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ABSTRACT 

The objective of this paper is to model and examine the impacts of different levels of 
infrastructure service losses caused by disasters on the households’ well-being residing in a 
community. An agent-based simulation model was developed to capture complex mechanisms 
underlying households’ tolerance for the service outages, including household characteristics 
(e.g., sociodemographic, social capital, resources, and previous disaster experience), physical 
infrastructure attributes, and extreme disruptive events. The rules governing these mechanisms 
were determined using empirical survey data collected from the residents of Harris County 
affected by Hurricane Harvey as well as the existing models for power outages and service 
restoration times. The analysis results highlighted the spatial diffusion of service risks among 
households living in affected areas in disasters. The proposed simulation model will provide 
utility agencies with an analytical tool for prioritization of infrastructure service restoration 
actions to effectively mitigate the societal impacts of service losses. 

INTRODUCTION 

Natural disasters pose risks to the well-being of communities in many ways. Aside from the 
loss of lives and destruction of homes and properties, natural disasters create difficulty for 
residents of the affected areas by causing disruptions to infrastructure services. Previous studies 
have investigated the underlying reasons why infrastructure services fail to function in the 
aftermath of disasters (Nateghi et al. 2014), and the ways to improve the physical condition of 
infrastructure systems (Batouli and Mostafavi 2018; Rasoulkhani et al. 2017). However, the loss 
of services and physical damages in the aftermath of disasters are not stoppable, and the limited 
resources prevent building hazard-free systems. On the other hand, previous studies have shown 
that the effect of service disruptions is not the same among different sub-groups within a 
community as they have varying capabilities to tolerate the risks posed by natural disasters 
(Murphy and Gardoni 2006). Researchers have suggested that the socially vulnerable population 
are in more danger of the well-being risk. These sub-populations in the community have lower 
resources to tolerate the adverse impact of disasters, and it causes more hardship to this group of 
people (Fothergill et al. 1999). Therefore, there exists a need for developing a method to 
integrate the physical and social characteristics of infrastructure systems and attempt to properly 
allocate the limited resources to the sub-populations in the community based on their actual 
needs. To this end, the current paper proposed an agent-based model to investigate the effect of 
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infrastructure service losses on the affected households based on their social attributes and the 
physical condition of infrastructure systems. The use of simulation-based models in disaster 
management is a successful technique that benefits the decision makers by providing a tool to 
test “what-if” scenarios and explore their consequences (Miles and Chang 2011). 

CONCEPTUAL FRAMEWORK 

The extent to which households experience difficulty from the service losses depends on 
three components: (i) natural environment, which cause damages to the infrastructure systems 
and affect the households living in the vulnerable areas; (ii) physical condition of infrastructure 
systems during the disaster; and (iii) households’ tolerance level to withstand the service losses. 
The framework shown in Figure 1 displays the interaction between these three components. 
Infrastructure service disruptions occur as a result of damages caused by the disasters when the 
severity of the stress on the physical system is greater than its bearing capacity. Such damages to 
infrastructure systems lead to severe service losses that bring hardship to the residents of the 
affected areas. The duration of the service disruptions depends on the severity of the outages and 
the utility company’s capacity to restore the services (Miles and Chang 2011). On the other hand, 
affected households, which experience the service outages, have different levels of tolerability to 
resist the adverse impacts of service losses. Sociodemographic characteristics of the households 
determine their tolerability to the service losses. There exists a service gap between the physical 
condition of the infrastructure systems’ performance during the disasters and the household’s 
tolerability to the service losses. This service gap influences the degree to which households will 
experience well-being risk in the aftermath of natural disasters. The larger the service gap 
between the households’ tolerance to the service losses and the physical condition of the 
infrastructure systems is, the more their experienced well-being risk will be. 

 
Figure 1. The conceptual framework for the assessment of households’ well-being risk 

during infrastructure service losses 

In this paper, specifically, the impacts of power outages on households’ tolerance in the 
aftermath of hurricane disasters were examined. Power outages are among the destructive 
impacts of hurricanes causing significant hardship to the residents of the affected areas 
(Davidson et al. 2003). In this study, the failure of the power systems due to severe windstorms 
were investigated; in fact, severe winds during hurricanes cause failure to power distribution 
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systems which have not been designed to experience strong winds. It is worthwhile to mention 
that not all the damages to power systems during a hurricane are caused by the severe winds; 
however, a review of the literature suggests that most of the damages were a result of the 
windstorms (Dunn et al. 2018; Panteli et al. 2017). The power service will be restored by the 
utility companies based on the extent of damages to the power infrastructure and available 
restoration plans and resources (Liu et al. 2007; Miles and Chang 2011). Households living in 
the affected areas will experience varying levels of hardship from power outages based on their 
tolerance level to withstand the service loss. This tolerance level is defined as the amount of time 
that a household can tolerate infrastructure service losses in a disaster. Based on the tolerance 
level of households and the duration of service losses that households experience, the buffer 
from the risk would be defined as the safe zone which is available to households for tolerating 
the service losses. The buffer is a measure of the well-being of households, which is specified 
according to the tolerance level and the level of service loss. The more buffer available to the 
households, the less their hardship from the service losses will be. 

AGENT-BASED MODELING 

Agent-based modeling (ABM) is a powerful modeling technique that focuses on the 
individual active components of a system (Bonabeau 2002). In ABM, active components (e.g., 
human entities) are characterized as agents, each with a set of social capabilities and goals, 
values, and preferences (Mostafavi et al. 2015). In the context of this study, the use of ABM 
would enable: (i) discovering what factors and mechanisms drive households’ tolerance level; 
(ii) juxtapose the well-being buffer of various households with the range of disaster severity to 
determine the distribution of expected hardships; and (iii) explore effective intervention 
strategies to protect households’ well-being during disasters. In addition, the use of ABM 
enables the construction of a theoretical space that includes a range of community profiles in 
terms of sociodemographic, social capital, resources, previous disaster experience, and other 
factors. ABM has been successful in studying complex behavior of households (Azar and 
Menassa 2012; Rasoulkhani et al. 2018; Rasoulkhani and Mostafavi 2018) as well as disaster 
management (Mustapha et al. 2013). Hence, ABM was adopted in this study to evaluate the 
underlying mechanisms affecting households’ tolerance for disaster disruptions. 

COMPUTATIONAL REPRESENTATION 

The creation of a computational representation for the proposed ABM theoretical framework 
entails constructing mathematical models and algorithms to capture the theoretical logic 
representing the tolerance level of households for disaster-induced disruptions. An object-
oriented programming platform, AnyLogic 8.3.3, was utilized to create the computational ABM. 
The proposed ABM incorporates two agent classes, including households and service area. 
Household agents in a service area experience hardship from power outages based on their 
sociodemographic characteristics. The service area agent includes two main components: (i) 
natural environment, which initiates disruptive events; and (ii) power infrastructure, which 
determines the failure of the system and duration of power outages. Figure 2 depicts the Unified 
Modeling Language (UML) class diagram of the computational ABM and summarizes the 
information regarding the attributes and functions implemented. The following subsections 
represent the mathematical implementation for the model agents, their attributes and 
components, and relationships between them. 
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Figure 2. UML class diagram of the model 

Service area agent: The first component in this agent is the natural environment initiating 
hurricanes as disruptive disasters. Hurricanes were modeled based on the level of wind speed in 
the service area. As shown in Table 1, Saffir-Simpson scale classifies the hurricane into five 
categories based on their maximum wind speed. For each category of hurricane, a wind speed 
was assigned from a uniform distribution with specified intervals shown in Table 1. 

Table 1. Saffir-Simpson Hurricane Category Classes 
 One Two Three Four Five 
Speed (mph) 74-95 96-110 111-129 130-156 ≥157 

The second component of this agent includes the power infrastructures exposed to the 
hurricanes. This component includes two sub-models. The first sub-model is implemented for 
predicting the damages to power systems. Fragility curves were used to predict the power 
outages; using fragility curves is a standard approach for modeling the failure of the 
infrastructure systems in responses to natural hazards (Stein et al. 2010). In this model, fragility 
curves provided the probability of failure based on wind speed. In each iteration of the 
simulation the probability of failure ( fp ) would be compared to a uniformly distributed random 

variable  0,1r . The system would fail if the probability of failure is larger than the randomly 
generated number. The general form of the fragility curve is given in Equation 1, here 
probability of failure ( fp ) in each service area is determined based on the experienced wind 
speed ( x ), and the lognormal fragility curve is defined based on the two parameters mean (  ) 
and variance ( 2 ). In this model, all service areas experience the same level of wind speed, and 
the same fragility curve is used to calculate the probability of failure. However, as the model is 
modular, these components could be changed based on the physical characteristics of different 
locations in the presence of proper data. 

  
  2

2

ln( )1|
22f xx

x
p damage w x exp d





   
   

 
   (1) 

The second sub-model is used for calculation of the duration of the outages in each service 
area. The restoration time of the power outages is considered to depend on three aspects: 1) the 
severity of hurricane, 2) the resources available to the company to restore power, and 3) the 
population of the service area. Severe hurricanes pose more damages to the infrastructure 
services and make it difficult for the companies to restore the services; in addition, the road 
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closures and flooding make the restoration process even more complicated (Miles and Chang 
2011). The resources that a company has in place for the repair affect the restoration time. 
Finally, the population of the service area influences the priority of restoration activities. 
Companies would usually prioritize the restoration process in the densely populated areas to 
meet the needs of a higher portion of the affected residents (Liu et al. 2007). Equation 2 is used 
to calculate restoration times. The restoration time was assumed to be 15 hours in the normal 
condition. Then, the hurricane intensity factor ( hf ), the resource factor ( rf ), and the population 
factor ( pf ) modify restoration time. 
 15 h r pT f f f      (2) 

In this equation, hf  is determined based on the wind speed following Panteli et al. 2017. 
Here, 1hf   when wind speed is less than 45 mph, ~ (2,4)hf U  when wind speed is within 45 
mph to 90 mph, and ~ (5,7)hf U  when wind speed is higher than 90 mph. Resource factor ( rf ) 
is calculated by considering the resourcefulness of the company in the service area. The values 
for rf   are determined based on three resource levels of low=1, medium=2 and high=3. Finally, 
the population factor ( pf ) is calculated based on the number of people living in the service areas, 
where 2pf   when the population is less than 15000, 1.5pf   when the population is within 
15000 and 30000, and 1pf    when the population is higher than 30000. 

Household agent: Households have varying levels of tolerability for withstanding the power 
outages based on their sociodemographic characteristics. A negative binomial model was 
proposed for predicting the tolerance level of households. The response variable in this model is 
a count data of the number of days that the household could tolerate the outages; Poisson 
regression models and negative binomial models are two common ways for modeling the count 
data (Long, 1997). One of the properties of the Poisson random variables is the equality of the 
mean and the variance. However, in modeling the tolerance level, a significant difference was 
observed between the two parameters; thus, the negative binomial model was preferred to the 
Poisson regression model. The model for predicting the tolerance level is given in Equation 3. 

 
2.854 0.365 0.369 0.113 0.098 0.094

0.163 0.027 0.113
s e i n p

sc in r

x x x x x
µ exp

x x x
     

  
   

  (3) 

In this equation, sx  is a parameter accounting for having a substitute for the power outages, 

ex  is whether the households have a previous experience with natural disasters, ix  is the 
reliability of the information that the household received about the outages, nx  accounts for the 
level of need of the household to the power service, px  is the level of preparedness of the 
household for the power outages, scx  accounts for having a social capital, inx  is the annual 
income of the household, and rx  is whether the household is a racially minority. Finally, the 
buffer for each household was determined based on the difference between the tolerance level of 
the household and their experienced power interruption duration. 
 Buffer Tolerance Interruption    (4) 

VERIFICATION OF COMPUTATIONAL REPRESENTATION 

The computational model was verified by a systematic and iterative process. Use of standard 
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methods and the best available theories for governing the logic and rules in the model ensured 
the internal validity of the model. The model was tested under extreme conditions to check its 
ability to produce reasonable results. Finally, component validity assessment was conducted to 
ensure the completeness, coherence, consistency, and correctness of the model components. 

NUMERICAL EXAMPLE 

In this section, we show through a hypothetical example, how the simulation model can be 
used for the scenario testing. In this example, fifty households were generated and divided into 
five regions. Each of these households has its own sociodemographic characteristics which 
determine their tolerance level to power outages. The regions contain information on the power 
distribution system and the company’s restoration capacity. The hurricane type will be given to 
the model as an input, and the model would predict the potential outages and the related 
restoration times for each region. Then, the tolerance to the power outages for the residents 
living in each service area will be compared to their experienced duration of power losses to 
determine the well-being state of the households and the buffer that the household has to tolerate 
more service disruptions. The proposed simulation model was used for experimentation 
processes. In the first set of experiments, the spatial distribution of the affected households was 
investigated. Figure 3 depicts the map displaying the condition of the households in the 
aftermath of the category-four hurricane. First, some households would lose power based on the 
condition of the service area and wind speed; these households are depicted by yellow in Figure 
3.a. Then, those households that the experienced interruption level has exceeded their tolerance 
level are distinguished by red in Figure 3.b. These households have a zero buffer and are in need 
of external help to withstand the risks. For example, some household in region 1 would directly 
turn into the normal condition (green state) without experiencing severe hardship from the power 
losses as shown in Figure 3.b and 3.c, while all the residents in region 4 have experienced the red 
condition before truing into the green state. Finally, all households would go back to the normal 
condition after the power was restored as depicted in Figure 3.d. These maps help to identify the 
most affected areas in advance of hurricanes and can be used by the utility companies for the 
resource allocation plans. 

 
Figure 3. Spatial distribution of affected households in the aftermath of the hurricane; (a) 

power loss, (b) hardship experience, (c) recovery process, and (d) complete recovery 

In the second set of experiments, the effect of different hurricane categories on the average 
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buffer of households was explored. As shown in Figure 4, generally, the average buffer will 
decrease with the increase in the severity of the wind. Nevertheless, this trend is not similar 
among the hurricane types and in different regions. Category one and two hurricanes do not 
significantly cause hardship to the residents of the affected areas. However, a significant drop 
occurs in the average buffer of households under category four and five hurricanes, which 
suggests the need for improvements in the power system condition. Moreover, the effect of the 
available resources for restoring power is displayed in Figure 4; hurricane categories three, four 
and five put a tremendous hardship on the residents of the regions with low and medium 
restoration resources, while regions with high resources have a large buffer from the well-being 
risk under these severe wind storms. 

 
Figure 4. Trends of average buffer over different hurricane categories (resourcefulness of 

the regions is shown in parentheses). 
CONCLUDING REMARKS 

In this paper, an agent-based modeling framework was developed to explore the effect of 
different mechanisms on the well-being of households residing in a community affected by 
natural disasters. This model integrates the natural environment, physical characteristics of the 
infrastructure systems, and the social attributes of households to specify the extent to which the 
households are affected by the hurricanes. The proposed model provides users with scenario 
testing. The developed risk maps show the spatial distribution of the affected households based 
on the predicted restoration time of the service losses and each household’s tolerance to 
withstand the service loss. These maps can be utilized by the service providers to identify the 
risk hotspots in ahead of the event and properly allocate their resources to meet the needs of 
households living in the service area. Moreover, the outcomes of the model can be implemented 
to test the performance of the infrastructure system to meet the societal needs under different 
levels of natural disasters. These findings provide utility companies with a decision-making tool 
to develop integrated plans for infrastructure resilience investments. 
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