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Using basic considerations on the average power absorbed in ultra-thin 
conducting films, we derive a closed-form expression for the average electric-
field intensity enhancement (FIE) due to epsilon-near-zero (ENZ) polariton 
modes. We show that FIE in ENZ media with realistic losses reaches a 
maximum value in the limit of ultra-small film thickness. The maximum value is 
reciprocal to the second power of ENZ losses. This is illustrated in an exemplary 
series of aluminum-doped zinc oxide nanolayers of varying thickness grown by 
atomic layer deposition technique. The limiting behavior of FIE is shown in 
exact cases of the perfect absorption, normal incidence, and in a case of ultra-
thin lossless ENZ films. Only in the case of lossless ENZ films FIE is inversely 
proportional to the second power of film thickness as it was predicted by 
S. Campione, et al. [Phys. Rev. B 91, 121408(R) (2015)]. We also show that FIE 
could achieve values as high as 100,000 in ultra-thin polar semiconductor films, 
which have losses as small as 0.02 close to the longitudinal optic (LO) phonon 
frequency. 

 
Electromagnetic filed confinement and field intensity enhancement (FIE) of metal nanostructures 
are fundamental components of plasmonics and nanophotonics and the base of plasmonic and 
metamaterials technologies [1-3]. Intrinsic loss and nonlocality of the dielectric response of 
metal nanostructures limit FIE [3,4] and so present a significant challenge to plasmonic 
technologies [5,6]. Recently, conductive materials with vanishing real part of electric 
permittivity, i.e. Re(e) ® 0, or epsilon-near-zero (ENZ) materials are found to be beneficial for 
strong field confinement in subwavelength dimensions. ENZ media with very low (zero) 
intrinsic loss, i.e. Im(e) ® 0, have near-zero refractive index and very unusual wave dynamics 
[7-9]. Loss of ENZ media affects their optical properties, e.g. induce the anti-Snell’s law of 
refraction [10,11], but also limits the performance of ENZ materials [12-14]. Several solutions to 
the loss reduction have been proposed, e.g. using gain-media [12] and structural dispersion 
engineering [15]. Ultra-thin films of ENZ media under TM-polarized excitation support 
plasmon-polariton modes near the ENZ frequency, the so-called ENZ modes [16-18]. The 
excitation of these ENZ modes leads to an enhanced optical local density of states and therefore 
to an enhanced absorption and FIE. Some aspects of the polariton resonances in ENZ slabs with 
negligible-to-moderate losses, i.e. Im(e) << 1, have been discussed in Ref. [19]. For example, it 
has been shown that the quality factor of polariton resonance in term of angular bandwidth is 
weakly affected by the presence of the moderate losses. A model describing transmission, 
reflection, and absorption coefficients and local FIE in subwavelength ENZ slabs have been 
presented in Ref. [20]. However, the analysis mainly deals with lossless and loss-compensated 
ENZ metamaterials and only briefly discuss the effects of losses [21]. FIE dependence on the 



thickness of ultra-thin ENZ films has been shown in Ref. [18], but limited to the lossless case. 
Large and almost independent of the film thickness FIE is shown in Ref [22] in a uniaxially 
anisotropic ENZ film with both transverse and longitudinal loss of Im(e) = 0.001-0.05, an 
alternative metamaterial to lossy isotropic EZN films.  
In this letter, using basic considerations on power absorbed in isotropic ultra-thin ENZ films, we 
derive a closed-form expression for an average FIE in realistic ENZ media with inherent optical 
loss. Quantitative description of the FIE dependence on the intrinsic losses of ENZ films was still 
missing. We show the dependence of FIE on absorptance of ultra-thin ENZ film due to the 
excitation of polariton modes and discuss FIE asymptotic values in the limits of ultra-small ENZ 
film thickness and loss. Absorptance of ENZ films is obtainable experimentally and thus FIE 
could be readily maximized for emerging applications of ENZ media. The limiting behavior of 
FIE is shown in the following three cases: 

1. The perfect absorption due to ENZ mode excitation; 
2. Normal incidence of light and finite ENZ losses; 
3. Oblique incidence and infinitesimal losses.  

We consider an ultra-thin absorbing film of permittivity e(l) = Re(e) + i Im(e) and thickness, d, 
bounded by two semi-infinite media: incident medium with refractive index n0 and the substrate 
with refractive index ns (generally complex) (Fig. 1). The film is illuminated by TM-polarized 
plane wave at an angle of incidence q0. The film thickness normalized to the wavelength of 
incident light, l, and permittivity satisfy the following conditions:  

  and . (1) 

The last inequality with vanishing real part of permittivity defines ENZ medium, but also reflects 
the fact that realistic ENZ media could have high material loss. For example, aluminum-doped 
zinc oxide (ZnO:Al) has permittivity described by the Drude model in a wavelength range 
adjacent to ENZ wavelength with Im(e) ~ 1 at ENZ wavelength [23].  

 

 
 

Fig. 1. Schematic of the ultra-thin ENZ film of thickness d and permittivity e illuminated by TM-polarized light of wavelength l 
at an angle of incidence q0. The incidence medium and substrate have refractive index n0 and ns, respectively; n0 is real, while ns 
could be complex (e.g., metal).  
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The considered ultra-thin absorbing ENZ film supports plasmon-polariton modes described by 
the following dispersion relationship [16,18]:  

 , (2) 

where ,  (j = 0, s), , and . The solutions of Eq. (2) 

are sought by assuming complex-valued l and real-valued ne [24]. Depending on a value of the 
ratio of the refractive indexes of surrounding media, or refractive index contrast , there 
are three different solutions of Eq. (2) or Modes 1-3: 

a) Mode 1 – a bound ENZ mode if both n0 and ns are real and n < 1 [16,18].  

b) Mode 2 – a radiative ENZ mode if both n0 and ns are real and n > 1 [25].  
c) Mode 3 – a radiative Berreman mode if ns is complex, e.g. the substrate is metal [17,26].  

 
Figure 2 shows an example of the dispersion characteristics Eq. (2) for the Mode 1-3 in a ZnO:Al 
nanolayer with a thickness of 58 nm grown by atomic layer deposition (ALD) (for details on 
fabrication and optical properties of ZnO:Al nanolayers see [23]). The permittivity of the 
nanolayer is described by the Drude model: , where e¥ = 3.7, plasma 

frequency wp = 2.4 ´ 1015 Hz, and electron collision rate G = 2.8 ´ 1014 Hz. The dispersion 
characteristics are close to the ENZ wavelength, lENZ. In this letter, we will study the 
dependence of an average FIE on optical losses and the thickness of ultra-thin ENZ films that 
support these three ENZ modes.  

 

Fig. 2. An example of the dispersion characteristics for the Mode 1-3 supported by a ZnO:Al nanolayer with a thickness of 58 nm 
[23]. The ENZ wavelength, lENZ, is 1562 nm. The vertical dotted line shows the critical angle of 41.8° for the Mode 1. In the 
calculation we assume that the permittivity of the ZnO:Al nanolayer is described by the Drude model. We also assume n0 = 1.5 
and ns = 1 for Mode 1, n0 = 1 and ns = 1.44 for Mode 2, and n0 = 1 and ns = 0.34 + i11 (gold) for Mode 3. 
 
Excitation of the ENZ modes leads to enhanced photonic local density of states (LDOS) and 
hence enhanced absorptance and FIE in ultra-thin ENZ films. The absorbed power per unit 
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volume of an isotropic conducting film in harmonic electromagnetic fields with the time 
dependence of  can be calculated from the divergence of the Poynting vector [27]: 

  (3) 

where the angle brackets mean time average. Another derivation of the last equation in Eq. (3) is 
shown in [28]. Using Eq. (3), we derive the following expression for an average absorbed power 
per unit area of non-magnetic films: 

 . (4) 

Here, E is the average (integrated over the film thickness) electric field inside the film, which is 
different from a local field that depends on spatial coordinates. The power of the incident plane 
wave per unit area and unit time is: 

 , (5) 

where E0 is the incident field, n0 is the refractive index of the incidence medium. From Eqs. (4) 
and (5), we find that absorptance is: 

 . (6) 

Therefore, FIE can be calculated from the absorptance using Eq. (6): 

 . (7) 

It is noteworthy that Eq. (7) has general validity, i.e. it is valid regardless of the excitation of a 
particular ENZ mode. It is also the average FIE inside the ENZ film that is different from a local 
FIE at the plane wave impinging boundary of the film discussed in [20]. The optical losses and 
thickness of the ENZ material enters in (7) directly as Im(e) and d and indirectly through the 
absorptance A. In order to show the total effect of the losses and thickness on FIE we have to 
complement Eq. (7) with the expression for absorptance of ultra-thin ENZ film. Reflection and 
transmission of plane waves incident upon an ENZ medium has been studied in [20,29,30]. 
Complex reflection and transmission coefficients of an ENZ slab for certain limiting conditions 
has been analyzed in [19,20]. We use another approach based upon the work by Abeles [31]. The 
absorptance of ultra-thin ENZ film illuminated by TM-polarized plane wave under oblique 
incidence [31,32]: 

 , , and , (8) 
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where R and T are the reflectance and transmittance, respectively, and  is the 
wave admittance of the j-medium (j = 0, s). The complex reflection and transmission 
coefficients, r and t, respectively, are given by: 

 ,  (9) 

 . (10) 

Here mkl (k, l = 1, 2) are the elements of the characteristic matrix: 

 . (11) 

The reflectance and transmittance in Eq. (8) are calculated at the top and bottom interfaces of 
ENZ film, respectively (see Fig. 1). It is noteworthy that the dispersion relationship (Eq. (2)) 
could be obtained by finding poles of the complex reflection coefficient r, Eq. (9).  
Using Eqs. (7) and (8) we can calculate the absorptance and FIE in ENZ media. An example of 
such calculations is given below for a ZnO:Al nanolayer at the ENZ wavelength of 1627 nm for 
the three ENZ modes (Fig. 3). The nanolayer has a thickness of 22 nm and is grown by ALD (for 
details on fabrication and characterization of ZnO:Al nanolayers see [23]). The absorptance and 
FIE curves show the maxima due to the excitation of the ENZ modes.  

 

Fig. 3. Angular dependence of (a) absorptance and (b) FIE for a ZnO:Al nanolayer with a thickness of 22 nm at the ENZ 
wavelength of 1627 nm (d = 0.08, Im(e) = 0.9) for the three ENZ modes: Mode 1 – a bound mode with n0 = 1.5 and ns = 1, Mode 
2 – a radiative mode with n0 = 1 and ns = 1.44, and Mode 3 – a radiative mode with n0 = 1 and ns = 0.34 + i 11 (gold). The 
vertical lines are: the critical angle of 41.8°, the quasi-Brewster angle of 69.2° (Eq. (12)), and the pseudo-Brewster angle of 84.8°. 
 
The angular position of the absorptance maxima is determined by the coupling conditions to a 
particular mode at a wavelength of interest (see Eq. (2)), e.g. the ENZ wavelength in this 
example. The dependence of the absorptance maxima on the thickness and loss of an ENZ film 
for the three modes is presented in the Supplemental Material. For ultra-thin ENZ films, 
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d << Im(e), the absorptance maximum for Mode 1 is found at the critical angle, qc = arcsin(n). 
The angle of the absorptance maximum for Mode 2 is given by the following expression:  

 . (12) 

We will be calling this angle a quasi-Brewster angle because it differs from the Brewster angle, 
qB = arctan(n), especially when n » 1 (Fig. 4). The Eq. (12) is obtained by finding the pole of the 
complex reflection coefficient (Eq. (9)) at a limit of zero ENZ film thickness. The angle of the 
absorptance maximum for Mode 3 is the pseudo-Brewster angle. The real-value solution of the 
pseudo-Brewster angle for the case of absorbing (complex-value) substrates is given in [33]. The 
angle of the absorptance maximum for all three modes is a function of the refractive index 
contrast n. This dependence for the real-value refractive index contrast is shown in Fig. 4. The 
FIE maxima (Fig. 3b) that correspond to the absorptance maxima in Fig. 3a are shifted to smaller 
angles because of the cos(q0) term in the Eq. (7).  

 

Fig. 4. The angle of the absorptance maximum as a function of the real-valued refractive index contrast n. The angle is the critical 
angle for Mode 1 (n < 1) and the quasi-Brewster angle of Eq. (12) for Mode 2 (n > 1).  
 
We first consider the Mode 1 in a series of ZnO:Al nanolayers with varying thickness. In a case 
of absorbing ENZ films, the absorptance maxima are approaching the critical angle of 41.8° 
when the film thickness decreases (Fig. 5). Absorptance of an ultra-thin ENZ film at the critical 
angle is proportional to the film thickness  

  (13) 

if the film thickness satisfies the following condition: 
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Fig. 5. Angular dependence of (a) absorptance and (b) FIE for a series of ZnO:Al nanolayers with varying thickness (see the 
legend) for the Mode 1 at the ENZ wavelength (cf. Fig. 3). The vertical dashed line shows the critical angle of 41.8º.  
 

 . (14) 

It can be shown that the linear relationship (14) between thickness and loss is the same with the 
one obtained in [34,35] for the perfect absorption in ultra-thin ENZ films. Substituting Eq. (13) 
into Eq. (7), we find an asymptotic value of FIE achievable in ultra-thin absorbing ENZ films 
due to the Mode 1: 

 . (15) 

It is important that FIE is reciprocal of the second power of the ENZ material losses. In our 
example of ZnO:Al nanolayers [23], the condition (14) is satisfied for the nanolayer thicknesses 
much smaller than 107 nm (the value of dth » 0.45) and a value of the maximum FIE calculated 
from Eq. (7) for the thinnest nanolayer is 8 (Fig. 6). This value approaches the asymptotic value 
of 11 for the average FIE in the ZnO:Al nanolayers calculated using Eq. (15). It is important that 
the FIE for Mode 1 could achieve values as high as 100,000 in ultra-thin polar semiconductor 
films, such as aluminum nitride (AlN), which have losses as small as 0.02 close to the 
longitudinal optic (LO) phonon frequency of 27 THz. This follows from the Eq. (15). FIE values 
larger than 3,600 has been shown for AlN polaritons in [36] but for Mode 3, which we discuss 
later.  
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Fig. 6. Thickness dependence of the maximum FIE for a series of ZnO:Al nanolayers with varying thickness for the three ENZ 
modes at the ENZ wavelength: Mode 1 – a bound mode excited in the Kretschmann configuration (n0 = 1.5, ns = 1), Mode 2 – a 
radiative mode in the nanolayer supported by glass (n0 = 1, ns = 1.44), and Mode 3 – a radiative mode in the nanolayer supported 
by metal (gold) (n0 = 1, ns = 0.34 + i 11). Red dash curve shows 1/d 2 dependence in the limit of zero losses. Horizontal dashed 
lines show the asymptotic values of the maximum FIE, namely 1.2, 4.1, and 11.0 for Mode 2, Mode 3, and Mode 1, respectively. 
 
As the thickness of the ENZ film increases the absorptance increases and at a certain thickness 
reaches unity or the perfect absorption (Fig. 5a). In the case of the perfect absorption, i.e. A = 1, 
the thickness of the ENZ film normalized to the perfect absorption wavelength, d, satisfies the 
critical coupling condition [34,35,37,38] and is related to the permittivity of the ENZ film and 
the angle of incidence as follows: 

 . (16) 

Substituting (16) into (7) gives FIE at the perfect absorption condition: 

 . (17) 

Therefore, at the perfect absorption conditions, FIE is inversely proportional to the second power 
of ENZ losses (if the perfect absorption wavelength is equal to ENZ wavelength then Re(e) = 0). 
It should be noted that FIE of the perfect absorption Eq. (17) is thickness dependent because of 
the thickness dependence of the perfect absorption angle and ENZ mode dispersion. For the 
Mode 1 considered above, the perfect absorption occurs at the critical angle (Fig. 5), i.e. at the 
same angle as the maximum asymptotic FIE value of ultra-thin ENZ films (cf. Eq. (15)). FIE in 
thicker ENZ films with the perfect absorption (Eq. (17)) is smaller than the maximum FIE value 
of ultra-thin ENZ films (Eq. (15)) by an approximate factor of 4 (Fig. 6).  
In the case of Mode 2 and Mode 3, the maximum absorptance occurs at the quasi- and pseudo-
Brewster angles, respectively (Fig. 3a), and is proportional to the ENZ film thickness to the first-
order in d (d << Im(e)). Therefore, FIE is thickness independent (cf. Eq. (7)) and limited in lossy 
ultra-thin ENZ films (Fig. 7). The limiting FIE values of Mode 2 and Mode 3 are smaller than 
the FIE value of Mode 1, Eq. (15) (Fig. 6). Also, similar to Mode 1, FIE is inversely proportional 
to the second power of ENZ losses for Mode 2 and Mode 3 (Fig. 7).  
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Maximizing FIE needs minimizing ENZ losses. In order to illustrate the effect of losses on the 
FIE in ultra-thin ENZ layers, we calculated the angular and thickness dependences of the FIE 
maximum for a range of loss values found in realistic ENZ media and the results are shown in 
Fig. 7. It is seen from the figure that FIE reaches its maximum value for the thickness 
d << Im(e). The FIE increases with decreasing losses as 1/Im(e)2. For a fixed ENZ losses, FIE of 
Mode 1 decreases as the film thickness increases and, after reaching a certain thickness 
threshold, decreases at a slower pace at angles much smaller than the critical angle. For larger 
film thickness, the FIE dependence for Mode 1 resembles the one for Mode 2 (see black dotted 
lines in Fig. 7a).  

 

Fig. 7. Thickness and angular dependence of normalized FIE values for Mode 1 (a), Mode 2 (b), and Mode 3 (c) at ENZ 
wavelength. The refractive indexes are the same as in Fig. 2 and Fig. 3 and loss values are shown in the legend. Open green 
circles shows experimental ZnO:Al data. Insets show the 1/Im(e)2 dependence of the maximum FIE (at d £ 0.001). The maximum 
FIE is used to normalize FIE data. The critical, Brewster, and pseudo-Brewster angles are used to normalize FIE angles for Mode 
1, Mode 2, and Mode 3, respectively. The black dash-dot line in (a) shows FIE at the critical angle and black dot lines show FIE 
and angle of the corresponding Mode 2 (FIE is normalized to the maximum FIE of Mode 1). 
 
Figure 8 shows calculated angular dependences of absorptance and FIE in an ZnO:Al nanolayer 
with a fixed thickness of 22 nm and varying ENZ losses at the ENZ wavelength. As losses 
become smaller than the film thickness, i.e. Im(e) < d, the maximum absorptance and FIE occur 
below the critical angle (cf. Fig. 7). This result is in an agreement with the one in [20].  
We consider now the limiting case of infinitesimal ENZ losses (although realistic ENZ materials 
always have some loss), the absorptance become zero and FIE approaches the following limit: 

 . (18) 

Equation (18) shows that, first, FIE in an ENZ film of a certain thickness become large and 
increases towards the small angles of incidence as the losses become infinitesimal (Fig. 8b). 
Second, FIE at a fixed angle is very large and scales with the thickness of ENZ film as the 
power-law with an exponent of -2 (see Eq. (18)). The later result agrees with the result in 
[18,20,22]. However, in realistic absorbing ENZ films with Im(e) ¹ 0, the FIE increases weaker 
then 1/d 2. In our ZnO:Al nanolayers with the losses Im(e) ~ 1 at the ENZ wavelength, FIE 
reaches the value of 8 in the thinnest nanolayer (Fig. 6).  
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Fig. 8. Angular dependence of (a) absorptance and (b) FIE of Mode 1 in ultra-thin ENZ film with a fixed thickness of 22 nm and 
varying ENZ losses (see the legend) at the ENZ wavelength of 1627 nm (d = 0.08). In the calculations we use n0 = 1.5 and ns = 1. 
The red dotted line in (b) shows the limiting case of infinitesimal ENZ losses Eq. (18). 
 

In the case of very small but finite material losses and the normal incidence, i.e. q = 0°, 
absorptance to the first-order approximation in d is: 

 . (19) 

From (19) it follows: 

 . (20) 

Therefore, FIE at normal incidence is small (Fig. 8) and does not depend on the material losses 
(which, however, are finite), ENZ mode (ns is real), and ENZ layer thickness if d << 1.  

In conclusions, we derive a closed-form analytical expression for the average electric-field 
intensity enhancement due to the radiative and bound ENZ modes in ultra-thin layers with non-
negligible optical losses – the real-world ENZ media. We show the dependence of FIE on losses 
of ENZ films and the film thickness. In absorbing ENZ films, FIE reaches a limiting value at the 
limit of deep subwavelength thicknesses. The limiting FIE value is reciprocal to the second 
power of the ENZ losses. In the case of lossless films, FIE can be described by a power-law 
dependence on film thickness with the exponent of -2 predicted by S. Campione, et al. [18]. We 
illustrate our analysis of the FIE dependence on ENZ film thickness with an example of ZnO:Al 
nanolayers of varying thicknesses grown by ALD. This study is important for maximizing FIE in 
nonlinear ENZ media [39] and applications of ENZ media in quantum plasmonics [40,41]. 
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