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Abstract

This paper studies a distributed reinforcement learning problem in which a network
of multiple agents aim to cooperatively maximize the globally averaged return through
communication with only local neighbors. An asynchronous multi-agent actor-critic algorithm
is proposed for possibly unidirectional communication relationships depicted by a directed
graph. Each agent independently updates its variables at “event times” determined by its
own clock. It is not assumed that the agents’ clocks are synchronized or that the event times
are evenly spaced. It is shown that the algorithm can solve the problem for any strongly
connected graph in the presence of communication and computation delays.

I. Introduction

Distributed machine learning algorithms have drawn increasing attention recently, with some
notable examples such as distributed multi-arm bandit [1], linear regression [2], deep learning [3],
and reinforcement learning (RL) [4]. Promising applications of these algorithms are in large-scale
networks without any central controller /coordinator, including online economic networks, Internet
of Things, cyber-physical systems, and social platforms, primarily because in these examples,
collecting all information at a single point is infeasible, due to privacy issues such that agents
are not willing to share their private information, or expensive communication overhead in
maintaining such big data.

Among these distributed machine learning algorithms, there has been an ever-growing interest
in multi-agent reinforcement learning (MARL). In general, MARL problems are addressed in
three settings, namely collaborative, competitive, and a mixture of the two. In the collaborative
setting, the canonical multi-agent Markov decision process model [5,6] appeared to be the most
basic framework, where a common reward function is shared by all agents and affected by all
agents’ joint actions. Moreover, the team Markov game can also be used as a collaborative
model, where the agents also share an identical reward function [7,8]. Later, a more challenging
but practical setting where agents can have heterogeneous reward functions, with the goal of
maximizing the long-term return corresponding to the team averaged reward, was proposed
in [4,9-12|. Particularly, the focuses of these works are on a fully-decentralized/distributed setting,
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where no central controller/decision maker exists to coordinate the agents and maximize the
team averaged return. Instead, a communication network exists to connect the agents in which
information exchange is allowed only between neighboring agents over the network. There is also
a huge body of literature on MARL for the competitive and mixed settings [13-16], many of
which are empirical works without theoretical convergence guarantees. Here, our focus is on the
collaborative MARL with decentralized/distributed and networked agents, as in [4,9,17].

The work of [4] developed the first fully decentralized/distributed, synchronous actor-critic
algorithm under the collaborative setting, in which doubly stochastic matrices were used to
devise the consensus update. Such an update essentially needs the communication between each
pair of neighboring agents to be bidirectional. This confines the applicability of the algorithm
into scenarios with possibly unidirectional communication. More importantly, the requirement
of doubly stochastic matrices further restricts its extension to the cases with communication
delays and asynchronous updating, as there is no existing distributed way to devise a consensus
update using a doubly stochastic matrix in the presence of communication delays or asynchronous
updating.

Asynchronous RL methods [18-20] have gained great popularity recently as they can achieve
successful real-world applications such as games and robotics [21,22|. In these existing settings, a
large number of RL agents collect experiences in independent environments and interact with a
centralized parameter server. Compared with traditional RL algorithms, these asynchronous algo-
rithms enjoy better exploration properties and are more tolerant of computation faults; however,
they cannot be directly and easily, if not impossible, extended to fully distributed/decentralized
settings in which there is no centralized parameter server. Typical application examples of such
settings include robotic teams and drone fleets. It is also worth emphasizing that for a large
wireless network, it is difficult and sometimes impossible to synchronize all components’ clocks
over the network [23|; and that is also the case with a large-scale distributed RL network.

In this paper, we propose an asynchronous, fully distributed actor-critic algorithm using
the idea of push-sum [24,25]. In our algorithm, each agent independently decides when to take
actions according to its own clock. It is not assumed that the agents’ clocks are synchronized. The
algorithm also takes communication and computation delays into account. We show convergence
of the algorithm under linear function approximation, which is validated via simulation.

II. Problem Formulation

In this section, we introduce the background and formulation of the MARL problem with
networked agents. The problem was first proposed in [17] which provides two distributed algorithms
for synchronous case without considering any delays.

A. Networked Multi-Agent MDP

Consider a team of N agents, denoted by N' = {1,2,..., N}, operating in a common environment.
There is no central controller that can either collect rewards or make the decisions for all the
agents. In contrast, the agents are connected by a possibly sparse communication network
depicted by a directed graph G = (N, £), where £ denotes the set of communication links. A
networked multi-agent MDP model can be defined by a tuple (S, {A*}ienr, P, {R'}ienr, Gt), where
S is the state space shared by all the agents in A/, and A’ is the action space of agent i. For
each agent i, R : S x A — R is the local reward function, where A = Hf;l A is the joint action
space. P: S x A xS — [0,1] denotes the state transition probability of the MDP. It is assumed
throughout the paper that the states are globally observable and the rewards are observed only
locally. Each agent’s rewards are only locally observed by itself, primarily due to privacy issues
in the sense that the agents do not have motivation to share private reward information directly
with others. Practical examples of this setting include cooperative navigation, motion planning



of teamed robots, and dynamic operation of distributed energy resources in the smart grid; for
more examples and justifications of the setting, see [4].

The networked multi-agent MDP evolves as follows. Each agent ¢ chooses its own action
al given state s; at time ¢, according to a local policy, i.e., the probability of choosing action
a’ at state s, 7 : S x A* — [0, 1]. Note that the joint policy of all agents, 7: S x A — [0, 1],
satisfies 7(s,a) = [[;cpr mi(s,a’). Also, a reward Ti-q—l is received by agent ¢ after executing the
action. To make the search of the optimal joint policy tractable, we assume that the local policy
is parameterized by ng, where 0 € ©' is the parameter, and ©° C R™ is a compact set. The
parameters are concatenated as 6 = [(#1)T,---, (6V)T]T € ©, where © = [[Y., ©%. The joint
policy is thus given by mg(s,a) = [[;cpr 7rg,- (s,a;). We first make a standard regularity assumption
on the model and the policy parameterization.

Assumption 1. For anyi € N, s € S, and a' € A, the policy function ﬂéi(s,ai) > 0 for any
' € ©'. Also, mp,(s,a’) is continuously differentiable with respect to the parameter 6* over ©". In
addition, for any 6 € O, let P? be the transition matriz of the Markov chain {st}t>0 induced by
policy my, that is, for any s,s’' € S

Ps'|s) =Y m(s,a)- P(s'| s,a). (1)

acA

The Markov chain {s¢}t>0 is irreducible and aperiodic under any my, with the stationary distribu-
tion denoted by dy.

Assumption 1 has been imposed in the existing work on centralized actor-critic algorithms
with function approximation [26,27|. It implies that the Markov chain of the state-action pair
{(st, at) }+>0 has a stationary distribution dy(s) - mg(s, a) for any s € S and a € A.

The objective of the agents is to collaboratively find a policy my that maximizes the globally
averaged long-term return over the network based solely on local information, namely,

‘ 1 -1 4 i o
max J(9) = lim TE(Z NZTH_1> = ) dy(s)m(s,a)- R(s,a), (2)

t=0 ieN s€S,acA

where R(s,a) = N~'- 3", \  R'(s,a) is the globally averaged reward function. It is worth noting
that such an averaged reward can be viewed as an example of Benthamite social welfare [28].
Let 7y = N~ - 3.\ 7i; then, we have R(s,a) = E[Fy41| st = s,a; = a]. Thus, the global relative
action-value function under policy 7y can be defined accordingly as

Qo(s,a) = ZE[EH —J(0)]|so=s,a0 = a,ﬂg],
t

and the global relative state-value function Vp(s) is defined as Vp(s) = >, 4 ma(s, a)Qq(s, a). For
simplicity, hereafter we will refer to Vy and Qg as state-value function and action-value function
only. Furthermore, the advantage function can be defined as Agy(s,a) = Qq(s,a) — Vy(s).

As the basis for developing multi-agent actor-critic algorithms for distributed reinforcement
learning, the following policy gradient theorem was established in [4] for MARL.

Policy Gradient Theorem for MARL |Theorem 3.1 in [4]]: For any § € © and any agent
1 € N, define the local advantage function Ag: SxA—Ras

Aé(s?a) = Qg(S,d) - W($7a_i)a

where VJ(s,a™?) = Saicai Thi(s,a') - Qg(s,a’,a™"), and a~* denotes the actions of all agents
except for agent i. Then, the gradient of J(6) with respect to 6% is given by

VQi J(9) = ESNdeya,\,ﬂ-e [VQZ log 71'@,;(5, ai) . 149(57 CL)] = Es,\,deya,\,ﬂ-e [vW log 71'5,;(57 ai) . flé(s7 CL)] .



B. The Asynchronous Algorithm

We consider a general asynchronous scenario in which each agent has its own independent clock.
It is not assumed that all agents’ clocks are synchronized, and thus the asynchronous system
needs to be described in continuous time as follows. Each agent independently determines times
at which it updates its variables. Specifically, each agent ¢ has a strictly increasing, infinite
sequence of event times, denoted by t;o, t;1, 2, . . ., with the understanding that ;g is the time
agent ¢ initializes its variables, and the remaining t;,, k > 1, are the times at which agent 4
takes active actions such as transmitting information and updating variables. Between any two
successive event times ¢;; and t;;4.1), k > 1, agent ¢ completes updating which may take time.
Without loss of generality, we assume that all agents complete initialization before their first
update, i.e., tjo < t;1 for all ¢, j € N. It is assumed that the difference between any two successive
event times of each agent cannot be too large or too small. To be more precise, for any i € N,
agent i’s event times satisfy

Ti > tigggry — tie 2 Ti, k>0, (3)

where T; and T} are positive numbers such that T; > T;. This assumption is natural as unbounded
difference will make an algorithm suspend, and too frequent event times may cause an algorithm
inefficient and sometimes even impossible due to hardware constraints. It is worth emphasizing
that we make no assumptions about the relationships between the event times of different agents.
Any two agents may have completely different unsynchronized event time sequences.

Fach agent ¢ communicates with the network at each of its event times t;z, & > 1, by
transmitting its current variables to its “out-neighbors”. We say that an agent j is an out-neighbor
of agent i if (7,7) is a directed edge in G. Similarly, we say that an agent k is an in-neighbor of
agent i if (k,4) is a directed edge in G. An agent can send information only to its out-neighbors
and receive information only from its in-neighbors. Thus, directions of the directed edges in
G represent directions of information flow. We use N and ./\/1 to denote the sets of out- and
in-neighbors of agent i, respectively. For simplicity, we assume that each agent is always an out-
and in-neighbor of itself, i.e., i € N and i € /\/’jL for all ¢ € N. In other words, G has a self-arc
at each node. Thus, |N*| > 1 and [N | > 1, where [N | and |[N%| denote the cardinality of N
and N, i.e., the number of out- and in-neighbors of agent 4, respectively.

Each agent i has control over a set of variables, denoted pi,wi, vl yi, 22, i, 02 whose purposes
will be introduced shortly, and an additional scalar-valued variable y! whose initial value ygio =1.

At each event time t;, i € N, k> 1, agent i sends a pair of scaled versions of its variables,
iy and 4,
variables at different times as the transmissions are subject to communication delays which
are heterogeneous among the agents. We use dgk to denote the communication delay when
agent 7 sends information to its out-neighbor j at its event time #;;. In other words, agent j
will receive this information at time t;; + dgk Similarly, agent 7 receives pairs of variables from
its in-neighbors from time to time which were transmitted at earlier times. We do not impose
any restrictions on communication delays, except for a natural assumption that communication
delays are bounded.

Each agent ¢ computes new values of its variables based on those in-neighbors’ variables
received during the interval (ti(k—l)atik]~ It is worth emphasizing that we take computation
time/delays into account. It is assumed that all computations can be completed before the next
event time t;41) arrives. With this in mind, each agent ¢ can define its next event time to be
the time at/after which it finishes its last round of updating.

The asynchronous algorithm consists of two steps in each iteration, a critic step followed by

to each of its out-neighbors. Agent i’s out-neighbors may receive this pair of



an actor step. For each event time t;;, kK > 1, the critic step of agent ¢ is as follows:

'uii(kﬂ) - (1 = Butu) Méik + Buti 'ng‘(kﬂ)’ (4)
U;ik = Wiy T Buotir Uc 'VZQtik (Z,?ik), (5)
— tjs z(k—l),tzk]( Js tis
wzi(kJrl) - _N‘z + Z Z 3 ) (6)
A A
gt
i ytl yt sX(tL(k ) tlk](tjs + dt's)
yéi(kﬂ) = ./\/: + Z Z J 1 - g’ (7)
| je_/\[Z s>1 ’N—|
4 wgi(kﬂ) (8)
2t = 5
i(k+1) )
\ i yti(}c+1)

where uiik tracks the long-term average return of agent i, By, > 0 is the stepsize, Qy,, (%)
denotes Q(st,,,ar,;2) for any z, dg;s is the communication delay of information transmitted

from agent j to agent i at time Z;5, and x( o] (Ejs + dji _) is an indicator function defined as

bi(k—1)
Xty tin] (s + dﬂ D =1if gy <tjs + dt < tik, otherw1se X(tigo_1yotin) (Lis T dg;_s) =0.Itis
worth noting that the second items at the rlght hand side of (6) and (7) take sum of all received
scaled v and y variables, respectively, from agent i’s in-neighbors during the interval (¢;_1), tix)-

The local action-value TD-error 6;, in (5) is given by
5&]@ = Téi(k+1) - :uélk + Qti(k+1) (Zzzk) - Qtik (Zgzk) (9)
As for the actor step, agent ¢ improves its policy via

ezi(k-‘rl) = Hiik + Bo.t - Aiik : %k, (10)

where By, > 0 is the stepsize, Al and 1! are defined as

A= Q=) = Y mh(sia)) - Qi al o £), (11)
ate At
Vf = Vg log m (s, af). (12)

It is worth emphasizing that all above updating can be computed at agent 7 in a distributed
manner.

We impose the following assumptions for the asynchronous actor-critic algorithm which are
either mild or standard; see [17] for detailed discussions on these assumptions. In particular, we
focus on convergence under linear approximation since even for centralized actor-critic algorithms,
there is no convergence guarantee for nonlinear approximation.

Assumption 2. The instantaneous reward ri is uniformly bounded for any i € N and t > 0.

Assumption 3. The stepsizes B, and By satisfy, for alli € N, Y oy Botin = 2 op>1 Boty = 00
and ZkZI(ﬁgm + ﬁgytik) < o0o. In addition, Bg ., = 0(But;)-

Assumption 4. For each agent i, the function Q(s, a; z) is parametrized as Q(s,a;2) = z' ¢(s,a),
where ¢(s,a) = [p1(s,a),--- , ¢x(s,a)]T € RE is the feature associated with (s,a). The feature
vector ¢(s,a) is uniformly bounded for any s € S,a € A. Furthermore, the feature matriz
® € RISHAXE has full column rank, where the k-th column of ® is [¢(s,a),s € S,a € AT for
any k € [K]. Also, for any u € RE | du # 1x, where 1 denotes the K -dimensional vector whose
entries all equal one.



Assumption 5. The update of the policy parameter 0: includes a local projection operator,
It : R™ — O C R™i, that projects any 0} onto the compact set ©'. Also, we assume that
0= Hf\il ©" is large enough to include at least one local minimum of J(0).

For simplicity, we define P/(s’,a’ | s,a) = P(s'|s,a)mg(s,a’), Dy* = diag|dg(s) - mo(s,a), s €
S,a € A], and R = [R(s,a),s € S,a € A" € RISIAl Note that, with slight abuse of notation,
the expression P? has the same form as the transition probability matrix of the Markov chain
{st}+>0 under policy mg; see (1). These two matrices can be easily differentiated by the context.

To state our main result, we define the operator TQQ : RISHAI — RISHAT for any action-value
vector Q € RISIAl a5

T2(Q) =R~ J(0) - s 4 + PPQ.

We also define the vector T(-) as

lg(0)] = lim {I"[0" +n-g(0)] — 0"} /n (13)
<n—0
for any 6 € © and continuous function ¢ : © — R2iex ™. In case the limit above is not unique,
I'[g(0)] is defined as the set of all possible limit points of (13).
With the above notation, we establish the following convergence results of the critic step (4) —
(9) and actor step (10) — (12) given policy 7.

Theorem 1. Suppose that Assumptions 1 — 4 hold, and that communication graph sequence
{G-}22, is repeatedly jointly strongly connected. Then, for any given policy mg, with the sequences
{it} and {zL} generated from (4) and (8), we have limy_o0 Y ieprpit, - N7' = J(0) and
limy o0 24, = wo almost surely for any i € N, where J(0) is the globally averaged return as
defined in (2), and wy is the unique solution to

& DY [T (Puwg) — Buwy] = 0.

Suppose further that Assumption 5 holds. Then, for all i € N, the sequence {01%“6} obtained from
(10) converges almost surely to a point in the set of the asymptotically stable equilibria of

éi = f‘z [Essze,atNWG (A;g ’ %9)} '

III. Analysis

In this section, we use the concept of analytic synchronization [29] to derive a synchronous system
whose limiting behavior is the same as the asynchronous system under consideration, which
serves a critical step toward the proof of Theorem 1.

We first need a common time scale on which all n agents’ update rules can be defined. For
this, let 7; be the set of the event times of agent ¢ which are greater than or equal to ¢;1, and let
T be the union of all 7;. Relabel the times in T as t1,t2,...,t;,...so that t; < t,y1 for 7> 1. It
is easy to see that Tinax = maX{Tl, To,..., Tn} uniformly bounds above the time interval between
any two successive event times in 7.

For each i € N and t, € T, we define the extended neighbor sets for agent i as follows, which
are for analysis purpose only. If ¢, € 7;, the extended in-neighbor set of agent i, denoted Ni(T),
is defined as the set of those agents, including agent i itself, whose scaled variables are received
by agent ¢ during the time interval (t;(,_1), tig] Where tig = t,. If t, ¢ T;, N (1) is defined as a
simply index 7. In other words,

Ni(r)={i} U{j | 3s > 1 such that tjs + &) € (tig-1),tig)},  tr €T,
'A_/’—li-(T) = {Z}v tr ¢ T;.



It is clear that N (7) C N for all 7 > 1. Similarly, the extended out-neighbor set of agent i,
denoted N (1), is defined as

Ny =N, t €T,
N(r) = {i}, tr ¢ Ti.

Thus, N (7) coincides with N whenever ¢, is an event time of agent i and the simple index
i otherwise. We describe all defined neighbor relationships at time 7 € {1,2,...} to be the
time-varying directed graph G, with vertex set N and edge set & C N x A which satisfies the
above extended in- and out-neighbor relationships. We call G, the extended neighbor graph of the
asynchronous system under consideration at time 7 (or equivalently, event time ¢.). It is worth
noting that even though the real underlying neighbor graph G is time-invariant, the nominal
graph G, defined on event times t, € 7T is time-varying due to asynchrony and time delays. It is
worth noting that each agent i is always an extended in- and out-neighbor of itself, and thus G,
has a self-arc at each node for all 7 > 1. More can be said. Since G is strongly connected, and
each agent’s time intervals between any two successive two event times are uniformly bounded
above due to (3), it is easy to show the following result.

Lemma 1. If G is strongly connected, {QT}ﬁozl 1s repeatedly jointly strongly connected.

Here an infinite sequence of graphs G;, G, ... with the same vertex set is called repeatedly
jointly strongly connected if for some positive integer [ and each integer £ > 0, the union of
Grit1, Grit2s - -+ » G(ry1) is strongly connected. It is also called “ B-connected” in the literature [30].

We next rewrite (6) in a form which is convenient for analysis. Toward this end, fix £ > 1 and
j

JjE _/\/1 Suppose that agent j transmits its scaled variable j\t/]; to agent 7 at its event time £
and agent ¢ receives the variable at time t € (ti(k,l),tik]. Agent ¢ then holds this variable until
time ¢;;; at which it is used in the computation of wj, peny Via (6). The transmission time for this
event is t — t;5 whereas the hold time is ¢;, — . Note that the hold time ¢;, — ¢ is bounded above

by T; because of (3). We have assumed that the transmission time ¢ — ¢;5 is bounded above as

well. Thus, there exists a nonnegative integer Ji:k such that ;4 = t;; — Ji; Note that ¢;;, and ¢
are two different event times in 7. Set t;; = t; and t;s = t, where 0,7 € {1,2,...} and 0 < 7.
We write d? = 7 — o for the number of distinct event times in 7~ during the time interval (¢,,¢;].
As a consequence of (3), there must exist a bounded integer d such that d? < d for all 4, jeN
and t; € T. Then, vfjs = Uif—dij and d? € {0,1,..., d— 1}. Since each agent i can always access
the latest value of its own variables, d” = 0 for all i € V" and ¢, € T. Similar arguments apply
to (7).

To proceed, for each i € N and t, € T;, define

Pt =iy Vi, =V, O =0, wi=wi . v, =y, 0 =0, ¢<7<d,

where ¢,/ is the first event time of agent 7 after ¢,. Note that for any ¢, € 7;, there always exists
such a ¢’ because of (3). Then, each agent’s variables are well defined at any other agent’s event
times, so at any event time in 7T .

Now we define a new set of variables to conveniently describe a synchronous system, which is
equivalent to the asynchronous system under consideration, as follows:

% 7 U Nt __ i

=00 = St __ S ~0 i _ i
Hr = Hi s Ur = Vg, 57'_515-,—? Wr =We o Yr =Yt.s 20 = 2t 97'_ tr-

We also need define each agent’s stepsizes for the new variables at its own and other agents’
event times. Specifically, for all i € N" and ¢, € T, define

B{:},T = Bw,tq—a /8977— = 69,7&7—7 tr € 7;7
B(I),T = 07 Bé;r = 07 tr ¢ 7;
It is easy to verify that the stepsizes B@’T and B@T satisfy Assumption 3, stated as follows.

7



Lemma 2. Suppose that Assumption 3 holds. Then, the stepsizes B@T and Bé,T satisfy, for all
1eN, P Bor = P 697 = oo and ZT>1( -+ 59 ) < oo. In addition, B@T = 0(Bor)-

The preceding discussion enables us to extend the domain of applicability of the asynchronous
algorithm under consideration from 7; to all of T, which leads to a synchronous system. The
synchronous algorithm also consists of two steps in each iteration, a critic step followed by an
actor step. For each 7 > 1, the critic step of agent ¢ is as follows:

/_Li—+1 = (1 - LD,T) ’ /jZT + B(:J,T ' r;;'—&—la (14>

o =wi+5— 5L V.Qe (D), (15)
WX (o) (5 + d&)

nd i+ SEA : 16

]EN’ (1) 821, ts€T;

—j 7t
YsX o,T (8 + ds )
=t 2 2 o ? =2, (17)

g
JEN’ (1) 821, ts€T; ’N—‘
S Wiy
7= _;+ , (18)
\ yT+1

where o is the largest integer such that ¢, € 7 is an event time in 7; before 7, x(5, 7] (s+J§i) is an
indicator function defined as X(mﬂ(s—i—cﬂl) =1ifo < s+di’ < 7, and otherwise X(U7T](5+J§l) = 0.
The local action-value TD-error 6 in (15) is given by

The actor step of agent ¢ is as follows:
iy = 0+ By, AL (20)

where A} and 1! are defined in (11) and (12), respectively.

Since the asynchronous algorithm under consideration has the same limiting behavior as the
synchronous algorithm just described, Theorem 1 is an immediate consequence of the following
result.

Proposition 1. Suppose that Assumptions 1 — 4 hold, and that communication graph G is
strongly connected. Then, for any given policy g, with the sequences {MT} and {z'} generated
from (14) and (18), we have ims_yo0 Y sepr fit - N™1 = J(0) and lim, o 22 = wy almost surely
for any i € N, where J(0) is the globally averaged return as defined in (2), and wy is the unique
solution to

& DY [TH (D) — Duwy] = 0.

Suppose further that Assumption 5 holds. Then, for all i € N, the sequence {01} obtained from
(20) converges almost surely to a point in the set of the asymptotically stable equilibria of

éi = Fi [EStNdQ,atNM (A;L;,& ’ 1%,9)} :
The proof of this proposition can be found in the Appendix.
IV. Simulation
We evaluate a setting in which linear function approximation is adopted. Consider in total N = 20

agents, each having a binary-valued action space, i.e., A* = {0,1}, for all i € A/. Thus, the
cardinality of the set of actions A is 22°. In addition, there are in total |S| = 20 states. The



elements in the transition probability matrix P are uniformly sampled from the interval [0, 1]
and normalized to be a stochastic matrix. We also add a small constant 10~ onto each element
in the matrix to ensure ergodicity of the MDP such that Assumption 1 is satisfied. For each
agent i and each state-action pair (s, a), the mean reward R'(s,a) is sampled uniformly from
[0,4], which varies among agents. The instantaneous rewards r¢ are sampled from the uniform
distribution [R’(s,a) — 0.5, R'(s, a) 4 0.5]. The policy m, (s, a’) is parameterized following the
Boltzman policies, i.e.,

exp (q;bi 91')

Z exp (q;bi 9i>

bie Al

7[';1'(8, ai) =

where ¢, € R™ is the feature vector with the same dimension as ¢t, for any s € S and i € V.
Here we set m; = mg = --- = my = 5. The elements of ¢, are also uniformly sampled from
[0, 1]. In particular, the gradient of the score function thus has the form

Vi Iogwéi(s,ai) = Qg4 — Z W;i(saai)QS,bi'
bie At

The feature vectors ¢ € R for the action-value function Q(-,-;w) are all uniformly sampled
from [0, 1], of dimensions K =5 < [S| - | AJ.

The communication graph G is fixed and strongly connected. The stepsizes are selected
as But,, = 1/k%% and B, = 1/k"85, which satisfy Assumption 2. For each agent, the time
between two consecutive events At;j, are uniformly sampled from [0.5,1.5], so that E[At;;] = 1.
The delay time dy,, is uniformly sampled from [0, 2]. Figure 1 shows the convergence of relative
Q-value functions of the asynchronous algorithm under linear function approximation.
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Figure 1: Convergence of relative Q-value functions

V. Conclusion

In this paper, we have proposed an asynchronous distributed actor-critic algorithm for solving a
networked reinforcement learning problem. We have shown that the algorithm converges under
linear function approximation. One extension would be to relax the uniform boundedness of
consecutive times of action of an agent to a probabilistic one, as in [31]. For future work, we



will consider other communication issues such as packet drops and other reinforcement learning
algorithms such as off-policy actor-critic algorithms.

VI. Appendix

This appendix material provides a complete proof of Proposition 1.

We first construct a new graph, denoted G,, based on G, for each 7 for analysis purpose as
follows. We regard each agent i as node n*(?) in G, and introduce virtual nodes n*") ... nid=1)
for each agent i, where d — 1 is the maximum delay time among all agents. At each time 7,
virtual node n‘*®) holds the sum of the values that will be received by node n“®) in k time
steps. Besides the directed edges in G, including self-arcs at all nodes n'9), i € N, we add
the following directed edges: for each directed edge (n’ (0),71"(0)) in G,, we add directed edges
(nIM), n#0)), (nd @) i) (pdd=D i)Y and (nd () piM) (ndM) pi@)) . (nd(d=2) pild=1))
for all i,7 € N. Thus, each G, has Nd nodes, and not all Nd nodes have a self-arc.

Let (Di(o), vi(o) and :Ui(o) be the values of @, v¢ and %% respectively for each agent i, which
are given in equations (15)-(17). Let

Wr = 1@ ) @ @) @) T @ )T @) T,
Wr =10 @) T @) T @) T (@) T (@) T
Y, = [Qi(o)a"‘ ’giv(o)’gi(l)’... ,@5(1),”' 7gi(d*l)’... ’giv(dfl)]T’
Z=[z)" . (E)]T
Ur = [0V T (Y- V.QE) T 08 ka1l
where (Di(s), Ei(s) and gji(s) denote the variables of nodes ni(®) at time 7, respectively, 7 =

[ZL(1),---,2L(K)]T, and Zi(k) = o?i(o)(k:)/gji(o), where (Di(o)(k) denotes the kth entry of vector
o Vi=1,... Nk=1,..., K.

Let ¥2'(d) be an indicator function defined as %' (d) = 1 if agent j sends information to
agent 7 at time t,_,4 (agent ¢ updates at time ¢, ), otherwise 7 (d) = 0. Then, we can rewrite the
equations (16) and (17) as (21) and (22) in the following update:

iy = (1= Bor) - b + BorTig,
773— = (I}i + B(D,T ) Si ’ VZQT(Z-ir%
g d—1 —j ji
i vy vy _gxr (d)
Wrp1 = T T Z 5 (21)
‘NJ JEN d=0 ’N—‘
d—1 —j ji
Yr+1 ‘N’L | |,/\/“7‘ )
- JEN d=1 -
A Wty
1 = 77"+ .
! Uria

10



Let

[ ox2(s) X2 . XN 7]
[NV V2] IV
32 X . xXP2s) )
Hy=| Wb VAT, Ws=0,1,-,d -,
xiV(s) X3V (s) xiVN(s)
[ VI V2] NN
[ HY Iy On On
HTl On In On
H, = - TR, I
HE? Oy Oy - Iy
-ch—l_l On Oy -+ On

where Iy and Oy denote the N x N identity matrix and zero matrix, repectively. Then, the
above update can be written in a compact state form:

I/T/'r =W:+ B&J,T : UT:
Wiy = H, @ I - W, (23)
YT+1 =H; Y.

Define the operator (-); : REYN — RE and (-)5 : RKNJ — RE as

1
(oh = OF @ e = < 3o
ZEN
1
(y)2 = N(le®IK ZZZ/
zENs 0
for any z = [(z')7,.. ,(QUN)T]T € REN with 2! € RX | and )
g = [ O)T. L VO T )T, V@ D)T]T € RENE wigh i) € RE for all

ieN,s=0,--,d—1.
i(0)

Lemma 3. There exists a constant o > 0 such that o < yr ' < N for any i and T almost surely.

Proof: From Proposition 1 in [32], when 7 > Nd, there exists a positive constant cp;, such
that the first IV rows of matrix product II]_,Hy are strictly positive with minimum entry greater
than or equal to cpin. Moreover, we have the update Y; = II7_jH, - Yy. Then, when 7 > N d,
there exists a positive constant « for which 0 < o < N - ¢ipin and the first NV entries of Y, are
greater than or equal to a.. Thus, we know that o < yji(o) < N for all ¢ and 7. [ |

To proceed, let

‘/V‘l]:C - [ai(O)(k)? 7@N(0)(k)7 , W
Wk =[o

D), @) DT
71)(k)7"' ) N(CZ 1)(k)]T7

7-

Then, we have

qu_c = Wf+ﬁw7Ufa
Wh, = AT,
YT+1 - HTYT7
Wr (i)
7 (k) = Vi=1,---,N
Zr11(k) Yroa(i) ? ) AR

where W (i) and Y;41(i) are the ith entry of vector W¥ ; and Y;,1, respectively.

11



Lemma 4. Foralli=1,---,N, and k=1,--- | K, lim, 00 22 = lim; o0 1 ;WF/N.

Proof: Let H(r : s) = II7__Hj. There exists a vector I, such that [[H(t : s)];; — l1] <
CXN=%,¥1 > 5 > 0, where C is a constant and A € (0,1). Let D(r,s) = H(r,s) —[;1". Then,
we have

Wf—l—l = H(T . O)W(;C + ZH(T . S)Ujgw,s + 07]_6+IB@77+1,

s=1
~ ~ T+1 ~
VTR = W+ Y10
s=1
~ ~ T+1 ~ —
He o Why = Lo 1TWE = (H(r 4+ 1:0) = L 1)WE+ ) (H(r+1:8) = L1171 UF o
s=1

From this, we have, for 7 > 1,

Wk = HWF =1,1TWF + D(,0)W§ +ZD 7,8 U¥ By s,
s=1
Y1 = H(7:0)Yy = 1,1"Yy + D(7,0)Yy = Nl + D(7,0)Y.
Thus, for every 7 > 1 and for all i,
W (i)
YT+1( )

_ LLTWE + D 0)WEI() + S [D(r. 5)0F B (1)
Ni-(0) + [D(7.0)Y)(0) |

74 (k) =

Therefore,
(k) — L'WE L ()1TWE + [D(7,0)W1(6) + 304 [D(r, ) U Bas)(i)  1TWE
T N ] N7 (i) + [D(r, 0)Yo] (i) ] N
D OWEIG) + X0, TID(r, 9)UFBa (i) 1TWED(r : 0)Y0](3)
NI (i) + [D(7,0)Yo) (2) N[N (i) + [D(7 : 0)Yo)(3)]”
By definition of o, WF(i)N + [D(r,0)1](i) = [H(7 : 0) - [1},0;(J_1)]T](z') >a,i=1,---,N.
Thus, for allt=1,--- ,N and 7 > 1, we have
5t 1TWJ—“| |[D(7, 0)WEI(6) + 371, [D(7, 5)U¥ B o] (3)] N [1TWED(r,0)Y0] ()]
N T NI (i) + [D(7,0)Yo) (2) N[Nh-(i) + [D(7,0) Y (2)]
< ;[m;LXI[D(T,O)](i,j)\ WG+ ijax [D(7, )i, 3)] - 1TF]118,s]
s=1
+TIE ~m;»x|[D<T, 01, J)
< O+ & a0+ T
s=1
T+1
= O+ SN0 e+ T + Y 10
s=1 s=1
% C o) s
< 7HW0 i+ — ZAT *NTE 1o + 7HW<§“H1 + Z 1U¥ 1 Be.s
s=1 s=1
2C - T T
< - W5+ A 0F115as],
s=1

12



where [D(7,0)](4, j) is the entry at ith row and jth column of matrix D(r,0). Since A € (0, 1),
for all agent 4,

]'TI/V’II'~C 20 A7 1k $ T—s|117k|| 3
lim 274 (k) = =77 | < lim =S| |1+21A 1T¥11 Ba.s)
_Tlgrolo—ZAT N8N Bas].

Since U¥(i) — 0 for every agent 7, then ||[U¥||; — 0, and from the Lemma 5(a) in [30], we have

1TW71-€ T—58 k
Jim [z (k) — =] < Tlggo — ZA 1T£11Bz,s = 0.
This completes the proof. [ |

From Lemma 4, since it is easy to show the following result, the proof is omitted.
Lemma 5. For all i € N, lim, ;00 20 = limy 00 (W )2 = limy 00 (Z,)1.

Lemma 6. Under Assumption 1 and Lemma 2, the sequence {ji’} generated as in (16) is bounded
almost surely.

Proof: The proof of the lemma is the same as that of Lemma 5.2 in [4]. ]

Lemma 7. Under Assumptions 1, 2, 4 and Lemma 2, the sequence {wT } 1s bounded almost
surely, i.e., sup, ||Wr|| < oo.

Proof: Recall that the update of W is W41 = H; ® I- (Wr + By UT) given in (23). Let

U, = [ﬁi(o), . ,ﬂiv(o), e ,ﬂi@_l), e ,QZJTV(J_U]. From the definition of Uy, for all agent i,

i = (1 = ik (b — 600070 151 ) o
@ =0, Vs>o0.

Moreover, we have

d—1 N

o =SS H A+ N+ IN) @O 4 Bl D).
=0 j=1

Let {F;1} be the filtration with Fr1 = o(ry, i, Wi, 21, Yy, s1, a1, Bi—1,1 < 7), and
WO @0, i, g1, 7. 00) = B@P| o) M = 60 — B0 Fr0).

Since the Markov chain {(sr,a;)}r>0 is irreducible and aperiodic given policy 7y, we have

that when s = 0, hO (@1 pi 70y = B, mdy.armmy MO (@07 1O a5 O s an)] = ®TD,[R —

i1 g+~ (P2 — )" and for k > 0, B9 (@), i, 5" ) = Ex, ~dgarmme O @, i, 7% 57 00)] =
yr

0. From Assumptions 2 and 4, and Lemmas 3 and 6, we know that 3K, K3 > 0, s.t. || %HOO < Kj,
r

and ||, —fit|| < Ky, Vk, i. Thus, 3K3 > 0 such that |50 @™ a2 75®)—pi) (@i ® gi gi® o o y)2 <
K3- (14 ||[W,||?). Moreover, we know h**)(@; (k) ﬂi,gj;( ) , 87, ;) is Lipschitz continuous in W,

and M!, , is a martingale difference sequence. Since H- is a column stochastic matrix, it has
bounded norm. Thus, by Theorem A.2 in [4], W! is bounded almost surely. |

Lemma 8. Under Assumptions 1, 2, 4 and Lemma 2, the sequence {z.} is bounded almost surely,
i.e., sup, ||Z4|| < o0, Vi=1,--- ,N.

13



Proof: From (16), we know that for each entry k in 2, 2t (k) = wi(o)(k)/gi(o), ke{l,...,K}.
Moreover, from Lemmas 3 and 7, @3(0) and :Ui(o) are bounded almost surely. Therefore, it is easy
to show that z, is also bounded almost surely. [ |

We are now in a position to prove Proposition 1.

Proof of Proposition 1: The iteration of (W) has the following form:

(Wria)2 = 1 (

1 _ .
= N( ;07@ IK)(WT + /BQ,TUT+1)
= (Wr)2 + Bor (Urs1)2

= <WT>2 + B&),T<Sﬂ'>1' ¢T-

1;;@ I Hy @ Ig(Wr + BorUi1)

Hence, the updates for (W.)s and (fi-); are

(fr41)1 = (Br)1 + Bor E(Fri1 — ()1 Frt) + By Ert11, (24)
<WT+1>2 == <WT>2 + Bw,r‘ E(8T+1¢T‘f’r,1) + B&),T' £T+1,2 + B@,T' Yr+1, (25>

where 0711 = (rr41 = fir)1 + (P10 — @2)(Wr)a, &ri1 = 1rp1 — E(rrgn — (B0)[F7), Sr12 =
5T+1¢T - E((ST+1¢T|‘FT,1)) and Yr+1 = <5T+1>¢T - 6T+1¢T'

Note that E(r;41 — (fir)1|Fr1) is Lipschitz continuous in (fi-);, and that E(&HQST]]-}J)
is Lipschitz continuous in both (W;)s and (fir);. Moreover, & 111 and &4 92 are martingale
differences sequences. From Lemmas 3 and 7, {7;} is a bounded random sequence with v, — 0
as 7 — oo almost surely.

From Theorem B.2 in [4], the following ODE captures the asymptotic behavior of (24) and
(25):

[ 25&32 ] - [ _Q’Tlggl’alNK ‘I’TDE’Q(PB — Ink)® ] [ 26‘%2 ] i [ é(Tel)?é’aR ] 26)

From the proof of Theorem 4.6 in [4], the ODE (26) is globally asymptotically stable and has
its equilibrium satisfying

{ ()1 = J(0),
®"Dy R — (i)11lnk + PP® (W) — ®(W)s] = 0.

Note that the solution for (1)1 at equilibrium is J(6), and the solution for (W) has the form wy+Iv
with any [ € R and v € R such that ¢v = 1, where wy follows that ® Dy [Tf(@wg) — Quwy| =
0. Moreover, ¢pv # 1x by Assumption 4, so wy is the unique solution, which implies that
lim, (W, )2 = wp. Combining the above facts with Lemma 5, we conclude that lim, z = wy. =
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