW

(m)

NM


 , ∀m, (18)

where each block is of size d1/(NM (K − 1))× d3. The user
organizes the download into repetitions and rounds. Within
each repetition, there are M rounds, and there are a total of
K repetitions. Since the download pattern in each repetition is
a cyclic shift of the previous repetition, we focus on describing
the details of rounds.

In Round i = 1 of Repetition 1, the user downloads
KM−1 desired blocks from each server, where the user down-
loads hTnW

(θ)

(n−1)KM−1+1
, . . . , hTnW

(θ)

nKM−1 from server n, ∀n.
A total of NKM−1 distinct desired blocks are downloaded
in this step. However, in order to ensure privacy, the user
needs to enforce message symmetry. In other words, the user
needs to download equal number of blocks of each undesired
computation hTnW

(m), m = 1, . . . ,M,m 6= θ from server n.
While undesired, these blocks can be used as side information
in the next round. To ensure that the undesired blocks can be
used as side information, the user needs to be able to decode
those undesired blocks, i.e., obtain W

(m)
j for some j and

m 6= θ. Since each block is encoded using (N,K) MDS code,
the user needs to download each hTnW

(m)
j from at least K

different servers, for a fixed m 6= θ and j. The user can choose



to download hTnW
(m)
jp

from server n = K(p−1) + 1, . . . ,Kp

mod N and p = 1, . . . , NKM−2 for all m 6= θ. Note that if
n mod N = 0, we set that n to N . Since each hTnW

(m)
jp

is

downloaded from K servers, the user is able to decode W (m)
jp

.

Hence, the user can cancel the contribution of any W
(m)
jp

in
the subsequent rounds. In general, in any given Round i, the
user downloads hTn′W

(m1)
`1

+ hTn′W
(m2)
`2

+ · · · + hTn′W
(mi)
`i

,
where n′ = n, . . . , n + K − 1, m1, . . . ,mi ∈ {1, . . . ,M}\θ
and `1, . . . , `i ∈ {1, . . . , NM}. Thus, the amount of side infor-
mation available at the user is N

(
M−1
i

)
KM−i−1(N −K)i−1.

Since for a particular block of side information, there are
N −K servers who did not download that block, we can pair
that block with a fresh desired block at those N −K servers.
Starting from Round i + 1, the user downloads the sums of
i+ 1 blocks from different computations with the help of side
information from last round. The user downloads a fresh block
of hTnW

(θ) and i blocks of side information decoded from last
round, i.e., hTnW

(θ)
r1 + hTnW

(m1)
`1

+ · · ·+ hTnW
(mi)
`i

, where r1
is the new block of W (θ) from server n. This allows the user
to obtain N

(
M−1
i

)
KM−i−1(N −K)i fresh desired blocks.

The user can repeat this process K times except the indices
for desired blocks are shifted right once in every repetition
and fresh indices are chosen for side information in every
repetition. Since each desired block is downloaded K times
from K different source, the user can easily decode W (θ),
hence, recover ABθ. This allows the user to download a total
of K

∑M−1
i=1 N

(
M−1
i

)
KM−i(N − K)i−1 undesired blocks

and a total of K
∑M−1
i=0 N

(
M−1
i

)
KM−i−1(N −K)i desired

blocks. Note that each desired block has K terms, however,
only K − 1 of those terms are actually useful due to the
addition of the random matrix (for ensuring confidentiality of
the matrix A). Hence, the download cost for this scheme is

D =
total downloaded
K−1
K × total desired

=
K

K − 1

(
1 +

total undesired
total desired

)

=
K

K − 1

(
1 +

K
∑M−1
i=1 N

(
M−1
i

)
KM−i(N −K)i−1

K
∑M−1
i=0 N

(
M−1
i

)
KM−i−1(N −K)i

)

=
K

K − 1

(
1 +

K
N−K

∑M−1
i=1

(
M−1
i

)
KM−1−i(N −K)i

NM−1

)

=
K

K − 1

(
1 +

K
N−K

(
NM−1 −KM−1)

NM−1

)

=
K

K − 1

(
1 +

K

N −K

(
1−

(
K

N

)M−1))

=
K

K − 1

(
N −K(KN )M−1

N −K

)
=

K

K − 1

(
1− (KN )M

1− K
N

)
,

which leads to the expression of the normalized download cost
D in Theorem 1. This completes the proof of Theorem 1.

V. CONCLUSIONS

In this paper, we studied the problem of secure and private
matrix multiplication. We proposed a new scheme that com-

bines ideas from secret sharing and coded PIR. We showed
that the lower convex hull of (U,D) = (N/(K−1), (K/(K−
1))(1 + (K/N) + · · · + (K/N)M−1)) for K = 2, . . . , N is
achievable. We also show that our scheme performs better
than the scheme proposed in [12] in terms of upload and
download cost. An interesting future direction is to obtain
converse results for the tradeoff between upload/download cost
for this problem.

REFERENCES

[1] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler Mitigation
in Distributed Matrix Multiplication: Fundamental Limits and Optimal
Coding,” CoRR, vol. abs/1801.07487, 2018. [Online]. Available:
http://arxiv.org/abs/1801.07487

[2] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. R. Cadambe,
and P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” CoRR, vol. abs/1801.10292, 2018. [Online]. Available:
http://arxiv.org/abs/1801.10292

[3] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
distributed computing,” in 2017 IEEE International Symposium on
Information Theory (ISIT), Jun. 2017, pp. 2900–2904.

[4] H. A. Nodehi and M. A. Maddah-Ali, “Limited-sharing multi-party
computation for massive matrix operations,” in 2018 IEEE International
Symposium on Information Theory (ISIT), Jun. 2018, pp. 1231–1235.

[5] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange
Coded Computing: Optimal Design for Resiliency, Security and
Privacy,” CoRR, vol. abs/1806.00939, 2018. [Online]. Available:
http://arxiv.org/abs/1806.00939

[6] W. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference
(GLOBECOM), Dec. 2018, pp. 1–6.

[7] H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 1, pp. 141–150, Jan 2019.

[8] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-
robustness through partition in distributed two-sided secure matrix
computation,” CoRR, vol. abs/1810.13006, 2018. [Online]. Available:
http://arxiv.org/abs/1810.13006

[9] R. G. L. D’Oliveira, S. E. Rouayheb, and D. A. Karpuk, “GASP codes
for secure distributed matrix multiplication,” CoRR, vol. abs/1812.09962,
2018. [Online]. Available: http://arxiv.org/abs/1812.09962

[10] M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and
private coded matrix computation with flexible communication
load,” CoRR, vol. abs/1901.07705, 2019. [Online]. Available: http:
//arxiv.org/abs/1901.07705

[11] W. Chang and R. Tandon, “On the Capacity of Secure Distributed Fast
Fourier Transform,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Nov. 2018, pp. 653–657.

[12] M. Kim and J. Lee, “Private secure coded computation,” CoRR, vol.
abs/1902.00167, 2019. [Online]. Available: http://arxiv.org/abs/1902.
00167

[13] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–
4088, Jul. 2017.

[14] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1945–1956, March 2018.

[15] H. Sun and S. A. Jafar, “The capacity of private computation,” CoRR,
vol. abs/1710.11098, 2017. [Online]. Available: http://arxiv.org/abs/
1710.11098

[16] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,”
in 2018 Iran Workshop on Communication and Information Theory
(IWCIT), Apr. 2018, pp. 1–6.

[17] D. Karpuk, “Private computation of systematically encoded data with
colluding servers,” in 2018 IEEE International Symposium on Informa-
tion Theory (ISIT), Jun. 2018, pp. 2112–2116.

[18] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval
from MDS coded databases,” in 2018 IEEE International Symposium on
Information Theory (ISIT), Jun. 2018, pp. 2117–2121.


