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Maqolada nilradikalli tabiiy usulda gradiurovkalangan kvazi-
filiform Li algebrasi o‘rganilgan va bunday algebralarni
tasniflash metodi keltirilgan.

В настоящей статье мы исследовали алгебр Лейбница чьи
нильрадикали является естественно градуированной квази-
филиформной алгеброй Ли и представили метод построения
и классификации таких алгебр.

Introduction. In recent years, a great deal of study has been conducted
on Leibniz algebras. These algebras, introduced by Loday in [11], were
conceived as a natural generalization of Lie algebras. Various classical results
from the study of Lie algebras have been extended to the study of Leibniz
algebras.

Significantly, Levi’s Theorem for Leibniz algebras, proven in [3], states
that every Leibniz algebra can be represented as a semidirect sum of
a semisimple Lie subalgebra and the maximal solvable ideal. Semisimple
Lie algebras are direct sums of simple Lie algebras, which are completely
classified. Hence, the problem of classification of Leibniz algebras reduces
to the classification of those that are solvable. By a result of [6], a solvable
Leibniz algebra is a direct sum of its nilradical and a space complimentary
to the nilradical. Thus, the classification of Leibniz algebras actually reduces
to the study of nilpotent algebras and solvable algebras with these as their
nilradicals.

A convenient class of nilpotent Leibniz algebras to consider in this
manner are those subject to some restriction on their nilindex. Moreover,
it is often useful to restrict focus to naturally graded algebras. In the study
of Lie algebras, the naturally graded algebras of maximum nilindex were
originally classified in [13]. In the Leibniz case, the maximum nilindex is
greater by one and such algebras, as well as the non-Lie naturally graded
filiform Leibniz algebras, were classified in [2]. Based upon such results, it is
possible to classify solvable Leibniz algebras with nilradicals matching these
descriptions, a task which was carried out in [6] and [7] for the null-filiform
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and naturally graded filiform cases respectively. The classification of some
filiform Leibniz algebras was obtained in [9] and [10], allowing for the recent
classification in [5] of solvable Leibniz algebras with filiform nilradicals and
the surprising result that, when the nilradical is Lie, any such algebra is Lie.

A natural next step is to consider algebras of nilindex one less than
filiform, called quasi-filiform. All naturally graded quasi-filiform Lie algebras
were classified in [8], with a slight o mission amended in [14], whereas the
non-Lie Leibniz algebras of this type were classified in [4]. In this paper,
we examine solvable Leibniz algebras with naturally graded quasi-filiform
split Lie nilradicals and classify those with the property that the space
complementary to the nilradical is of maximum dimension, excluding a
particular low-dimensional special case.

Throughout this paper, products omitted from tables of multiplication
are assumed to be zero. All algebras are assumed to be finite-dimensional
and over the field of complex numbers.

Preliminaries. We now present some preliminary definitions and
relevant results.

Definition 1. Let L be a vector space over a field F , endowed with a
bilinear bracket operation [−,−]. Then we call L a Leibniz algebra if all
x, y, z ∈ L satisfy the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y].

Note that, in the case where [x, x] = 0 for all x ∈ L, L is, in fact, a
Lie algebra. The following definitions provide some useful concepts for the
study of Leibniz algebras.

Definition 2. Let L be a Leibniz algebra over a field F . Then we call
the sets Ann`(L) = {x ∈ L | [x, y] = 0 ∀y ∈ L} and Annr(L) = {x ∈ L |
[y, x] = 0 ∀y ∈ L} the left and right annihilators of L respectively. We define
the center of L to be the intersection of the left and right annihilators and
denote it by Center(L).

We can conclude from the Leibniz identity that, if L is a Leibniz algebra,
[x, x], ([x, y] + [y, x]) ∈ Annr(L) for any x, y ∈ L.

Definition 3. Let L be a Leibniz algebra over a field F . We define
lower central series Lk for k ∈ N by L1 = L and Lk+1 = [Lk, L] and its
derived series L[k] for k ∈ N by L[1] = L and L[k+1] = [L[k], L[k]]. We say
that L is nilpotent if its lower central series is eventually zero and solvable
if its derived series is eventually zero; it is clear from the definitions that
nilpotency implies solvability. Moreover, if L is nilpotent, we define its index
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of nilpotency to be the smallest natural number k such that Lk = {0}, and,
if it is solvable, we define its index of solvability to be the smallest natural
numberm such that L[m] = {0}. Note that, if dim(L) = n and L is nilpotent,
index of nilpotency of L is at most n+ 1.

The following theorem further relates the notions of nilpotency and
solvability [1].

Theorem 1. Let L be a Leibniz algebra over a field F . Then L is solvable
if and only if L2 is nilpotent.

Definition 4. We call the maximal nilpotent ideal of a Leibniz algebra
its nilradical.

We now introduce some notions which we will use to examine this
relationship.

Definition 5. Let L be a Leibniz algebra over a field F and d : L→ L
a linear transformation such that, for any x, y ∈ L,

d([x, y]) = [d(x), y] + [x, d(y)].

Then we say that d is a derivation of L; the set of derivations of L is denoted
by Der(L).

It follows by the Leibniz identity that, for any x ∈ L, the operator
Rx : L→ L of right multiplication by x is a derivation of L. Such derivations
are called inner, while all others are called outer.

Definition 6. [12]. Let L be a Leibniz algebra over a field F and
d1, . . . , dk derivations of L such that α1d1 + . . . + αkdk is not nilpotent
for any nonzero (α1, . . . , αk) ∈ F k. Then we say that d1, . . . , dk are nil-
independent.

The following theorem [6] gives us a bound on the dimension of the space
complementary to an algebra’s nilradical and will play an important role in
our classification.

Theorem 2. Let L be a Leibniz algebra over a field F , N its nilradical,
and k the maximum number of nil-independent derivations of N . Then
dim(L)− dim(N) ≤ k.

We now define terminology for n-dimensional algebras of two specific
nilindices, the latter being the type of algebra with which we will concern
ourselves.

Definition 7. Let L be an n-dimensional Leibniz algebra over a field
F such that, dim(Li) = n − i for each 2 ≤ i ≤ n. Then we say that L is
filiform.

Definition 8. Let L be an n-dimensional nilpotent Leibniz algebra over
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a field F with index of nilpotency n−1. Then we say that L is quasi-filiform.
Finally, we present the classification of naturally graded quasi-filiform

split Lie algebras, which follows directly from the classification of all
naturally graded quasi-filiform Lie algebras originally published in [8] and
corrected in [14].

Theorem 3. Let g be an n-dimensional naturally graded quasi-
filiform split Lie algebra over C. Then g is isomorphic to one of
the following pairwise non-isomorphic algebras with basis {e0, . . . , en−1}:
Ln−1 ⊕ C : n ≥ 4,

[e0, ei] = −[ei, e0] = ei+1, 1 ≤ i ≤ n− 3,

Qn−1 ⊕ C : n ≥ 7, n− odd,
[e0, ei] = −[ei, e0] = ei+1, 1 ≤ i ≤ n− 4,
[ei, en−2−i] = (−1)i−1en−2, 1 ≤ i ≤ n− 3.

Classification of Leibniz Algebras with Naturally Graded
Quasi-Filiform Split Lie Nilradical, and Maximal Dimension of
the Complementary Space. We now seek to classify the Leibniz algebras
with the algebras of Theorem 3 as their nilradicals. In particular, we will
examine those which are of maximal dimension for their nilradical; that is,
the cases where the inequality of Theorem 2 is an equality.

We will make use of the following lemma:
Lemma 1. Let R be a Leibniz algebra with a Lie subalgebra N , and

R2 ⊆ N . Then for every u ∈ N2 and every p ∈ R, [p, u] = −[u, p]. That is,
N2 anticommutes with R.

Proof. Every element of N2 is a finite sum of products of elements in
N . By linearity, it suffices to consider a single such product, u = [v, w] for
some v, w ∈ N . Since R2 ⊆ N , [a, b] + [b, a] ∈ Annr(R) ∩ N ⊆ Center(N)
for all a, b ∈ R. Then for arbitrary p ∈ R and some α, β ∈ Center(N),

[p, u] = [p, [v, w]] = [[p, v], w]− [[p, w], v] = [−[v, p]+α,w]− [−[w, p]+β, v] =

= [−[v, p], w]−[−[w, p], v] = −[[v, p], w]−[v, [w, p]] = −[u, p], since N is Lie.

�

We are now prepared to begin our classification.

Case: N = Ln−1 ⊕ C. The first quasi-filiform naturally graded Lie
algebra is Ln−1 ⊕C, for n ≥ 5 with basis {e0, . . . , en−1} and multiplication
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table 1

[e0, ei] = −[ei, e0] = ei+1, 1 ≤ i ≤ n− 3.

We wish to examine solvable Leibniz algebras R with this nilradical. Observe
that N2 = span{e1, . . . , en−2} and Center(N) = span{en−2, en−1}.

Derivations on Ln−1 ⊕ C. Consider arbitrary f ∈ Der(Ln−1 ⊕ C),
represented as a matrix. Since f is a derivation, f([a, b]) = [f(a), b]+[a, f(b)]
for any elements a, b. By examining these constraints obtained from
products of basis elements of the forms

[e1, e2], [e1, en−1], [e0, ei], 1 ≤ i ≤ n− 1,

we obtain that f must be of the form

a0 0 0 0 · · · 0
a1 b1 0 0 · · · 0
a2 b2 a0 + b1 0 · · · 0
a3 b3 b2 2a0 + b1 · · · 0
...

...
... · · ·

. . .
...

an−2 bn−2 bn−3 · · · (n− 3)a0 + b1 d
an−1 bn−1 0 · · · 0 c


Moreover, it can be verified directly that every matrix of this form is a
derivation, so this is a complete description of Der(Ln−1 ⊕ C).

Some elements of Der(Ln−1⊕C) are inner. Specifically, the matrix with
b2 = −1 and other coefficients zero corresponds to right-multiplication by
e0, while the matrix with ai+1 = 1 and other coefficients zero corresponds
to right multiplication by ei for 1 ≤ i ≤ n− 3.

Nil-Independent Derivations. Consider the matrix form given above.
Since three parameters a1, b2, c3 appear on the diagonal, it is clear that we
can obtain three nil-independent derivations, such as those corresponding
to (a0, b1, c) = (1, 0, 0), (0, 1, 0), and (0, 0, 1); call these Rx, Ry, and Rz
respectively. We claim that this is maximal; there cannot be a fourth nil-
independent derivation.

For consider any set of four derivations. Then, since the subspace of Cn
corresponding to the diagonal entries of derivations of n is 3-dimensional, we
can take a linear combination to obtain a derivation of the above form with

1Ln−1 ⊕ C can be defined for n = 4 as well, however, it is a special case which we do
not examine here.
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a0 = b1 = c = 0. By taking the change of basis e′n−2 = en−1, e′n−1 = en−2,
this becomes strictly lower triangular, and thus nilpotent. Since the change
of basis preserves nilpotency, A is nilpotent as well, so these four derivations
are not nil-independent. Therefore the maximum number of nil-independent
derivations on Ln−1 ⊕ C is 3. Then dim(R)− n ≤ 3.

We focus on the case where this difference is exactly 3; that is, R =
〈e0, · · · , en−1, x, y, z〉, whereRx,Ry,Rz are obtained by right multiplication
by x, y, z respectively. Then, by taking linear combinations and relabeling
of x, y, z, we may assume without loss of generality that the products
[N, {x, y, z}] are given by

[e0, x] = e0 +
n−1∑
j=1

ajej , [e0, y] =
n−1∑
j=1

a′jej ,

[e1, x] =
n−1∑
j=2

bjej , [e1, y] = e1 +
n−1∑
j=2

b′jej ,

[ei, x] = (i− 2)ei +
n−3∑
j=i+1

bj−i+1ej , [ei, y] = ei +
n−3∑
j=i+1

b′j−i+1ej ,

[en−1, x] = den−2, [en−1, y] = d′en−2,

[e0, z] =
n−1∑
j=1

a′′j ej , [ei, z] =
n−3∑
j=i+1

b′′j−i+1ej ,

[e1, z] =
n−1∑
j=2

b′′j ej , [en−1, z] = d′′en−2 + en−1,

where 2 ≤ i ≤ n− 2.

Elimination of Parameters from [N, {x, y, z}]. We take a change of
basis on x, y, z to remove the component of the derivation which is inner.
As we noted earlier, b2 and ai for 2 ≤ i ≤ n − 2 are inner derivations
corresponding to right-multiplication by elements of Ln−1 ⊕ C. By taking
a change of basis, subtracting multiples of these elements from x, y, and
z, we can set the corresponding parameters to zero: namely ai, a′i, a′′i for
2 ≤ i ≤ n− 2, and b2, b′2, b′′2 .

By taking a change of basis e′1 = e1 +
n−2∑
j=3

Ajej , e′i+1 = [e1, e
′
i] for 2 ≤

i ≤ n − 3, we may choose the coefficients Aj to obtain [e′1, x] = bn−1en−1

and [e′i, x] = (i − 1)e′i for 2 ≤ i ≤ n − 2, eliminating the parameters bi for
3 ≤ i ≤ n−2. By redefining the coefficients a′i, a′′i , b′i, b′′i we have no change
to other products.

Note that, since R is Leibniz and R2 ⊆ N , for any elements a, b we have

[a, b] + [b, a] ∈ Annr(R) ∩N ⊆ Center(N) = span{en−2, en−1}.



On some solvable Leibniz algebras ... 165

That is, [b, a] = −[a, b] + αen−2 + βen−1 for some coefficients α, β. Lemma
1 shows that these coefficients are zero for products where at least one of
a and b is in N2; since N2 = span{e2, · · · , en−2}, this means exactly that
x, y, z anticommute with ei for 2 ≤ i ≤ n− 2.

We now consider a number of applications of the Leibniz identity to
specific basis elements to further pare down our parameters. By examining
the Leibniz identity on

[e0, [x, y]], [e1, [x, y]], [e0, [x, z]], [e1, [x, z]],

[en−1, [x, z]], [e0, [y, z]], [e1, [y, z]],

we eliminate or relate parameters, obtaining the following products for
[N, {x, y, z}]:

[e0, x] = e0 + a1e1 + an−1en−1, [e0, y] = −a1e1 − a1b
′
n−1en−1,

[e1, x] = 0, [e1, y] = e1 − b′n−1d
′en−2 + b′n−1en−1,

[ei, x] = (i− 1)ei, [ei, y] = ei,

[en−1, x] = (n− 3)d′en−2, [en−1, y] = d′en−2,

[e0, z] = (a1b
′
n−1 − an−1)en−1, [e1, z] = b′n−1d

′en−2 − b′n−1en−1,

[en−1, z] = −d′en−2 + en−1,

for 2 ≤ i ≤ n− 2, as well as

[x, y] = d′(an−1 + (n− 4)a1b
′
n−1)en−3 + Cxyen−2 +Dxyen−1,

[x, z] = d′((n− 4)an−1 − (n− 2)a1b
′
n−1)en−3 + Cxzen−2 +Dxzen−1,

[y, z] = d′(an−1 − a1b
′
n−1)en−3 + Cyzen−2 +Dyzen−1,

where Cxy, Dxy, Cxz, Dxz, Cyz, Dyz ∈ C.
Now apply the Leibniz identity on [y, [x, z]] to obtain that a1b

′
n−1d

′ = 0.
The change of basis given by setting e′0 = e0+a1e1−an−1d

′en−2+an−1en−1,
e′1 = e1 + b′n−1en−1, e′n−1 = en−1 − d′en−2, x′ = x − an−1d

′en−3, and
z′ = z + an−1d

′en−3, with other basis elements unchanged, preserves the
multiplication on Ln−1 ⊕ C and yields

[e0, x] = e0, [e1, y] = e1, [en−1, z] = en−1,
[ei, x] = (i− 1)ei, [ei, y] = ei, 2 ≤ i ≤ n− 2.

Other Products, and Anticommutators. We are now in a position
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to resume in greater detail our examination right annihilator of R. Observe
that [e0, x] = e0, [e1, y] = e1, and [en−1, z] = en−1, which are all nonzero,
so x, y, z 6∈ Annr(R). We claim that Annr(R) ⊆ span{en−1}.

Take an arbitrary element r ∈ Annr(R) and separate it into components
r = η+ξx+υy+ζz, where η ∈ N and ξ, υ, ζ ∈ C. Then consider the following
product:

0 = [e0 +e1 +en−1, η+ξx+υy+ζz] = [e0 +e1 +en−1, η]+ξe0 +υe1 +ζen−1.

Since [e0 +e1 +en−1, η] ∈ N2, while e0, e1, en−1 are not in N2, we have ξ =
υ = ζ = 0 by linear independence. That is, Annr(R) ⊂ N . Since Annr(R)∩
N ⊆ Center(N), we have Annr(R) ⊆ Center(N) = span{en−2, en−1}.

Now consider arbitrary αen−2 + βen−1 ∈ Annr(R) for α, β ∈ C. Then
we have 0 = [x, αen−2 + βen−1] = −α(n − 3)en−2 + β[x, en−1]; since 0 +
[x, en−1] = [en−1, x]+[x, en−1] ∈ Annr(R), we can write [x, en−1] = γen−2+
δen−1 to obtain 0 = −α(n − 3)en−2 + β(γen−2 + δen−1) = (βγ − α(n −
3))en−2 + βδen−1. As such, either β = 0 or δ = 0. If the former is true, we
have βγ = 0 immediately; if the latter, we can see that γen−2 ∈ Annr(R),
so 0 = [x, γen−2] = −γ(n − 3)en−2, implying γ = 0 and thus βγ = 0.
Consequently, we must have α = 0, so Annr(R) ⊆ span{en−1}, as desired.

Taking advantage of the fact that [a, a], ([a, b] + [b, a]) ∈ Annr(R) for all
a, b ∈ R and recalling our previous anticommutativity result, we examine
the Leibniz identity on the products

[x, [e0, x]], [x, [e1, y]], [x, [x, en−1]], [y, [e0, x]],

[y, [e1, y]], [y, [y, en−1]], [z, [e0, x]], [z, [e1, y]],

[z, [z, en−1]], [x, [y, z]], [x, [z, x]], [y, [x, z]],

[y, [y, z]], [z, [x, z]], [z, [y, z]], [z, [z, z]],

to show that [{x, y, z}, {x, y, z}] ⊆ Annr(R) and obtain the remaining
products. Then, by taking a change of basis on x, y and z, we obtain the
classification.

Theorem 4. Any solvable Leibniz algebra R of dimension n + 3,
n ≥ 5, with nilradical Ln−1 ⊕ C, is isomorphic to an algebra with basis
{e0, . . . , en−1, x, y, z} and the following multiplication table, where ζ ∈
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{0, 1}.
[e0, ei] = −[ei, e0] = ei+1, 1 ≤ i ≤ n− 3,

[ei, x] = −[x, ei] = |i− 1|ei, 0 ≤ i ≤ n− 2,

[ei, y] = −[y, ei] = ei, 1 ≤ i ≤ n− 2,

[en−1, z] = en−1,

[z, en−1] = (ζ − 1)en−1.

If ζ = 0 this algebra is Lie, while if ζ = 1 it is not. Therefore these two cases
are non-isomorphic.

Case: N = Qn−1⊕C. Using the same methods as above, we also obtain
a classification for solvable Leibniz algebras of maximum dimension with
nilradical Qn−1 ⊕ C.

Theorem 5. Any solvable Leibniz algebra of dimension n + 3, n ≥ 7
odd, with nilradical Qn−1 ⊕ C, is isomorphic to an algebra with basis
{e0, . . . , en−1, x, y, z} and the following multiplication table, where ζ ∈
{0, 1}.

[e0, ei] = −[ei, e0] = ei+1, 1 ≤ i ≤ n− 4,

[ei, en−2−i] = (−1)i−1en−2, 1 ≤ i ≤ n− 3,

[ei, x] = −[x, ei] = |i− 1|ei, 0 ≤ i ≤ n− 3,

[en−2, x] = −[x, en−2] = (n− 4)en−2,

[ei, y] = −[ei, y] = ei, 1 ≤ i ≤ n− 3,

[en−2, y] = −[y, en−2] = 2en−2,

[en−1, z] = en−1, [z, en−1] = (ζ − 1)en−1.

If ζ = 0 this algebra is Lie, while if ζ = 1 it is not. Therefore these two cases
are non-isomorphic.
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