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A PURSUIT-EVASION GAME IN THE ORBITAL PLANE

Jhanani Selvakumar∗, and Efstathios Bakolas†

We consider a pursuit-evasion game in the Hill’s frame, in which a deputy space-
craft aims to capture a chief spacecraft as fast as possible while the chief tries to
delay or avoid capture. Capture is defined as positional coincidence of the two
spacecraft within a user-specified tolerance, and both spacecraft operate under in-
put constraints. This zero-sum game of pursuit and evasion with free final time is
treated as a game with a terminal cost and fixed final time. For the case of circular
orbits, a semi analytical solution for the time of capture is presented along with
a closed form expression for the optimal control inputs. Furthermore, for a cir-
cular orbit, we can precisely characterize the sets of initial conditions that ensure
capture of the chief by the deputy.

INTRODUCTION

The study and design of the relative motion between two vehicles or objects orbiting a central

body is a basis for various applications such as regulation of satellite orbits, space debris avoidance

and manual operations in space. In this work, we consider the problem of achieving positional

coincidence between two orbiting spacecraft, where one spacecraft referred to as the deputy tries to

reach a pre-defined positional proximity to (or capture) another spacecraft referred to as the chief

spacecraft, which maneuvers to avoid positional proximity. We treat this problem as a two-player

zero-sum differential game, where the chief spacecraft and the deputy spacecraft respond to each

other’s actions in an antagonistic manner.

In the general rendezvous problem, the chief spacecraft (target) is passive. For rendezvous in cir-

cular orbits of the chief and deputy, we have closed-form solutions for the rendezvous problem in

the vicinity of the chief where the linearized Clohessy-Wiltshire equations are valid. Our problem

is different from the general rendezvous problem in that the chief is capable of actuating to avoid

its capture. The chief and deputy spacecraft are identical in dynamics with similar actuation ca-

pabilities. The problem of position coincidence between the chief and deputy spacecraft is to be

achieved in optimal time with antagonistic action on the part of the chief spacecraft (in other words,

the “optimal value of the game” is the time of capture). The achievement of time-optimal positional

proximity (capture) for spacecraft is useful as part of operations such as rendezvous, or even at times

to generate impact trajectories, while the dual problem of evasion is applicable for a spacecraft to

avoid an antagonistic vehicle in orbit. The game theoretic modeling assumes the most antagonistic

maneuvers on the part of the chief spacecraft, which is conservative for most proximity operations

and targets that maneuver under faulty control systems. In addition, the chief does not necessarily
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have to be a maneuvering spacecraft. The chief spacecraft can be substituted by an orbiting body

whose orbit is subject to some uncertainty (disturbance) that is bounded. In addition, we can design

a maneuvering trajectory in a field of multiple non-cooperative targets for a spacecraft, such that the

risk of collision is minimized.

The standard relative motion equations described in the orbital plane have coupling between them.1

This increases the difficulty in analyzing and solving the planar pursuit-evasion problem. To ad-

dress this issue, we make use of the relative motion equations in Levi-Civita coordinates,2, 3 which

are obtained by simple transformations from the inertial coordinates. This coordinate system has

been used by Kollin and Akella2 to solve the minimum-time orbital rendezvous problem for an un-

forced target. The dynamics expressed in the new coordinate system become decoupled harmonic

oscillators, which simplifies the analysis. It is also possible to precisely characterize a controllable

set, which is the set of initial conditions for the deputy to be able to capture the chief, given the

parameters of the problem.

The problem of spacecraft relative motion has been extensively studied in the literature.4, 1, 5 The

rendezvous problem in the Hill’s frame between two spacecraft has been addressed previously using

a game theoretic formulation, often a linear quadratic game framework.6, 7 However, in these works,

the terminal time is fixed (in pursuit-evasion games, terminal time is typically a free parameter)

and the control inputs are not constrained. Stupik, Pontani and Conway have solved a position

coincidence problem in three dimensions with input constraints using particle swarm optimization

and kriging.4 Menon and Calise presented optimal feedback guidance laws for a pursuit-evasion

game among spacecraft using a quadratic performance index.5 The reformulation of a two-player

differential game with free terminal time as a game with a terminal cost was first introduced by

Gutman et al.8

Main contributions: We present a solution to the problem of positional coincidence between two

maneuvering spacecraft in the range of proximity operations, with free terminal time and subject to

input constraints. The solution is presented as a pair of optimal strategies for both spacecraft, which

are obtained from modeling the problem as a two-player zero-sum pursuit-evasion game. When the

initial orbits are circular, we provide a simple condition to determine if capture is possible, based

on the orbit parameters and the initial positions. We also characterize the level sets of the minimum

time of capture, which we obtain in closed form for a circular orbit. The main assumption we make

in this work is that the chief and the deputy are initially located at different points on circular orbits

that are close to each other. This is valid since most missions operate a separate control strategy

until the vicinity of the chief is reached, after which the proximity operation in the terminal phase

commences.

The paper is organized as follows. First, we present the formulation of the orbital pursuit-evasion

game. Then, we discuss the solution approach to obtain the optimal controls for the two spacecraft

involved in the game. We discuss a case where both spacecraft are initially on the same circular

orbit and characterize the geometry of the level sets. Then, we extend this analysis to cases where

the two spacecraft are initially on different circular orbits. Finally, we present numerical simulations

that illustrate the solution method and also provide a visualization of the level sets of the time of

capture. In the conclusion, we summarize the central idea of the paper and briefly discuss future

work.
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FORMULATION OF THE ORBITAL PURSUIT-EVASION GAME

Consider two spacecraft (vehicles) orbiting around a central body on the same circular orbit,

initially separated by a phase angle. Both spacecraft, one being the chief spacecraft and the other

the deputy, possess independent controls to maneuver in the plane of the orbit. The goal of the

deputy spacecraft is to attain a certain positional proximity with the chief spacecraft (in other words,

to‘capture’ the chief) whereas the chief spacecraft maneuvers to prevent the deputy from reaching its

desired proximity. The chief and deputy spacecraft are also alternatively referred to in the literature

as the target and chaser spacecraft respectively. For an unperturbed orbit around the central body,

the planar equations of motion of a spacecraft modeled in Levi Civita coordinates along with a

time-transformation take the form of de-coupled linear harmonic oscillators.3 However, in our case,

the spacecraft are capable of independent control, and so they are modeled as forced harmonic

oscillators. In particular, the equations of motion for a general spacecraft are:

r̈S = −ω2rS +
T

m
uS ,

where rS ∈ R
2 is the spacecraft position vector at time t, T > 0 is the thrusting capacity of the

spacecraft, and m > 0 is its mass. The angular velocity of the vehicle in the chosen orbit is given

by ω. Note that in the circular orbit, the vehicle’s radius of orbit, that is, r := ‖xS‖ and speed v are

related by the linear relation v = rω. The input vector is denoted by uS and is constrained to have

unit magnitude. Then, the relative motion of the deputy spacecraft with respect to the chief at time

t is described by the following equation:

r̈D − r̈C = −ω2(rD − rC) +
TD
mD

uD − TC
mC

uC , (1)

where the position vectors, input vectors, mass and thrust limits for the chief and deputy are denoted

with the subscripts C andD respectively. Note that the set of admissible inputs consists of all piece-

wise continuous functions taking values on or within the unit circle at each time t. It is reasonable

to assume that in the interest of time, the vehicles use the limit of actuation available to them at all

times. Hence, the vector inputs are constrained to have unit magnitude, and we can express them in

terms of trigonometric functions of angles. In particular, using the angle φ for the chief and angle

ψ for the deputy, we have uD = [cosφ sinφ]T and uC = [cosψ sinψ]T. Now, let the relative

position vector be denoted by r := rD − rC and the relative velocity vector by v := ṙD − ṙC . In

addition, let x := [r v]T denote the relative state vector of the deputy with respect to the chief in

the local orbital frame. The equation for relative motion between the two spacecraft can be written

as

ẋ = Ax+BuD +CuC , x(0) = x0, (2)

where A =

[

0 I2
−ω2I2 0

]

, and B = TD

mD

[

0

I2

]

and C = − TC

mC

[

0

I2

]

.

We are interested in the deputy spacecraft achieving positional coincidence or proximity (as the case

requires) to the chief spacecraft in the presence of non-cooperative maneuvering by the chief, in

optimal time. This constitutes an orbital pursuit-evasion game. In this context, the chief spacecraft

is labeled as the evader and the deputy is labelled as the pursuer. The orbital pursuit-evasion problem

is described as follows:
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Problem 1. Given the initial positions for the chief and deputy at time t = 0, the period ω of the

circular orbit, and the system in (2), find the optimal final time tf of the game and the admissible

control inputs u∗
C(t) and u∗

D(t) for each instant of time t, such that when applied to the system in

(2), the control u∗
D(t) can guide the deputy spacecraft to achieve at time tf the desired positional

proximity with (that is, capture of) the chief spacecraft which maneuvers according to the input

u∗
C(t). That is,

min
uD(·)

max
uC(·)

tf ,

subject to

‖r(tf )‖ = l,

x(0) = x0,

eqn (2),

where the user-specified tolerance for capture by positional coincidence is given by l ≥ 0.

SOLUTION TO THE ORBITAL PURSUIT-EVASION GAME

Following the approach proposed by Gutman, Esh and Gefen,8 we now introduce a game with

only a terminal cost that is equivalent to the pursuit-evasion game defined in Problem 1. In par-

ticular, we define a state transformation y(t) := DΦA(tf , t)x(t), where ΦA(tf , t) is the state

transition matrix associated with the matrix A, and D =
[

I2 0
]

serves to extract the position vec-

tor from the state vector. Then, using equation (2) and the fact that Φ̇A(tf , t) = −ΦA(tf , t)A(t),
we have the time derivative of the transformed state:

ẏ(t) = B(tf , t)uD(t) + C(tf , t)uC(t). (3)

where B(tf , t) := DΦA(tf , t)B(t) and C(tf , t) := DΦA(tf , t)C(t). Specifically, for the prob-

lem formulated in this paper, with the initial time at t = 0,

ΦA(tf , t) =

[

cos(ω(tf − t))I2 sin(ω(tf − t))/ωI2
−ω sin(ω(tf − t))I2 cos(ω(tf − t))I2

]

,

B(tf , t) =
TD
ωmD

sin(ω(tf − t))I2,

C(tf , t) = − TC
ωmC

sin(ω(tf − t))I2.

Then the transformed state y(t) is given by

y(t) = cos(ω(tf − t))r(t) +
sin(ω(tf − t))

ω
v(t). (4)

At any time t, let the terminal cost for the game be denoted by J (y, tf , t) := ‖y(tf )‖. From the

definition of the state transformation, it is clear that ‖y(tf )‖ = ‖r(tf )‖ since ΦA(tf , tf ) = I2. If

we consider a function defined on y(t) as w(t) := ‖y(t)‖, then the time-derivative of w(t) is

ẇ(t) =
yT(t)

‖y(t)‖y(t).
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Consequently, the expression for the terminal cost can be written as follows:

J (y, tf , t) = ‖y(tf )‖ = ‖y(t)‖+
∫ tf

t

yT(η)

‖y(η)‖ ẏ(η)dη.

The free-final time PEG now can be re-formulated as a terminal cost game:

Find the control inputs u∗
C and u∗

D for each time instant t, to achieve the min-max value (saddle

point) J ∗(y, tf , t) of the terminal cost given by:

J ∗(y, tf , t) = min
uD(·)

max
uC(·)

J (y, tf , t)

= ‖y∗(tf )‖

= min
uD(·)

max
uC(·)

‖y(t)‖+
∫ tf

t

yT(η)

‖y(η)‖ ẏ(η)dη

= ‖y(t)‖+
∫ tf

t

min
uD(η)

max
uC(η)

yT(η)

‖y(η)‖ ẏ(η)dη. (5)

The optimal terminal state attained by applying the optimal controls is denoted by y∗(t). Note that

we also want to find the optimal final time tf > 0 at which J ∗(y, tf , t) = ‖y∗(tf )‖ = l. From

inspecting the min-max term inside the integral in equation (5), and recalling the expression for

the time derivative of the transformed state ẏ(t) in (3), we obtain the saddle point control pair as

follows:

u∗
D(t) = −sgn(B(tf , t))

y∗(t)

‖y∗(t)‖ = − y∗(t)

‖y∗(t)‖ ,

u∗
C(t) = sgn(C(tf , t))

y∗(t)

‖y∗(t)‖ = − y∗(t)

‖y∗(t)‖ . (6)

It is interesting to note that for optimal play, the controls for the pursuer and the evader spacecraft

are the same. Also, the above structure for the optimal control pair is only valid if the value of

‖y∗(t)‖ never goes to zero at any time t ∈ [0, tf ]. Hence, when ‖y∗(t)‖ does become zero, the

optimal controls must also be set to zero. If we assume mC = mD = m, then for all t ∈ [0, tf ],

l = ‖y∗(tf )‖ = ‖y(t)‖ − (TD − TC)(1− cos(ω(tf − t)))

mω2
.

For perfect positional coincidence, l = 0, and

0 = ‖y(t)‖ − (TD − TC)(1− cos(ω(tf − t)))

mω2
. (7)

Applying eqn (4) to eqn (7),

1− cos(ω(tf − t)) =
mω2

(TD − TC)
‖ cos(ω(tf − t))r(t) +

sin(ω(tf − t))

ω
v(t)‖

or

(1− cos(ω(tf − t)))
(TD − TC)

mω2
=

(

cos2(ω(tf − t))‖r(t)‖2 + sin2(ω(tf − t))

ω2
‖v(t)‖2

+ 2
cos(ω(tf − t)) sin(ω(tf − t))

ω
(r(t)Tv(t))

)
1

2 . (8)
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To find the optimal time of capture from the initial conditions, we set t = 0 in equation (8).

(1− cos(ωtf ))
(TD − TC)

mω2
=

(

cos2(ωtf )‖r(0)‖2 +
sin2(ωtf )

ω2
‖v(0)‖2

)

2R2(1− cos θ)

+ 2
cos(ωtf ) sin(ωtf )

ω
(r(0)Tv(0))

)
1

2 .

For a circular orbit at t = 0, the position and velocity vectors for each spacecraft are perpendicular

to each other. Let us recall here that r = rD − rC and v = ṙD − ṙC = vD − vC for all

time t. If we consider the initial phase separation between the chief and deputy to be denoted

by the angle θ, we see that the angle between rC(0) and rD(0) is equal to θ and so is the angle

between the vectors vC(0) and vD(0). Let R denote the radius of the circular orbit such that

‖rC(0)‖ = ‖rD(0)‖ = R, and V denote the speed on the orbit such that ‖vC(0)‖ = ‖vD(0)‖ = V .

Note that V = ωR. From the law of cosines, we determine that ‖r(0)‖2 = R2 + R2 − 2R2 cos θ
and ‖v(0)‖2 = V 2 + V 2 − 2V 2 cos θ. Substituting these values in eqn (8),

(1− cos(ωtf ))
(TD − TC)

mω2
=

(

2 cos2(ωtf )R
2(1− cos θ) + 2

sin2(ωtf )

ω2
V 2(1− cos θ)

+ 2
cos(ωtf ) sin(ωtf )

ω
(r(0)Tv(0))

)
1

2 .

Making use of the expressions for r(0) and v(0),

r(0)Tv(0) = rD(0)
TvD(0) + rC(0)

TvC(0)− rD(0)
TvC(0) + rC(0)

TvD(0)

= −rD(0)
TvC(0) + rC(0)

TvD(0)

= −RV (cos(π/2 + θ) + cos(π/2− θ))

= 0.

Then,

(1− cos(ωtf ))
(TD − TC)

mω2
=

(

2 cos2(ωtf )R
2(1− cos θ) + 2

sin2(ωtf )

ω2
V 2(1− cos θ)

)
1

2

=
(

2R2(cos2(ωtf ) + sin2(ωtf ))(1− cos θ)
)

1

2

=
(

2R2(1− cos θ)
)

1

2 . (9)

We will only consider the positive root of the term inside the paranthesis since the norm function is

non-negative. Alternatively,

(1− cos(ωtf )) =

√
2mRω2(1− cos θ)

1

2

(TD − TC)
. (10)

The smallest real positive value of tf which satisfies equation (10) corresponds to the first time that

the deputy spacecraft captures the chief spacecraft. If no such value exists for tf , then capture of

the chief by the deputy is not possible provided that the chief spacecraft maneuvers optimally. In

equation (10), the expression on the left hand side always takes values between 0 and 2. Thus, we

obtain a condition that must be satisfied for capture to be possible:

0 ≤ mRω2(1− cos θ)
1

2

(TD − TC)
≤

√
2. (11)
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Alternatively, this condition bounds the initial phase separation between the two spacecraft that

can result in capture for a given circular orbit and values for m, TC and TD. We also recover the

expected condition that the actuation capability of the deputy (pursuer) must be greater than that of

the chief (evader) for capture to be guaranteed.

In view of eqn (9), eqn (10) can be written in terms of the norm of the initial relative position vector

‖r(0)‖ as follows:

(1− cos(ωtf )) =
mω2‖r(0)‖
(TD − TC)

. (12)

Using this expression, we can visualize the controllable sets, that is, the initial conditions for which

the pursuer can reach the origin (capture the evader) in finite time. These controllable sets also

represent the reachable sets if we consider the inertial frame, for the deputy to reach the chief. The

visualization of these sets is obtained by expanding in the position space the contour that corre-

sponds to each finite real solution for the time of capture. The projection of the contour (isochrone)

for each value of tf on the position plane is circular in this case and centered around the position of

the chief spacecraft, as shown in eqn (13).

‖r(0)‖ =
(1− cos(ωtf ))(TD − TC)

mω2
. (13)

The upper bound on the relative distance between the two spacecraft for capture to be possible in

finite time is given by:

‖r(0)‖max =
2(TD − TC)

mω2
. (14)

While the capture condition indicates the possibility of capture given a set of initial conditions, it

is to be noted that the relative equations of motion in their simplified form of the forced harmonic

oscillator are most valid close to the original circular orbit, and as we move further away from the

orbit, in practice, there will be increase in position error from following the control inputs calculated

using this model. For cases where only positional proximity is desired, that is, l > 0,

l + (1− cos(ωtf ))
(TD − TC)

mω2
=

(

2 cos2(ωtf )R
2(1− cos θ) + 2

sin2(ωtf )

ω2
V 2(1− cos θ)

+ 2
cos(ωtf ) sin(ωtf )

ω
(r(0)Tv(0))

)
1

2 ,

and we have in place of eqn (10),

l + (1− cos(ωtf ))
(TD − TC)

mω2
=

(

2R2(1− cos θ)
)

1

2 .

The smallest positive real solution of this equation will be the time of desired positional proximity

(capture).

SPACECRAFT INITIALLY ON DIFFERENT CIRCULAR ORBITS

Next, let us consider the case where the chief and deputy are initially on different circular orbits,

that is, ωC 6= ωD. Then, the relative motion described in eqn (1) is now described as

r̈D − r̈C = −ω2
D(rD) + ω2

C(rC) +
TD
mD

uD − TC
mC

uC ,

= −ω2
D(rD − rC) + (ω2

C − ω2
D)(rC) +

TD
mD

uD − TC
mC

uC . (15)
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The above equation cannot directly be expressed in state space form using the relative states alone.

By choosing the new state vector to be an extension of the previous state, that is, x̃ := [r v rC vC ]
T,

we get a state space model of the system that is of the form

˙̃x = Ãx̃+ B̃uD + C̃uC , x̃(0) = x̃0, (16)

where the matrices are as follows:

Ã =









0 I2 0 0

−ω2
DI2 0 (ω2

C − ω2
D)I2 0

0 0 0 I2
0 0 −ω2

CI2 0









, B̃ = TD

mD









0

I2
0

0









and C̃ = − TC

mC









0

I2
0

−I2









.

Also, the matrix D̃ :=
[

I2 0 0 0
]

. The expression in eqn (3) holds now with the replacement

of A by Ã, B by B̃, and C by C̃. With the initial time fixed at t = 0, we compute the state transition

matrix Φ
Ã
(tf , t) using an inverse laplace transform and subsequently the matrices B(tf , t) and

C(tf , t). For compactness of expression in the matrices, we denote (tf − t) by the variable τ .

Φ
Ã
(tf , t) =







cosωDτI2
sinωDτ

ωD
I2 (cosωDτ−cosωCτ)I2

ωC sinωDτ−ωD sinωCτ

ωCωD
I2

−ωD sinωDτI2 cosωDτI2 (ωC sinωCτ−ωD sinωDτ)I2 (cosωDτ−cosωCτ)I2

0 0 cosωCτI2
sinωCτ

ωC
I2

0 0 −ωC sinωCτI2 cosωCτI2






,

B(tf , t) =
TD

ωDmD

sin(ωDτ)I2,

C(tf , t) = − TC
ωCωDmC

(2ωC sinωDτ − ωD sinωCτ)I2.

By repeating the analysis for the case ωC = ωD to this case, the transformed state is

y(t) =
1

ωCωD

(

ωC sinωDτv(t) + (ωC sinωDτ − ωD sinωCτ)vC(t)

+ ωCωD cosωDτr(t) + ωCωD(cosωDτ − cosωCτ)rC(t)
)

=
sinωDτvD(t)

ωD

− sinωCτvC(t)

ωC

+ cosωDτrD(t)− cosωCτrC(t).

It is still true that ‖y(tf )‖ = ‖r(tf )‖. The optimal control pair is given by eqn (6). For mC =
mD = m and l = 0,

0 = ‖y(t)‖ − (TD − 2TC)

m

(1− cos(ωD(tf − t)))

ω2
D

− TC(1− cos(ωC(tf − t)))

mω2
C

. (17)

Let RC and VC be the radius and speed of the chief’s orbit and RD and VD be the radius and speed

of the deputy’s orbit respectively. At time t = 0, using properties of a circular orbit as before, and
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assuming that the chief is ahead (in terms of phase angle) of the deputy in its orbit, we have that

‖y(0)‖ =
(sin2 ωDtfV

2
D

ω2
D

+
sin2 ωCtfV

2
C

ω2
C

+ cos2 ωDtfR
2
D + cos2 ωCtfR

2
C

− 2
(

VCVD
sinωDtf sinωCtf

ωCωD

cos θ +RCVD
sinωDtf cosωCtf

ωD

sin θ

− VCRD

sinωCtf cosωDtf
ωC

sin θ +RCRDcosωDtf cosωCtf cos θ
))

1

2

=
(

R2
D +R2

C − 2
(

RCRD cos((ωD − ωC)tf ) cos θ +RCRD sin((ωD − ωC)tf ) sin θ
))

1

2

=
(

R2
C +R2

D − 2RCRD cos((ωD − ωC)tf − θ)
)

1

2

.

Note that the above equation applies when the two spacecraft are moving in the same direction in

their orbits initially. If otherwise, the derivation of this equation is slightly different and involves a

sum of the angular rates instead of their difference. From eqn (17),

(

R2
C +R2

D − 2RCRD cos((ωD − ωC)tf − θ)
)

1

2 =
(TD − 2TC)

m

(1− cos(ωDtf ))

ω2
D

+
TC(1− cos(ωCtf ))

mω2
C

. (18)

The smallest positive real solution to eqn (18) is the time of capture of the chief by the deputy when

the two spacecraft start from different circular orbits. The solution to this transcendental equation

can be obtained using a numerical solver. From inspection of eqn (18), we see that all the terms

are positive. Hence, the left hand side terms must sum upto a positive real number or zero. If this

condition is not satisfied, capture can be avoided under the given initial conditions.

NUMERICAL SIMULATIONS

In this section, we present numerical simulations for a few sample cases. We consider the two

spacecraft (chief and deputy) to be of mass m = 1 MU (MU: mass unit) each, on a circular orbit of

radius R = 1 LU (LU: length unit) and ω = π
4 rad/TU (TU: time unit). The initial phase separation

between the chief and deputy θ = 10°.

The trajectories of the chief and deputy are shown in Figure 1. The initial circular orbit is shown in

dotted line. We observe that capture happens sooner with higher TD, as expected. In addition, the

level sets of the time of capture are in Figure 2 with time on the vertical axis against the orbital plane.

In Figures 2(b) and 2(d), we see that due to the periodicity of the dynamics, there is an upper bound

on the area covered by the projection of the controllable sets on the position plane. This bound is

characterized by eqn (14). Note that the level sets as shown in Figure 2 represent the magnitude of

the relative position vector, and are centered at the actual position of the chief spacecraft. In Figure

2(e), we see that with more time, the controllable sets do not cover more relative initial conditions

in the orbital plane.

Next, we consider a scenario where the chief and deputy are initially in different circular orbits. In

particular, we pick the deputy to be on an orbit with RD = 1.05 LU and ωD = 1.1π
4 rad/TU, and the

chief is on an orbit with RC = 1.0 LU and ωC = π
4 rad/TU and the initial phase separation between

the two spacecraft is again 10° with the chief ahead of the deputy in its orbit. All thrust values are

expressed in MU LU / TU2.
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Figure 1. Trajectories of the chief (blue) and deputy (red) ending in capture (posi-
tional coincidence). The diamonds mark the initial positions of the two spacecraft,
and the green mark represents the final positional coincidence. All values are in LU,
TU and MU.

It is evident that with higher actuation limit, the deputy can achieve positional coincidence with the

chief in lesser time.

CONCLUSION

We have solved the pursuit-evasion game in the orbital frame between two maneuvering space-

craft, in the presence of input constraints for both vehicles. The solution proposed here is an open

loop solution that depends only on the current relative state of the deputy with respect to the chief.

In addition, we have derived a condition for capture that is based on the initial conditions provided

for the two spacecraft and other fixed parameters. We have also provided a simple method based

on analytical and closed form expressions to extract the level sets of the time-of-capture and con-

sequently obtain the controllable sets for the deputy spacecraft. We will extend this framework to

solve the problem of relative velocity minimization which for instance, is relevant for spacecraft in

orbit to minimize impact during a meteor shower.9 We will also analyze the effectiveness of our

game theoretic solution for position coincidence problems where the chief (target) is in an orbit that

is non-circular. Finally, the optimal value of the time of capture in the game we have addressed

in this work can be interpreted as a metric for the risk of collision. In future, we will incorpo-

rate these ideas in other problems such as path planning for autonomous spacecraft operating near

unpredictably moving objects in orbit.10
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