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Abstract—Recently, using drones for forest fire management
has gained a lot of attention from the research community due
to their advantages such as low operation and deployment cost,
flexible mobility, and high-quality imaging. It also minimizes
human intervention, especially in hard-to-reach areas where
the use of ground-based infrastructure is troublesome. Drones
can provide virtual reality to firefighters by collecting on-
demand high-resolution images with adjustable zoom, focus, and
perspective to improve fire control and eliminate human hazards.
In this paper, we propose a novel model for fire expansion as
well as a distributed algorithm for drones to relocate themselves
towards the front-line of an expanding fire field. The proposed
algorithm comprises a light-weight image processing for fire edge
detection that is highly desirable over computational expensive
deep learning methods for resource-constrained drones. The
positioning algorithm includes motions tangential and normal to
fire frontline to follow the fire expansion while keeping minimum
pairwise distances for collision avoidance and non-overlapping
imaging. We proposed an action-reward mechanism to adjust the
drones’ speed and processing rate based on the fire expansion rate
and the available onboard processing power. Simulations results
are provided to support the efficacy of the proposed algorithm.

Index Terms—UAV networks, fire monitoring, virtual reality,
autonomous control, image-based edge detection.

I. INTRODUCTION

Wildfires are one of the costliest and deadliest natural
disasters in the US, especially in the West, resulting in damage
to millions of hectares of forest resources, evacuation of
thousands of people, burning of homes and damage to infras-
tructure, and most importantly, threatening the lives of people
and animals [1]. Moreover, wild-land fires directly impact
forestry operations, which produce wood fiber and biomass
fuels, and other forms of agriculture, by spreading into farms
and damaging ecosystems with negative consequences on
water quality and other ecosystem services [2], [3]. NIST
estimates that the annualized costs of wildfires range from
$7.6 billion to $62.8 billion, while the annualized losses due
to the wildfires are an order of magnitude higher, ranging from
$63.5 billion to $285.0 billion [1]. Wildfire suppression costs
exceeded $2 billion in 2017, breaking the all-time record [4].
The rapidly increasing risk of fire, due to recent widespread
extreme drought conditions and climate change, calls for new
national strategies to prevent and manage wildfires.

This work considers using a fleet of autonomous unmanned
aerial vehicles (UAVs), known as drones to enable virtual
reality (VR) for enhanced forest fire monitoring by providing
on-demand high-resolution closed-up images from fire front
line. Unmanned aerial vehicles (UAVs) known as drones offer
flexible, low-cost, and scalable solutions for many applications
due to their inherent advantages such as free-mobility, low

Fig. 1: Fire danger map in the continental U.S. by fire weather
zone (2980-2014) [5]

operation cost, and limited human interventions especially
after recent advances in enhancing their flight stability, au-
tonomous control and computational capacity [6]–[8]. Several
research teams are working to solve technical issues related
to the use of autonomous drones by introducing spectrum
management methods [9], [10], networking [11], predictive
routing protocols [12], [13], optimal compression policies [14],
autonomous path planning [15]–[17], and 5G communication
[18].

A newly introduced application is forest fire control, where
a network of UAVs can offer virtual reality to firefighters
through on-demand high-resolution video streaming, which
minimizes human intervention and hazard risks [19]. It has
a clear advantage over satellite imaging as well as observation
towers in terms of controllability, flexible perspective and
focus, higher update rate, and lower cost [20]. Recently, the
idea of using drones to ignite managed fires to burn out the
vegetation fuel of surrounding regions to control fire expansion

Note that there are alternative approaches for fire detection
and monitoring, e.g., using ground sensors, remotely piloted
vehicles (RPV), or satellite imaging [21]. However, their
drawbacks are (i) delayed fire detection due to missing small
fire at early stages, (ii) time lag for satellites to overpass
the field, and (iii) infeasibility of using a wide range of
sensors with limited sensing distance range (e.g., chemical-
based smoke detectors). Current forest fire suppression and
management involve ground-based personnel and equipment,
and manned aircraft, which puts flight personnel at risk and
is costly to operate.



Most of the projects that utilize drones for fire monitoring
and management use remote controlling to guide drones for
monitoring and control operations, that can be troublesome in
vast forest fires in hard-to-reach areas when human interven-
tion is costly and risky. This paper offers a fully automated
and distributed navigation algorithm for UAV networks to
optimally cover the front-line of an expanding fire field.

II. SYSTEM MODEL

Suppose that a set of N drones denoted by n1, n2, . . . , nN
are utilized to monitor an expanding fire field with the goal of
following fire front-line while maintaining maximal pairwise
distances to ensure maximal coverage. The expanding fire field
is modeled as a continuous time-varying closed region D =
(x, y) as elaborated in section II-A.

In [15], a navigation method is proposed based on Q-
learning to guide drones from their randomly initialized posi-
tions towards the fire front-line while avoiding collision to
stationary obstacles. Using this approach, in this work we
assume that the drones are located on the fire boarder line
with positions denoted by p1(0),p2(0), . . . ,pN (0), where
pi(t) = (xi(t), yi(t)) is the position of drone ni at time t.
The drones maintain a minimum pairwise distance dmin for
collision avoidance.

Each drone is assumed to be equipped with a thermal
camera with a limited field of view and a distance tracking
system. Drones are not allowed to convene with one another
nor with a ground station and take their decisions based on on-
board processing of their captured images, to enable a robust
and scalable system.

.
Fig. 2: Autonomous relocation of drones with respect to the
evolving fire.
A. Fire Propagation Model

OF), and (ii) burned-out (BO). Also, each cell, within a
continuous region with an arbitrary shape, is associated with
a randomly initialized fuel value f(i, j) to mimic the effect
of vegetation fuel across the forest. The fire ignition is started
with K randomly selected seed points and probabilistically
spreads out to the neighbouring cells considering the fuel and
wind factors. In particular, if vector ~w represents the wind
direction, and ~vn,m is the vector connecting adjacent cells
n(i, j) to m(i±1, j±1), then the state of node m changes to
OF if the following conditions are satisfied: (i) p(n) = OF , (ii)
p(m) = NF , and (iii) f(m) ≥ 0. The state change occurs with
probability pn,m = p0+p1〈~un,m, ~w〉, where p0 is the baseline
fire spread probability, and p1 captures the wind effect. On-fire

Fig. 3: Fire propagation model. top: fire spread model that
represents probability of fire spread to adjacent cell for nom-
inal values of baseline propagation probability p0 = 0.1, the
wind-dependent propagation probability p1 = 0.3, and wind
vector ~w = 1ej30

◦
. bottom: shows a typical fire spread model

for three time points t = 98, t = 144 and t = 273. Left
column shows the fire spread, and the right column represent
the fuel burnout.

cells change to BO after their fuel burns out with a predefined
rate. Note that this gives discrete states for cells; however, we
apply a 2D Median filter to smooth out the discrete values into
a continuous field, which translates the density of on-fire cells
into higher fire intensity as a reasonable model for thermal
camera. Fig.3 illustrates the proposed fire expansion model.

III. AUTONOMOUS NAVIGATION

The navigation algorithm operates based on determining the
fire front-line orientation, as follows.

A. Fire Edge Detection

Each drone has a limited field of view (FoV), represented
by a (w × w) square, based on the utilized thermal camera
sensitivity and the hovering altitude. Here, we used the fol-
lowing multi-step procedure to find a line tangential to fire
map (See Fig. 6). The first stage is denoising, where we use
median filtering (2D median filter) to smooth out the image.
The next step is segmentation, where each input heatmap is
clustered into two segments based on the fire intensity using
the unsupervised k-means clustering algorithm. This segmen-
tation provides binary labels for each pixel, which is used by



Fig.4:FieldofView(FOV)ofadrone.

thesubsequentclassificationstagetofindtheoptimallinear
linethatseparatestheregionintotwosegmentsusingasupport
vectormachine(SVM).Thecoefficientsofsupportvectorsin
SVMareusedtoobtainthetangentiallinepassingthroughthe
borderbetweenthetworegions.Thethirdstateisvalidationto
avoidcallingafalsefirefrontline,especiallywhenthecovering
heatmapessentiallyincludesonlyonedominantregion(OFor
NF).Inthesecircumstances,theobtainedfrontlineisshaky
andcansignificantlychangefromone-timepointtothenext.
Weusethisfactandrejecttheresultsifthedifferencebetween
theorientationofcurrentandpreviouslyobtainedfrontline
exceedsapredeterminedthreshold(i.e.,|θt−θt 1|≥θmax).
Theproposedthree-stepalgorithmprovidesareliableedge
detectionmechanismwithacomplexityfarbelowthepopular
convolutionalneuralnetworks[22];therefore,itisappropriate
fordroneswithlimitedcomputationpowers.Asummaryof
theproposedmethodispresentedinAlgorithm1.

Algorithm1AlgorithmforFireSpread Monitoring

Initialization:Initialize modelparameters(assignfuelvalue
toeachcell;locatenaturalobstacles;setthewindspeed,and
wind-basedpropagationmodelparameters) Setthelocations
forthedrones
whileFirein-progressdo

forUAVi=1toNdo
Takepictureofpixelsizewi×hi

Usemedianfilteringtosmoothouttheimage
UseK-meanstoclassifypixelsbetweenfirevsback-
ground
UseSVMclassifiertodrawtheboundarybetweenthe
fireandnon-fireregion
Validatethenewboundarybycomparingagainstits
history;rejectifsubstantialchangesareobserved
Move UAVtothenewpositionaccordingtothe
methodinsectionIII-B
Movetotheoptimalposition

end
end

B. OptimalPositioning

Thegoalofthisstep(positioning)istorelocatedrones
accordingtotheexpandingfirefrontline.Inordertoperform
thepositions,followingourprevious work[15], weusean
action-rewardmechanism.

Tocalculatetherewardforeachaction,eachdroneconsiders
thefollowingthreefactors:(i)distancebetweenitsposition
andtheestimated mid-pointlocationofthefireline,(ii)its
alignment withrespecttothefireline’s midpoint(whether
thedroneiswithinaregionadjacenttothemid-pointornot)
and(iii)thelocationofotherdrones withinacirculararea
surroundingthedrone.Itisexpectedforthedronestokeepa
minimaldistancedc

min fromoneanothertoavoidcollisionand
alsooverlappingFOV.Likewise,theyshallkeeptheminimum
distancedf

min fromthefirefrontlinetoavoidthehazardous
effectofthefire.Dronesencountertwodifferentcaseswhen
finingtheoptimallocations.

Case-I,wheretheEuclideandistancebetweentwonearby
dronesisdc

min ormore.Inthatscenario,dronesdonotneed
toconsiderthelocationofnearbydronesfordeterminingthe
optimallocation.Inthatcase,theoptimallocationlieson
theperpendicularlinetothefirefronttilepassingthrough
the midpoint,wherethegradientofthechangeis maximum
(verticalmotion).Thedistancefromthemidpointdv,however,
dependsonthefireexpansionrateas wellasthe minimum
allowabledistancetothefirefrontline(i.e.dv >df

min)to
ensurethesafetyofdrones.

Case-II,wheretheEuclideandistancebetweentwonearby
dronesisbelowdc

min. Toavoidoverlappedscanning,two
dronesshouldincreasetheirpair-wisedistancesby mov-
ingalongsidethefirefrontlineintheoppositedirections
untilthey achievethe minimal pairwise distances dc

min

(tangentialmotion).Thesetwoscenariosaredemonstratedin
Fig.5.

Inordertoreducetheonboardprocessingburden, we
defineaparametercalledprocessingrate(pr).Initially,the
parameterisassignedtoadefaultvaluebasedontheprior
information. Duringthe mission,thisparameterisadjusted
basedonthefireexpansionrateas wellastheavailable

Fig.5:Dronere-positioning.(a)vertical motionincaseIto
followfirefrontline;(b)tangentialmotionincaseIItoavoid
collision.



computational resources. In order to make the algorithm robust
and responding to the change in fire direction/speed, we
developed a simple optimization function that optimizes the
motion steps by minimizing the lag from the fire frontline
location, while keeping the frequency of measurements within
the constraint defined by the onboard processing power of
drones.

IV. RESULTS

In this section, we illustrate some numerical results based
on the simulated fire expansion (using the model provided in
section II-A) as well as one exemplary real-world fire image.

Fig. 6 illustrates the accuracy of the proposed method to
estimate the fire frontline (shown by the red line) through pro-
cessing the acquired heatmap after proper validation (section
III-A).

Fig. 6: Fire frontline detection using the three-step algorithm.

Fig. 7 shows that the developed action-reward mechanism
performs well in adjusting the average motion rate with the
fire expansion rate under a constant step motion size dv . It
shows that the rate of motion almost linearly increases for
faster-expanding fires. Part of the non-linearly is due to fire
edge detection errors as well as tangential re-positioning for
collision avoidance. Also, for larger motion step sizes, the rate
is lower as expected.

Likewise, Fig. 8 presents the relationship between the FoV
processing rate and the fire expansion rate at different step
sizes. The algorithm achieves lower processing rates for slow-
growing fire regions that show the efficacy of the proposed
rate-adaption mechanism to control the processing rate of
drones (by adjusting pr) in order to save in the costly onboard
processing units that can prolong the mission time. Also, it
is seen that the required processing rate is higher when the
relocation step size is lower. This observation highlights the
need for further investigation to balance between the agility
and optimality of the proposed imaging-based navigation
algorithm.

In order to show the utility of the proposed algorithm in
real-world scenarios, we also apply the fire frontline detection
to an exemplary fire image in Fig. 9 after some proper
modifications to the algorithm. This figure presents a wildfire
captured by the satellite (top) as well as the identified fire filed
(bottom). Initially, we detect the fire area by implementing
image segmentation based on color characteristics detection.
Our method is to identify pixels that represent fire based on
a set of rules that processes color characteristics of an image

Fig. 7: Performance of Drones in responding the change in
fire expansion rate.

Fig. 8: FOV processing rate vs fire expansion rate.

in RGB format as well as the hue/saturation/intensity (HSI)
proprieties, proposed in [24]. Then, we identify a closed loop
that encompasses all the fire pixels within one curved convex
shape.

The study in [24] provides 4 rules for the fire area segments
based on comparing the color components (intensity of pixels
in any of the R, G, and B planes) and the image saturation
(S) and overall intensity (I) against predefined thresholds. For
instance, RT is the threshold of the Red component that should
be set between 55 and 56 by experiment. Likewise, ST is the
threshold of the pixel situation which is set to 125 through
intensive test [24]. To increase the segmentation accuracy, we
add pixel intensity (I) to the fire segmentation rules, which
should be greater than IT = 83.

Essentially, the process of fire frontline detection of real-
world fire images includes the following steps. Firstly, we
traverse all of the pixels to identify pixels that comply with
the color characteristics rules. Then, we associate binary labels
to the pixels that represent fire vs non-fire pixels. Finally, we
find out the optimal linear borderline of the fire area. Fire area
segmentation based on the color detection rules provides a
high accuracy through a simple and low-complexity algorithm
compared to more computationally-expensive deep-learning
methods; therefore highly desirable for resource-constrained
UAVs. We can also improve the accuracy of segmentation by
adding more constraint rules.



(a)

(b)

Fig. 9: (a) A fire image in Klamath National Forest taken by
the SWIR sensor on Digital Globe’s new WorldView-3 satellite
[23]. (b): detected fire frontline.

V. CONCLUSIONS

This paper implements a novel navigation algorithm for a
fleet of autonomous drones to optimally monitor a spread-
ing fire frontline through localized fire edge detection. The
positioning algorithm comprises two tangential and vertical
motions with respect to the fire edge, where the first is
to maintain a minimum distance between adjacent drones
and the latter is to ensure drones follow the fire front-
line. This approach minimizes human intervention through
the remote control of drones in hazardous situations. The
trade-off between the agility and optimality of the algorithm
is addressed by adjusting the relocation step size and the
image processing rate based on an action-reward mechanism,
which needs further investigation. Simulation results verify the
performance of the proposed algorithm.
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