Journal of Computational Science Education

Volume 11, Issue 1

FreeCompilerCamp.org: Training for OpenMP Compiler
Development from Cloud

Anjia Wang

Alok Mishra

Chunhua Liao

Lawrence Livermore National Laboratory =~ Lawrence Livermore National Laboratory =~ Lawrence Livermore National Laboratory

Livermore, California, USA
University of North Carolina at Charlotte
Charlotte, North Carolina, USA
awangl5@uncc.edu

Yonghong Yan

University of North Carolina at Charlotte

Charlotte, North Carolina, USA
yyan7@uncc.edu

ABSTRACT

OpenMP is one of the most popular programming models to exploit
node-level parallelism of supercomputers. Many researchers are
interested in developing OpenMP compilers or extending existing
standard for new capabilities. However, there is a lack of training
resources for researchers who are involved in the compiler and
language development around OpenMP, making learning curve in
this area steep.

In this paper, we introduce an ongoing effort, FreeCompiler-
Camp.org, a free and open online learning platform aimed to train
researchers to quickly develop OpenMP compilers. The platform is
built on top of Play-With-Docker, a docker playground for users to
conduct experiments in an online terminal sandbox. It provides a
live training website that is set up on cloud, so anyone with internet
access and a web browser will be able to take the training. It also
enables developers with relevant skills to contribute new tutorials.
The entire training system is open-source and can be deployed on a
private server, workstation or even laptop for personal use. We have
created some initial tutorials to train users to learn how to extend
the Clang/LLVM and ROSE compiler to support new OpenMP fea-
tures. We welcome anyone to try out our system, give us feedback,
contribute new training courses, or enhance the training platform
to make it an effective learning resource for the HPC community.

1 INTRODUCTION

Due to the increasing complexity of supercomputer node archi-
tectures for high performance computing (HPC), high level pro-
gramming models are used to improve the productivity of using
supercomputers. OpenMP is considered by many as the de-facto
portable programming model for exploiting node-level parallelism
for supercomputers. Compiler support for OpenMP has been added

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/9

January 2020

Livermore, California, USA
Stony Brook University
Stony Brook, New York, USA
alok.mishra@stonybrook.edu

Livermore, California, USA
liao6@lInl.gov

Barbara Chapman
Stony Brook University
Stony Brook, New York, USA
Brookhaven National Laboratory
Upton, New York, USA
barbara.chapman@stonybrook.edu

in many open source compilers, such as GNU compiler collection,
Clang/LLVM, and ROSE source-to-source compiler frameworks,
as well as vendor compilers from Intel, Cray, NVIDIA and AMD.
More and more researchers are interested in conducting research
using OpenMP as a vehicle in the area of parallel programming
models, compiler technologies and computer systems. However,
one of the major challenges in developing an OpenMP compiler and
to extend OpenMP language is the steep learning curve of compiler
implementation and the development efforts of adding compiler
support for language extensions.

Fundamentally, compiler development is a complex and time
consuming task. Although many cloud-based, online learning plat-
forms [3, 21, 25, 30, 31] have been created for computer science
education, focusing on entry-level programming courses, there is a
clear lack of such resources to teach compiler development. Even
with the developer manuals of a compiler framework, it is difficult
for beginners to teach themselves how to modify compilers which
contains millions of lines of code. Training beginners by proficient
compiler developers consumes lots of time, human efforts and cost,
which is not scalable in the long term.

In this paper, we introduce an ongoing effort, FreeCompiler-
Camp.org, a free and open online learning platform aimed to train
researchers to quickly develop OpenMP compilers and help them
learn the skills of compiler development. FreeCompilerCamp.org
has several distinct features: 1) It allows anyone who is interested
in developing OpenMP compilers to learn the necessary skills for
free; 2) A live training website is set up so a web browser and an
Internet connection are the only requirements for anyone to take
the training; 3) It enables those who have the relevant skills to
contribute new tutorials; and 4) The entire training system is open-
source so it can be be deployed on a private server, workstation or
even personal laptop.

The remainder of the paper is divided as follows: Section 2 gives
background information for our work. Section 3 explains the chal-
lenges faced in giving compilers training and our solutions. Section
4 presents the implementation of the framework. Section 5 gives an
overview of the design of the tutorials with a few examples. Section

ISSN 2153-4136 53

Volume 11, Issue 1

6 covers work related to this paper. Finally Section 7 consists of the
conclusion and our future plans.

2 BACKGROUND

The goal of this work is to improve the effectiveness and scalability
of compiler development training for researchers, developers and
graduate students. We choose two OpenMP compilers, Clang/LLVM
and ROSE as examples. This section gives a brief introduction of
background information.

2.1 Compilers

Compilers are essential for HPC. As opposed to interpreted lan-
guages, programs written in compiled languages gives a better
performance and are more favorable towards high performance
computing. A compiler takes high-level human readable programs
written in programming languages, such as C/C++ or Fortran, and
converts them into low-level binary machine codes for a specific ar-
chitecture. The entire process of this transformation is complicated.
A compiler need to parse the code, check for syntax correctness,
gather necessary semantic information (like type checking or vari-
able declaration before use and so forth), then convert the source
from high level language to intermediate representation and before
transforming them into machine codes [10].

Today a compiler can do much more than converting a program
into machine instructions. As HPC hardware designs are evolving,
machines are becoming more and more complex, and issues which
need to be address by the programmers are also getting convoluted.
This raises the question about what more can a compiler do for the
programmers. Compilers have very complex designs so that the
work of an application developer becomes simpler. Owing to the
complexity of design, extending a compiler to add a new feature is a
very time consuming job. The development cycle of a compiler is at
least 3-5 years. Training programmers to do compiler development
is challenging to both the trainer and the trainee.

2.2 Clang/LLVM

LLVM [18] is the prime environment for developing new compilers
and language-processing tools. HPC programmers rely on compil-
ers and analysis tools. LLVM is the environment of choice for the
development of such tools, and thus should be of interest to many
HPC programmers. LLVM makes it easier to not only create new
languages, but to enhance the development of existing ones. Its
primary C/C++ compiler frontend is Clang. Today most supercom-
puting clusters deploy LLVM as one of their compilers due to the
following reasons:

(1) It provides a high-performance and up-to-date C/C++ com-
piler frontend Clang.

(2) Many researchers in HPC community enjoy Clang’s diag-
nostic abilities and static-analysis framework.

(3) It allows for tapping other languages that have an LLVM
back-end like Intel’s ISPC [27] and different scripting lan-
guages.

(4) It makes for compelling compiler research, as evident by the
plethora of projects built using LLVM [22].

Ever since its first release in 2003, LLVM has gone through a
plethora of changes and updates. With every release new features

54 ISSN 2153-4136

Journal of Computational Science Education

are added and older features are deleted or updated. Owing to these
diverse set of features and many more, using Clang/LLVM for de-
veloping a tool or a plugin is a very complex task. There are lots of
tutorials which are available for Clang/LLVM, but they are all just
text based tutorials and come with their own set of challenges.

2.3 ROSE

ROSE is an open source compiler infrastructure developed at Law-
erence Livermore National Laboratory (LLNL). It is designed to
build source-to-source program transformation and analysis tools
for Fortran, C, C++, OpenMP, and UPC applications[28]. Internally,
ROSE generates a uniform abstract syntax tree (AST) as its inter-
mediate representation (IR) for input codes. Sophisticated compiler
analyses, transformations and optimizations are developed on top
of the AST and encapsulated as simple function calls, which can
be readily leveraged by tool developers. The ROSE AST can be
optionally unparsed to human readable and compilable source files,
which in turn can be compiled into final executable by a traditional
compiler such as GCC or Intel compiler.

However, for users who are not familiar with the ROSE compiler,
it’s not easy to customize the framework because of the complexity
of ROSE. ROSE has more than two millions lines of code, includ-
ing tests, built-in projects and tutorial examples. Creating a new
transformation module could involve multiple functions, which are
located in different files that far away from each other. Like any
other compiler frameworks, ROSE compiler exposes its own API
functions for developers to traverse, analyze, and modify its abstract
syntax tree. Users not only need to learn the general knowledge
of compilers but also have to understand how ROSE API functions
work.

2.4 OpenMP

In HPC, OpenMP is the de-facto portable programming interface
for exploiting node-level parallelism [13]. OpenMP uses C/C++ di-
rectives and Fortran comments to annotate base language programs
written in C/C++ and Fortran, respectively. These annotations ex-
press additional semantics related to parallelism, worksharing, syn-
chronization, tasking, and so on. A compiler supporting OpenMP
can recognize OpenMP annotations and transform the annotated
input code into multi-threaded code calling some OpenMP runtime
functions.

There are multiple compilers implementing OpenMP, such as
GCC[4], Intel[5], Cray[12], IBM XL[7], Clang/LLVM and ROSE[20].
Most of the parallel constructs in OpenMP are realized through
compiler directives. This allows a serial program to be very easily
converted into a parallel one by just adding the necessary pre-
processor directives.

Figure. 1 is an OpenMP program to calculate PI in parallel. User
inserted an OpenMP parallel for directive at line 14-15 right
above the loop (Fig. 1a). An OpenMP compiler transforms (or low-
ers) the program into multi-threaded code with calls to runtime
library functions (Fig. 1b). In the lowered code, at line 11-23 the loop
block is outlined as a function containing the original statements
in the loop. At line 15, a runtime function call is used to split loop
iterations among several threads. At line 5 the main function passes

January 2020

Journal of Computational Science Education

Volume 11, Issue 1

#include <omp.h>
#include <stdio.h>

int num_steps = 10000;

int main() {

. // omitted headers and a data structure declaration storing variable addresses
static void OUT__1__2189__(void *__out_argv);
int main(int argc, char *xargv) {
. // omitted variable declarations
XOMP_parallel_start(OUT__1__2189 &__out_argvl__2189

XOMP_parallel_end("demo.c",15);

1,0,"demo.c",10);

— —

XOMP_terminate(status);

double x = 0; pi = step * sum;
double sum = 0.0; printf("%f\n",pi);
double pi;

int 1i; }

double step = 1.0/(double) num_steps;

// Run the code in parallel
#pragma omp parallel for private(i,x) \
reduction(+:sum) schedule(static)
for (i=0; i<num_steps; i=i+1) {
X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi=step*sum;
printf("%f\n", pi);

static void OUT__1__2189__(void *__out_argv) {
... // omitted variable declarations
double *sum = (double *)(((struct OUT__1__2189___data *)__out_argv) -> sum_p);
double *step = (double *)(((struct OUT__1__2189___data *)__out_argv) -> step_p);
XOMP_loop_default(@,num_steps - 1,1,8&p_lower_,&p_upper_);
for (p_index_ = p_lower_; p_index_ <= p_upper_; p_index_ = p_index_ + 1) {
_p_x = (p_index_ + 0.5) * xstep;
_p_sum = _p_sum + 4.0 / (1.0 + _p_x * _p_X);
}
XOMP_atomic_start();
*Sum = *sum + _p_sum;
XOMP_atomic_end(); XOMP_barrier();

} 3 |}

(a) OpenMP program to calculate PI

(b) Transformed (or Lowered) code

Figure 1: PI calculation using OpenMP and its corresponding multi-threaded code generated by ROSE

the outlined function’s pointer to another runtime function which
will spawn multiple threads to execute the outlined function.

The initial OpenMP standard in 1997 only specified a handful of
directives. Since then, substantial amount of new constructs have
been introduced and most existing APIs have been enhanced in
each revision [14]. The latest version of OpenMP 5.0, released in
2018, has more than 60 directives. Compiler support thus requires
more efforts than before [19]. A full compiler implementation of the
latest OpenMP standard for both C/C++ and Fortran would involve
a large amount of development efforts spanning multiple years.
Furthermore, more and more researchers and developers are inter-
ested in designing various extensions to OpenMP in order to tame
the increasing complexity of heterogeneous node designs in high
performance computing. Such extensions could be used to enhance

Pain Points Description

the expressiveness, performance or productivity of OpenMP. Sup-
port for those extensions requires significant amount of compiler
development.

3 CHALLENGES AND SOLUTIONS

Table 1 summarizes the main pain points for compiler training.
For example, one of the first problems for developers is getting
hands on a machine which is suitable for compiler development.
Getting access to a supercomputing cluster could be a challenge
and a potential deterrent for many. The second, and the most frus-
trating challenge for beginners is making sure that all the software
packages necessary for developing a compiler are met on the said
machine. Sometimes user might not have suitable access to install
certain dependencies. Or sometimes the dependencies are just too
complex to resolve on a particular machines. One solution to these

Proposed Solution

compiler development

Accessibility Paperwork to get accounts on suitable machines Online sandbox terminal open to anyone

Installation Many software packages are needed Docker images

Effectiveness Traditional text tutorials are not effective Learning by doing, testing, certification

Content No single person/group knows all details of OpenMP Self-made tutorials + crowd-sourcing to accept external

contributions

Design trade-offs | One compiler cannot demonstrate all options

Hosting tutorials for multiple compilers

Costs

Hosting websites with containers costs money

Open-source, self-deployable framework

Online websites have inherent risks

Security

Containers + Cloud machines

Table 1: Pain points and solutions for training OpenMP compiler developers

January 2020

ISSN 2153-4136 55

Volume 11, Issue 1

two problems is to provide a free online sandbox terminal which
will already have an environment setup for compiler development.

Based on our experiences, traditional text tutorials are not as
effective for compilers development, as hands-on tutorials. If a
framework is provided which gives its users an option to learn by
hand-on practice, freedom to dig deep and perform self experiments,
then such a framework will be most efficacious way of teaching
compilers.

Another problem of creating the content of compiler develop-
ment, especially for OpenMP, is that no one person or group knows
all the details of OpenMP implementations since they involve many
compilation and runtime stages including parsing, AST, transfor-
mation, as well as runtime support. No one implementation demon-
strate all the options of OpenMP. This generally results in incom-
plete or unproductive tutorials. Having an open source environment
where multiple users can submit tutorials for multiple compilers
can resolve such complications.

Finally hosting tutorials on website costs money. Having con-
tainers can result in larger disk space which means more expenses.
Having an open sourced, self-deployable framework can help users
host their tutorials for free.

FreeCompilerCamp.org is aimed to build a free and open cloud-
based training platform integrating the solutions mentioned above.
This platform aims to facilitate the training of researchers to quickly
develop compilers for OpenMP and help them learn the skills of
compiler development. We will elaborate the design and implemen-
tation of this platform in the next sections.

4 FREECOMPILERCAMP.ORG PLATFORM

FreeCompilerCamp.org is a learning system with several distinct
design principals:

o Itaims to allow any developer, who is interested in understanding
the internal working of OpenMP compilers, to learn the necessary
skills for free.

o It provides a pre-configured compiler development environments
in an online sandbox, which eliminates the burden of beginners’
tedious and error-prone software installation processes.

o A live training website based on the system is set up, so a web
browser and an Internet connection are the only requirements
for anyone to get the training.

o The entire training system is open-source, so it can also be de-
ployed by anyone on a private server, workstation or even per-
sonal laptop.

o It enables anyone who has the relevant skills to contribute new
tutorials as well.

There are two components in the FreeCompilerCamp.org plat-
form (or FreeCC as an abbreviation) as displayed in Figure 2 — a
web-based framework with all tutorials and a Play-With-Compiler
(PWC) engine for the sandbox environment. The website provides a
browser-based interactive interface with two panels: the left panel
contains the training instructions in text, and the the right panel
connects with the PWC engine, which creates a live terminal sand-
box for real-time practice.

56 ISSN 2153-4136

Journal of Computational Science Education

Figure 2: Two components of FreeComplierCamp.org

4.1 Tutorial Website

The tutorial website is created as the major interface of FreeCC.
It provides easy-to-understand document in multiple tutorials or-
ganized by categories. Users can choose any entry on demands or
learn in order.

4.2 Play-With-Compiler Engine

The Play-With-Compiler engine is based on Play-With-Docker
(PWD) [26], which is an online sandbox platform for visitors to
learn basics about container techniques using Docker [23]. Docker
uses OS-level virtualization to deliver software, libraries and con-
figuration files in packages called containers, which are isolated
from one another though there are defined channels to enable their
communication. Containers on a same machine shares a single
operating-system kernel and are thus more lightweight than virtual
machines.

Play-With-Docker uses a so-called Docker-in-Docker technique.
While the host service is running in an outer docker, the component
of this service runs in an isolated inner docker so that multiple
components won’t affect each other[16, 33]. In the case of PWD,
each user has their own sandbox and won’t get interrupted by
others’ activities. PWD uses Apline Linux, which is widely used in
docker images due to its lightweight and security.

4.3 Customization

We encountered several technical issues during the development
of FreeCompilerCamp.org and subsequently resolved them. Most
of these issues may not be new in web development, but our target
audience is mostly people with a HPC background, who may not
have a flair for web development. Also these issues are common and
will be faced by anyone who would like to deploy our framework.
Hence mentioning these issues here is vital.

4.3.1 Same-Origin Policy. The same-origin policy [29] re-
stricts resources loaded from one origin to interact with resources
from another origin. This prohibits training website and PWC to
be deployed on different servers. We had to apply Cross-Origin
Resource Sharing [32] mechanism that uses additional HT TP head-
ers to enable resources on PWC server to be accessed by training
website.

4.3.2 Port Conflict. Later to simplify management and lower
the cost, we decided to deploy both the training website and PWC

January 2020

Journal of Computational Science Education

on the same server. This caused port conflict since they both use
port 80 by default. We set up an HTTP server using Apache and
non-default ports redirection to resolve this conflict.

4.3.3 Alpine Linux. The PWD sandbox had dockers built
from Alpine Linux, which was unfit for compiler training. Compil-
ers are sensitive to the host system environment. Alpine Linux is
not supported for the development of either ROSE or LLVM. There-
fore, we created new docker images based on Ubuntu for better
compatibility with both ROSE and LLVM. Ubuntu has a much wider
application support, hence if future even more compilers can be
added in the tutorial.

4.3.4 Security. The PWD sandbox by default gives users root
access inside the terminal. This is a security risk since a malicious
user may hack into web hosting directories where they are not sup-
posed to access. As a solution we create a user/group (freecc/freecc)
in our sandbox and let all process run in that user account instead
of root. This way we have more control over what access we want
to provide the users.

5 TUTORIAL DESIGN

We have created several initial tutorials to take advantage of FreeCom-
pilerCamp. The goal is to have a good mix of text and commands
for users to read and practice essential compiler skills.

5.1 Concepts

Tutorials of FreeCC are designed based on the principle of experi-
mental learning or learning-by-doing. Learning-by-doing was in-
troduced by John Dewey and it promotes the idea that students
should learn by actively interacting with environments[15]. Kolb
reviewed the major experimental learning models and created his
own comprehensive structural model[17]. He also explored the ap-
plication of experimental learning in higher education. Students not
only read static texts but also apply the theoretical knowledge into

Free Compiler Camp Classroom

C. Run the translator tool

Build the tool:

After building the tool, there is an executable file named buildFunctionCalls under the current directory

1s buildFunctionCalls

Finally, run the teol to insert the function call into the sample input code:

./buildFunctionCalls -c¢ ~/inputbuildFunctionCalls.C

me but wiht a prefix rose_ . It's unparsed from the updated AST.
is called with parameter p_sum now.

The generated source code still has the same
Be checking the new source code, it clearly sh

s that foo()

cat rose_inputbuildFunctionCalls.C

The line 13 and 14 verified that new function calls have been added to the AST.

16 int main()
11 {

1 int o

Lm0

Volume 11, Issue 1

practical cases. They learn the skills by solving problems, working
on small projects, and so on.

Under the guidance of this theory, FreeCC hosts the tutorials to
let users start from any point they like with a ready environment,
with the following major features:

e We make users practice as much as possible with detailed
instructions, by providing an easy-to-use sandbox for users
to test given code or conduct their own experiments.

e FreeCC covers different topics in compiler development, in-
cluding parsing, AST generation, OpenMP programming,
compiler extension, and so on.

e We split larger learning tasks into smaller ones to fit each
tutorial into a 10-15 minutes session. The goal is to ensure
that we can grab sufficient attention from visitors.

e The tutorial not only lists the steps but also explain why
each step should be conducted and how it works.

o FreeCC supports clickable code snippets, which can be tested
in the sandbox right away by clicking.

¢ Video instructions are not included currently because more
students prefer static tutorials to video tutorials[24]. Using
static tutorial is easier to seek and pick different sections of
tutorial and learn at a comfortable pace for themselves.

5.2

FreeCompilerCamp.org provides a flexible learning experience based
on the concepts mentioned above. In particular, we split the train-
ing content into several tutorials with incremental complexity so
visitors can jump into the right levels they are comfortable with.
We start with simple ones to let visitors play with input and output
of compilers and get familiar with compilers’ internal representa-
tions for input programs. After that, we let them try out how to
traverse the tree representations and finally how to change the tree
for writing transformations.

Example Tutorials

5.2.1 Tutorial for Learning AST. Taking ROSE as an exam-
ple, we designed the following tutorials:

the browser window:
please open the firewall of your computer. Ti =ma sion

If the commandiine doesn't appear in the terminal, make sure popups are
If you are behind firew:
CXXLD buildFunct

1s buildFunctionCalls
./buildFunctionCalls -c¢ ~/inputbuildFunctionCal

freecc@nodel:

/// goal 1. generate
foo(p_sum);
oal rate

cat rose_inputbuildFunctioncalls.C

after inserting it
par r is used
#include "inputbuildFunctionCalls.h"

void foo(int x);

int main()
i
int p_su
foo(p_sum);
bar (
return p_su
}

freecc@nodel:astInterfaceTes

Figure 3: The tutorial for teaching AST modification

January 2020

ISSN 2153-4136 57

Volume 11, Issue 1

e AST/IR Generation. For a given input source file, an AST
will be generated and represented visually in a graph. This
tutorial shows how information is retrieved from source
code and organized internally inside ROSE for future use.

e AST/IR Traversal. After AST generation, this tutorial shows
how to traverse the tree to search for certain information of
interests, such as loops or functions.

o AST/IR Modification. This tutorial demonstrates the method
to add function call nodes into AST. Unparsing the AST will
result in an output source file with the inserted function
calls.

For example, the AST modification tutorial teaches users how to
insert a functional call node into AST and check the updated AST
by looking into the corresponding unparsed source code (Fig. 3).
User can click the corresponding code snippets to download those
files without leaving the page. All necessary source files can be
downloaded in the sandbox on demand. In the sample input, there’s
no function calls in the main function. The tutorial explains how
a function call subtree is constructed in the compiler and showed
all steps to create the subtree and attach it to the AST to complete
the task. The input and expected output are both provided in the
tutorial so that users can compare their results with the correct
solution.

5.2.2 Tutorial of Fixing a Compiler Bug. Developers often
learn many things by fixing real bugs. Figure 4 is an example tuto-
rial to fix a user-reported bug in ROSE. A PI calculation program
in OpenMP compiled by ROSE generated some wrong value. Upon
debugging it was found that during ROSE’s transformation of the
loop body of ‘omp parallel for’, the loop stride was miscalcu-
lated due to incorrect operand nodes were retrieved in the AST.
The tutorial first highlights the bug and describes the steps to re-
produce it. It then explains how compiler transformation and a
runtime library function collaborate to schedule loop iterations

Free Compiler Camp Classroom

D. Fix the Bug

You can directly go to 11602 of sagelnterface.C to do the fix.

On the line 11602 and 11607, change the variable incr to arithOp
---11602 stepast=isSgBinaryOp(incr)->get rhs_operand();
+++11602 stepast=isSgBinaryOp(arithOp)->get rhs_operand();
---11607 stepast=isSgBinaryOp(incr)->get_lhs operand();
+++11607 stepast=isSgBinaryOp(arithOp)->get_lhs_operand();

Save your changes and quite your editor (e.g. Use :wg to save and quit for vim).
Rebuild and test

First we need to rebuild ROSE to make our modif

cd $ROSE_BUILD && make core -j4 > /dev/null & make install-core >

This step may take one minute or two. Some warnings about Makefile may show up but you can safely ignore
them for now.

Generate the output

Test the generated executable

Run the binary and it shows 3.141593

Journal of Computational Science Education

among multiple threads. After that, it gives specific instructions on
which source files should be modified to fix the bug. At last, with
a few simple clicks, the modified ROSE is re-built to compile the
test program and correct execution output is generated. Thus in a
wholesome way this tutorial gives an example of a real OpenMP
implementation bug and explains how to reproduce, debug and
resolve it.

5.2.3 Tutorial for Writing a Clang Plugin. We take Clang
as another example to show our tutorials. This is a self-contained
tutorial about how to write a short plugin in Clang which modify
the source code as required.

Let’s say that we want to analyze a simple C file as shown in
Listing 1. Suppose we want to do some simple fixes on this C file.
We would like to change the name of func1 to add and func2 to
multiply. Then we would also like to change the function calls
of funcl and func2 to add and multiply respectively. This will
result in a code as shown in Listing 2. We can write a plugin which
will parse through the AST and make the above changes to the file.

Listing 1: Example input code

int funcl(int x, int y) { return x+y; }
int func2(int x, int y) { return x*y; }
int saxpy(int a, int x, int y) {

return funcl(func2(a,x),y);

}

Listing 2: Expected output code

int add(int x, int y) { return x+ty; }
int multiply(int x, int y) { return x*y; }
int saxpy(int a, int x, int y) {
return add(multiply(a,x),y);
3

T window:

ROSE_ASSERT(arithop!=1);
(SgvarRef!
ithOp)->get_lhs

inaryop(arithop)
rRefExp=
operand()))) {

ryop(arithop)
f(isSgAddop(arithop)) {

varRefExp;
gBinary0Op(arlthoﬁ) ->get_lhs_operand();

Figure 4: The tutorial for fixing an OpenMP translation bug in ROSE

58 ISSN 2153-4136

January 2020

Journal of Computational Science Education

Free Compiler Camp Classroom

To run a plugin, the dynamic library containing the plugin registry must be loaded via the -load command line
option. This will load all plugins that are registered, and you c elect the plugins to run by specifying the -plugin
option. Here we are asking clang to 1oad the library RenameFunctions.so and use the plugin named -
rename-plugin

So what are all these Xclang in the command?

Usually compilers consist of compiler drivers, which knows how to execute compiler itself, assembler, linker, etc
and compiler itself which just takes the source code (sometimes already prepr: and emit lobj
code. In clang the -cc1 argument indicates that the compiler front-end is to be used, and not the driver. The clang -
ccl functionality implements the core compiler functionality. For all arguments to reach clang’s ccl process, clang
provides an option to prefix all arguments with Xclang. If we ignore the Xclangs the command becomes much
clear

t

clang -load RenameFunctions.so -plugin -rename-plugin -c saxpy.c
Once your build is successful it will say

Output file created - /tmp/saxpy.c

Let us print out the output file to check if the plugin works

Congratulations you were successfully able to create a new plugin in Clang

Volume 11, Issue 1

If the com

Creating llvm-ranlib
Creating llvm-1lib
iCreating llvm-dlltool
ing clang++
ating
ICreating cla
Creating
Creating - ip
H builds cd
at
int funci(int) { return x+y; }

int func2(int x, int y) { return x* 1

p int x, int y) { return funci(func2(a,x),y); }

g -Xclang -load -Xclang RenameFunctions.so -Xclang -plugin

freecc@nod

int add(int

int multiply(int x,

int xpy(int a, int x, int y) { return add(multiply(a,x),y); }
freecc@nodel:

Figure 5: The tutorial for writing a Clang Plugin

This tutorial explains in details the steps that need to be taken
to write this plugin. It starts with giving an overview of what is a
clang plugin. Then it goes to explain what this plugin intends to
do. Then it explains how to setup the source code structure of the
plugin and which files need to be written or modified in order to
write this plugin. The tutorial also provides an option to the user to
download a reference plugin or to write the plugin by themselves.
In the end it helps the user to build and test out the plugin. Figure
5 is a screenshot of this tutorial where the user tests the plugin.

5.3 Trial and Feedback

We have asked a group of students who major in Computer Science
but with only basic compiler knowledge to take a trial of FreeCC. To
assure the most accurate feedback, no pre-training ahead of the trial
was provided. Students picked one tutorial based on their interests
and completed it all by themselves without any other guidance.
Then they filled a survey form about their experiences of using
FreeCC. The feedback from the survey is summarized as follows:

o They feel comfortable with the length of each tutorial with
10-15 minutes.

o All steps of tutorial are completed without any issue.

o Students prefer to use clickable code snippets rather than
type they manually.

e Providing a choice from multiple code editors will be helpful.

o Additional video instructions are not needed.

o The sandbox and clickable code snippets attracted the most
attention. They make FreeCC unique comparing to conven-
tional tutorials.

e Some students tried to conduct their own experiments in
PWC as we expected.

e The overall appearance of FreeCC could be improved.

o They want to retrieve files from the sandbox (ssh or git might
help).

January 2020

e Support for X11 forwarding might be needed to display
graphics.

o The tutorials can use some links to external courses for fun-
damentals about OpenMP and compilers.

e GPU support is needed for extending tutorials running on
GPU.

Based on the feedback, we conclude that the current design of
FreeCC tutorial is a very good start point. All testers are satisfied
with the features of FreeCC. The sandbox, PWC, is highly rated
since students don’t need to configure any complicated environ-
ment but a modern browser on any system. Criticism mostly came
from the website appearance, customization and cloud-machine
resources for GPUs, which can be addressed in the future.

6 RELATED WORK

Existing Compiler Tutorials. Both ROSE [9] and Clang [1] already
have abundant documentation on their official websites, including
user guides, tutorials, and Doxygen generated API webpages, etc.
There is also a ROSE wikibook which is open for anyone to con-
tribute. Clang’s official page provides documentation ranging from
how to obtain and build clang, to how to write plugins and create
tools, etc. Along with that there are several free and open source
tutorial blogs which are available for Clang. OpenMP’s official page
provides links [8] to several open tutorials available on the internet.
However, all the existing documentation is written in the tradi-
tional text format. It is still up to the readers to find a machine to
install and configuration the development environment. The entire
preparation phase may take hours to finish. Many learners simply
give up due to the tedious steps or the lack of access to a suitable
machine.

Online Education systems. There is a large amount of online
learning systems [21], including Khan Academy [31], Coursera [2],
edX [3] and so on. These learning systems mostly are aimed for

ISSN 2153-4136 59

Volume 11, Issue 1

general education and training purposes. They are not specially tar-
geting compiler development. A closely related website is freeCode-
Camp [6], which is an online training platform for training web
developers. Play-with-Docker is an online sandbox for people to
learn docker. Our work builds on top of this framework with cus-
tomization for compiler training.

Although several cloud-based tools have been leveraged for com-
puter science education, there is a clear lack of such tools to teach
compiler development. Ngo et. al [25] use CloudLab, a national
experimentation platform for advanced computing research, to
teach cluster computing to students. Bisbal [11] provides an out-
line of what topics need to be taught to computational scientists
in a logical order to train them in open-source software. Shin et.
al. [30] developed a web-based MOOC system related to computa-
tional science education which could hold various resources and
efficient programming practices. Many such tools and resources
are available across several domains of computation, but compiler
development is still devoid of such online tools.

7 CONCLUSION AND FUTURE WORK

In this paper, we have introduced an ongoing effort, FreeCompiler-
Camp.org, a free and open online learning platform aimed to train
researchers to quickly develop OpenMP compilers. FreeCompil-
erCamp.org is built on the Play-with-Docker platform to relieve
learners’ burden of finding suitable machines and installing soft-
ware. The tutorials of FreeCompilerCamp are entirely web-based
with both text content and a live embedded sandbox terminal in
which learners can immediately practice compiler development
skills. Instructors or students can customize this platform easily
and deploy it on any local server, workstation or even personal
laptop.

In the future, we will include more tutorials about how to develop
OpenMP compilers for HPC. We will also design online examina-
tions to help learners evaluate the effectiveness of their learning
process. We welcome anyone to try out our system, give us feedback,
contribute new training courses, or enhance the training platform
to make it an effective learning resource for the HPC community.

ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344, and partially supported by the U.S.
Dept. of Energy, Office of Science, ASCR SC-21), under contract DE-
AC02-06CH11357. IM Release Number: LLNL-CONF-791339. This
material is also based upon work supported by the National Science
Foundation under Grant No. 1833332 and 1652732. This research
was also supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.

REFERENCES

[1] 2019. Clang Documentation. Retrieved Sep 26, 2019 from https://clang.llvm.org/
docs/

] 2019. Coursera. Retrieved Sep 26, 2019 from https://www.coursera.org/

] 2019. edX. Retrieved Sep 26, 2019 from https://www.edx.org/

] 2019. GCC Support for the OpenMP language. Retrieved Jul 22, 2019 from
https://gcc.gnu.org/wiki/openmp

60 ISSN 2153-4136

[13

[14

[
)

(17

[22

[23

[24]

[25

™
2

[27

(28]

[29

(30]

@
=

(32

[33

Journal of Computational Science Education

2019. Intel C++ Compiler Code Samples. Retrieved Jul 22, 2019 from https:
//software.intel.com/en-us/code-samples/intel-c-compiler

2019. Learn to code with free online courses, programming projects, and interview
preparation for developer jobs. Retrieved Sep 26, 2019 from https://www.
freecodecamp.org/

2019. OpenMP support in IBM XL compilers. Retrieved Jul 22, 2019 from
https://www.ibm.com/developerworks/library/l-openmp-support/index.html
2019. OpenMP Tutorials & Articles. Retrieved Sep 26, 2019 from https://www.
openmp.org/resources/tutorials-articles/

2019. Rose Documentation. Retrieved Sep 26, 2019 from http://rosecompiler.
org/ROSE_HTML_Reference/index.html

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,
techniques. Addison wesley 7, 8 (1986), 9.

Prentice Bisbal. 2019. Training Computational Scientists to Build and Package
Open-Source Software. Journal of Computational Science Education 10, 1 (Jan.
2019), 74-80. https://doi.org/10.22369/issn.2153-4136/10/1/12

C Cray. 2019. C++ Reference Manual, S-2179 (8.7). Cray Research. Re-
trieved Jul 22, 2019 from https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c+
+-reference-manual/openmp-overview

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-standard API
for shared-memory programming. Computing in Science & Engineering 1 (1998),
46-55.

Bronis R. de Supinski, Thomas R. W. Scogland, Alejandro Duran, Michael Klemm,
Sergi Mateo Bellido, Stephen L. Olivier, Christian Terboven, and Timothy G.
Mattson. 2018. The Ongoing Evolution of OpenMP. Proc. IEEE 106, 11 (2018),
2004-2019.

John Dewey. 1938. Experience and Education. Kappa Delta Pi.

Tom Goethals, Dwight Kerkhove, Laurens Van Hoye, Merlijn Sebrechts, Filip
De Turck, and Bruno Volckaert. 2019. FUSE : a microservice approach to cross-
domain federation using docker containers. In Proceedings of the 9th International
Conference on Cloud Computing and Services Science. Scitepress, 90-99. http:
//dx.doi.org/10.5220/0007706000900099

David A. Kolb. 2014. Experiential Learning: Experience as the source of learning
and development. Pearson FT Press.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 75.

Ilias Leontiadis and George Tzoumas. 2001. OpenMP C Parser.

Chunhua Liao, Daniel J Quinlan, Thomas Panas, and Bronis R De Supinski.
2010. A ROSE-based OpenMP 3.0 research compiler supporting multiple runtime
libraries. In International Workshop on OpenMP. Springer, 15-28.

Tharindu Rekha Liyanagunawardena, Andrew Alexandar Adams, and
Shirley Ann Williams. 2013. MOOCs: A systematic study of the published liter-
ature 2008-2012. The International Review of Research in Open and Distributed
Learning 14, 3 (2013), 202-227.

LLVM. 2019. Projects Built with LLVM. Retrieved Aug 31, 2019 from https:
/Mlvm.org/ProjectsWithLLVM/

Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

Lori S. Mestre. 2012. Student preference for tutorial design: a usability study.
Reference Services Review 40, 2 (2012), 258-276.

Linh B. Ngo and Jeff Denton. 2019. Using CloudLab as a Scalable Platform for
Teaching Cluster Computing. Journal of Computational Science Education 10, 1
(Jan. 2019), 100-106. https://doi.org/10.22369/issn.2153-4136/10/1/17

Marcos Nils and Jonathan Leibiusky. 2019. Play with Docker. Retrieved Jun 18,
2019 from https://training.play-with-docker.com

Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-
performance CPU programming. In 2012 Innovative Parallel Computing (InPar).
IEEE, 1-13.

Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source compiler
infrastructure. In Cetus users and compiler infrastructure workshop, in conjunction
with PACT, Vol. 2011. Citeseer, 1.

Jorg Schwenk, Marcus Niemietz, and Christian Mainka. 2017. Same-origin pol-
icy: Evaluation in modern browsers. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 713-727.

Junghun Shin, Jason Cholhoon Jang, Huiseung Chae, Gimyeong Rvu, Jaejun Yu,
and Jongsuk Ruth Lee. 2018. A Web-Based MOOC Authoring and Learning System
for Computational Science Education. In 2018 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE). IEEE, 1028-1032.
Clive Thompson. 2011. How Khan Academy is changing the rules of education.
Wired Magazine 126 (2011), 1-5.

Anne Van Kesteren and et al. 2014. Cross-origin resource sharing. W3C REC-
cors-20140116, latest version available at< https://www.w3.org/TR/cors/ (2014).
Chanho Yong, Ga-Won Lee, and Huh Eui-Nam. 2018. Proposal of container-based
HPC structures and performance analysis. Journal of Information Processing
Systems 14, 6 (2018), 1398-1404.

January 2020

